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Abstract

In amyotrophic lateral sclerosis (ALS) caused by SOD1 gene mutations, both cell-

autonomous and noncell-autonomous mechanisms lead to the selective degeneration of

motoneurons (MN). Here, we evaluate the therapeutic potential of gene therapy

targeting mutated SOD1 in mature astrocytes using mice expressing the mutated

SOD1G93A protein. An AAV-gfaABC1D vector encoding an artificial microRNA is used

to deliver RNA interference against mutated SOD1 selectively in astrocytes. The treat-

ment leads to the progressive rescue of neuromuscular junction occupancy, to the

recovery of the compound muscle action potential in the gastrocnemius muscle, and sig-

nificantly improves neuromuscular function. In the spinal cord, gene therapy targeting

astrocytes protects a small pool of the most vulnerable fast-fatigable MN until disease

end stage. In the gastrocnemius muscle of the treated SOD1G93A mice, the fast-twitch

type IIB muscle fibers are preserved from atrophy. Axon collateral sprouting is observed

together with muscle fiber type grouping indicative of denervation/reinnervation

events. The transcriptome profiling of spinal cord MN shows changes in the expression

levels of factors regulating the dynamics of microtubules. Gene therapy delivering RNA

interference against mutated SOD1 in astrocytes protects fast-fatigable motor units and

thereby improves neuromuscular function in ALS mice.
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1 | INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease

characterized by the progressive and selective loss of motoneurons

(MN) in the cortex, brainstem, and spinal cord. Whereas 90% of ALS

cases are sporadic, the remaining 10% are familial (fALS). Pathogenic

mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) are

considered to cause 20% of fALS cases (Taylor et al., 2016).
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Mice overexpressing mutated SOD1 (mSOD1) replicate the main

features of ALS (Gurney et al., 1994). In the spinal cord, neu-

rodegeneration follows a specific pattern, characterized by the higher vul-

nerability of the fast-fatigable MN, which innervate fast-twitch type IIB

muscle fibers (Pun et al., 2006). Importantly, noncell-autonomous patho-

genic mechanisms are also involved in MN degeneration (Beers

et al., 2006; Boillee et al., 2006; Pramatarova et al., 2001). Mutated

SOD1 has key pathogenic effects in glial cells including astrocytes, micro-

glial cells and oligodendrocytes. Suppressing mSOD1 in these cell types

modifies onset and/or progression of the disease (Boillee et al., 2006;

Kang et al., 2013; Yamanaka et al., 2008). Furthermore, knockout of fac-

tors enhancing the neurotoxicity of astrocytes delays disease progression

in the SOD1G93A ALS mouse model (Guttenplan et al., 2020).

Diseased astrocytes have major effects on MN, both in vitro and

in vivo. In co-culture systems, astrocytes derived from ALS patients or

from ALS mouse models show toxic activities on MN (Aebischer

et al., 2011; Haidet-Phillips et al., 2011; Nagai et al., 2007; Rojas

et al., 2014). Furthermore, infusion of culture medium conditioned by pri-

mary mouse astrocytes expressing mSOD1 is sufficient to induce MN

degeneration and neuromuscular dysfunction in healthy rats (Ramírez-

Jarquín et al., 2017). Although the molecular cause of this toxicity remains

poorly understood, some mechanisms have been proposed. Astrocytes

from ALS patients and mSOD1 mice have reduced expression of EAAT2,

which may decrease their ability to properly uptake glutamate, causing

excitotoxicity in MN (Rothstein et al., 1995). Furthermore, ALS may affect

the ability of astrocytes to provide essential metabolic and trophic sup-

port to MN, for instance by lowering lactate efflux (Ferraiuolo

et al., 2011). Because of an abnormal ratio between pro- and mature

nerve growth factor in astrocytes, the p75 signaling pathway was aber-

rantly upregulated in MN (Ferraiuolo et al., 2011). The release of trans-

forming growth factor β1 (TGF-β1) is upregulated in ALS astrocytes, with

possible effects on the inflammatory response and MN survival (Endo

et al., 2015; Tripathi et al., 2017). Diseased astrocytes can also produce

factors that are directly toxic to MN, such as high levels of NO and inter-

feron gamma (IFNγ), which may increase oxidative stress and cause MN

death (Aebischer et al., 2011; Anneser et al., 2001; Catania et al., 2001).

Reactive astrocytes have also been shown to release lipocalin 2 (lcn2),

which is a potent mediator of neuronal toxicity (Bi et al., 2013).

Various strategies are explored to prevent the toxic effects of dis-

eased astrocytes in ALS, including RNA interference to lower the

expression level of mSOD1 protein (Foust et al., 2013; McCampbell

et al., 2018; Ralph et al., 2005; Raoul et al., 2005; Stoica et al., 2016).

We previously designed an AAV9 vector combined with the

gfaABC1D promoter driving expression of an artificial microRNA to

knockdown human SOD1 (miR SOD1) in astrocytes (Dirren

et al., 2015). Following intracerebroventricular (ICV) injection in neo-

natal SOD1G93A mice, this vector was found to improve the neuromus-

cular function and prolong animal survival. However, it remains

unclear what are the effects of targeting astrocytes for gene therapy

against mSOD1 mediated by RNA interference (RNAi). Here, we

address this question using a longitudinal analysis to explore the neu-

roprotective effects induced by the treatment in SOD1G93A mice. Our

main objective is to elucidate how gene therapy changes the course of

the disease during its early phase in SOD1G93A mice, characterized by

the degeneration of the most vulnerable population of fast-fatigable

MN. Silencing of mSOD1 led to a significant protection of the motor

function, improving mouse performance in specific behavioral tests for

muscle strength and motor coordination. Treated mice displayed a partial

protection of the vulnerable fast-fatigable MN in the lumbar spinal cord.

However, AAV-mediated targeting of astrocytes for expression of miR

SOD1 had most significant effects on the occupancy of the neuromuscu-

lar junctions (NMJ), which remained highly protected from ALS-induced

denervation. In the gastrocnemius muscle, gene therapy induced a signifi-

cant protection of the fast-twitch type IIB muscle fibers. Protection of

the NMJ was also revealed by events of axonal sprouting and muscle

fiber clustering. To further analyze the effects of treated astrocytes on

spinal cord MN and identify potential gene candidates implicated in the

therapeutic response, we performed a transcriptomic analysis of MN

exposed to astrocytes expressing miR SOD1. Altogether, our results

show that AAV-mediated gene therapy targeting mSOD1 in astrocytes

has clear effects on spinal cord MN in SOD1G93A mice by promoting

functional innervation of the skeletal muscle.

2 | MATERIALS AND METHODS

2.1 | Animals and vector administration

All animal works were performed in accordance with the Swiss legisla-

tion and the European Community Council directive (86/609/EEC) for

the care and use of laboratory animals. B6.Cg-Tg(SOD1*G93A)

dl1Gur/J mice (The Jackson Laboratory, Bar Harbor, USA) were mated

with C57BL/6J females (Charles River Laboratories, Bois des Oncins,

France). Newborn pups were genotyped at birth by polymerase chain

reaction (PCR) against human SOD1. ICV injections were performed

on 2-days-old pups as previously described (Dirren et al., 2014). AAV

vector suspensions were diluted in a physiologic solution of sodium

chloride and mixed with 0.1% Fast Green FCF (Sigma-Aldrich) to visu-

alize spread of the vector suspension throughout the ventricles. Three

microliters of viral suspension were injected into the left lateral ventri-

cle, using a 29G insulin syringe (B. Braun, Hessen, Germany).

2.2 | Viral vector production

The engineering and production of the AAV vectors were performed

as previously described (Dirren et al., 2015). Briefly, the following

microRNA sequences: miR SOD1: 50-ATT ACT TTC CTT CTG CTC

GAA-30; miR SOD1-b: 50-TAA AGT GAG GAC CTG CAC TGG-30; and

miR ctrl: 50-AAA TGT ACT GCG CGT GGA GAC-30 were introduced

into the pre-microRNA backbone of murine miR-1550 and further

cloned under the minimal GFAP promoter gfaABC1D into the pAAV-

MCS:gfp plasmid expression cassettes. The guide sequences miR

SOD1 and miR SOD1-b were designed to specifically target the

human SOD1 coding mRNA sequence (NM_000454) and did not rec-

ognize the murine SOD1 sequence (NM_011434).
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For production of recombinant AAV9 particles, shuttle plasmids

were co-transfected with the pDF9 helper plasmid into HEK293-AAV

cells (Agilent Technologies, Santa Clara, USA). Cells were lysed 72 h fol-

lowing transfection. Viral particles were sequentially purified on iodixanol

(Axis-shield, Dundee, United Kingdom) and ion-exchange affinity col-

umns (GE Healthcare, Italy). Viral genomic copies were measured by

TaqMan quantitative PCR (Invitrogen) using primers recognizing the

human β-globin intron. The AAV9 vectors were injected at a titer of

1.4E14 viral genomes (VG)/mL for the behavioral study. For MN trans-

criptome analysis, a vector concentration of 2.9E14 VG/mL was used for

ICV injection to achieve at least similar therapeutic efficacy.

2.3 | Behavioral testing and electromyography

Cohorts used for behavioral experiments were litter-matched. Evoked

CMAP amplitude in the triceps surae was evaluated using the electro-

myographic apparatus (AD Instruments, Oxford, UK) as described pre-

viously (Dirren et al., 2015). For muscle strength measurements, each

mouse was hold by the tail while lifting metal grids with defined

weights of 20, 30, and 40 g. The maximal duration of the test was set

at 30 s. Two successive trials were performed with each grid. The

inter-trial interval was set at 30 s. For each grid, the score was calcu-

lated by multiplying the best time performance by the weight of the

grid. For each mouse, the total score was defined as the sum of the

scores obtained for each of the three grids. For the rotarod test, the

mouse was placed on an accelerating rod, at a speed constantly

increasing from 4 to 40 rpm, during a maximal period of 300 s. The

performance was measured as the time during which the mouse was

able to maintain itself on the rotating rod. For SOD1G93A mice, the

end stage of the disease was defined as the time at which the animal

could no longer right itself within 20 s after being placed on its flank.

2.4 | Histological analysis

Mice were sacrificed at the mentioned age or at end stage of the dis-

ease by intra-peritoneal injection of pentobarbital (Streuli Pharma,

Uznach, Switzerland). Mice were transcardially perfused with PBS and

one gastrocnemius muscle was directly embedded in Cryomatrix

(Thermo Fisher Scientific), frozen on dry ice and kept at �80�C for

muscle fiber analysis. Animals were further perfused with paraformal-

dehyde 4% (PFA, Karl Roth). The second gastrocnemius muscle and

spinal cord were post-fixed in PFA 4% for 20 min and 90 min, respec-

tively, before being transferred to a 25% sucrose solution.

Twenty-five μm thick sections of the lumbar spinal cord were cut

on a cryostat and conserved free floating in PBS-azide solution.

Twelve μm thick transversal sections of unfixed triceps surae muscle

and 20 μm thick longitudinal sections of fixed gastrocnemius muscle

were cut on a cryostat directly on glass slides.

For immunostaining, sections were incubated in a 0.15% Triton

X-100, 2% bovine serum albumin, 3% normal horse serum blocking

solution for 1 h at room temperature (RT). Sections were then

incubated for 24 h at 4�C with primary antibodies diluted in blocking

solution. Sections were washed and incubated with secondary anti-

body diluted in blocking solution for 1 h at RT.

Avidin–biotin/3,30-diaminobenzidine method (Vectors Laboratories

Inc. Burlingame, USA) was applied to reveal goat anti-ChAT (1:500,

Chemicon Millipore, Billerica, USA), goat anti-MMP9 (1:1000, Sigma-

Aldrich) and rabbit anti-IBA1 (1:2000, Wako Pure Chemical Industries,

Osaka, Japan) immunostainings. Secondary antibodies were: biotinylated

horse antigoat IgG or biotinylated goat antirabbit IgG (1:200, Vector BA).

Forty-eight hours incubation of the primary antibody and nickel ammo-

nium sulfate enhancement was used for MMP9 staining.

Other antibodies were: Rabbit anti-GFAP (DakoCytomation,

Glostrup, Denmark), mouse anti-SV2 (1:40, Developmental Studies

Hybridoma Bank [DSHB], University of Iowa, Iowa City, USA), and

rabbit anti-NFM-145 (1:500, Chemicon Millipore), goat antirabbit

Cy3, donkey antimouse Cy3, goat antirabbit alexa 488 (1:500,

Jackson ImmunoResearch Laboratories, West Grove, USA) and

tetramethylrhodamine α-bungarotoxin (1:500, Invitrogen). For muscle

fiber type identification, transversal sections of triceps surae were stained

with a cocktail of antibodies from DSHB: mouse anti-MyHC I (BA-D5,

1:500), mouse anti-MyHC IIa (SC-71, 1:500), mouse anti-MyHC IIb (BF-

F3, 1:100), and rabbit antidystrophin (1:200, Abcam). The secondary

antibodies used were: goat antimouse IgG2b-alexa 647 (1:500), goat

antimouse IgG1-alexa 488 (1:500), goat antimouse IgM-AMCA (1:200)

and goat antirabbit cy3 (1:500) (Jackson ImmunoResearch Laboratories).

2.5 | Quantification

For cell counts in the spinal cord, one every 10 sections were stained

and counted. ChAT and MMP9-positive MN were manually counted in

the ventral horn of the lumbar spinal cord section using an Olympus

AX70 microscope (Olympus Corporation, Japan). Microglial activation

was evaluated by manually counting Iba1-positive microglial cells. Astro-

cytic activation was assessed in the ventral horn of GFAP-stained lumbar

sections. GFAP-positive total area was determined with ImageJ using

percentile thresholding. For assessments of Iba1 and GFAP activation,

five sections of the spinal cord representing 10 ventral horns per animal

were used. Pictures were taken with a 20� objective on a Leica

DM5500 microscope (Leica, Wetzlar, Germany).

Neuromuscular innervation was quantified on 20 μm-deep z-stack

pictures of at least three fields of view per gastrocnemius. Sixty endplates

identified using α-bungarotoxin staining were counted per muscle.

Endplates were categorized as denervated, completely or partial inner-

vated, according to the co-staining with the SV2 marker. Pictures were

taken with a 20� objective on a Leica DM5500 microscope.

For muscle pattern analysis, pictures of the entire muscle

section were taken with a 20� objective on an Olympus slide scanner

VS120-L100. Pictures were post processed with a home-made Fiji

macro and analyzed with MATLAB. For each channel, a minimal gray

intensity threshold was set using sections stained with the secondary

antibodies alone. For a given channel, values above the threshold

were considered as positive and the muscle fiber type determined
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accordingly. Muscle fibers with value below the threshold for all three

channels were categorized as type IIx. Objects smaller than 150 μm2

or bigger than 5000 μm2 were excluded from the analyses.

Clustering analysis were done as follows: inter-fiber distances for

fibers form the same subtype were determined according to their cen-

ter of gravity. As each fiber is on average in contact with six other

fibers, the median of the six shortest distances for each fiber was cal-

culated. Median values were then averaged across all fibers from the

same subtype. A second analysis was performed to determine the per-

centage of fibers in contact with another fiber from the same subtype.

Briefly, the mean radius of a muscle fiber type was calculated based

on the measured area of each fiber, and assuming that the fiber has a

circular shape. If the distance between the centers of two fibers from

the same subtype was longer than twice their radius plus two SD, the

fibers were categorized as not in contact with each other.

2.6 | Laser-capture microdissection of spinal cord
MN, RNA sequencing and analysis

Mice were sacrificed at 65 days by intra-peritoneal injection of pentobar-

bital (Streuli Pharma, Uznach, Switzerland). The lumbar part of the spinal

cord with the vertebrae was directly embedded in OCT and frozen at

�80�C. Fourteen μm thick sections were cut on a cryostat and stained

with a 1% cresyl violet solution to reveal MN in lumbar spinal cord sec-

tions and guide laser-capture microdissection (PALM microscope, 20�,

Zeiss). Total RNA was extracted from a pool of 500 MN per mouse with

the microRNeasy kit according to manufacturer's instruction (Qiagen).

RNA was quantified with a Qubit (fluorimeter from Life Technologies)

and RNA integrity confirmed with a Bioanalyzer (Agilent Technologies).

The SMARTer™ Ultra Low RNA kit from Clontech was used for reverse

transcription and cDNA amplification according to manufacturer's instruc-

tions, starting with 5–6 ng of total RNA as input. The 200 pg of cDNA

were used for library preparation using the Nextera XT kit from Illumina.

Library molarity and quality was assessed with the Qubit and Tapestation

using a DNA High sensitivity chip (Agilent Technologies). Pools of six

libraries were loaded for clustering on Single-read Illumina Flow cells.

Reads of 50 bases were generated on the Illumina HiSeq 2500 and 4000

sequencers. One sample was removed from the analysis because of the

poor quality of the extracted RNA, another sample was removed because

of low-sequencing depth and three other samples were removed because

histological examination showed only low GFP expression levels.

The purity-filtered reads were adapters and quality trimmed with

Cutadapt (v. 1.8, [Martin, 2011]). Reads matching to ribosomal RNA

sequences were removed with fastq_screen (v. 0.9.3). Remaining

reads were further filtered for low complexity with reaper (v. 15–065,

[Davis et al., 2013]). Reads were aligned against Mus musculus.

GRCm38.86 genome using STAR (v. 2.5.2b, [Dobin et al., 2013]). The

number of read counts per gene locus was summarized with htseq-

count (v. 0.6.1, [Anders et al., 2015]) using Mus musculus.GRCm38.86

gene annotation. Quality of the RNA-seq data alignment was assessed

using RSeQC (v. 2.3.7, [Wang et al., 2012]). Reads were also aligned

to the Mus musculus.GRCm38.86 transcriptome using STAR (v. 2.5.2b,

[Dobin et al., 2013]) and the estimation of the isoform abundance was

computed using RSEM (v. 1.2.31, [Li & Dewey, 2011]).

Statistical analysis was performed in R (R version 3.4.0) on 18,371

protein coding genes with at least one read count in at least one sam-

ple. A multifactorial statistical model including the effects of (1) SOD1

silencing, (2) AAV transduction (GFP), and (3) Batch was used with

DESeq2 to identify 95 miR SOD1 affected genes with a false discov-

ery rate (FDR) ≤ 10% (Love et al., 2014). Prior to heatmap visualiza-

tion, expression counts data were transformed with regularized

logarithm (rlog), then batch-corrected. A gene ontology analysis for

biological processes was performed with the software Gorilla (Eden

et al., 2009), comparing the list of differentially expressed genes (FDR

≤20%) to the total list of identified genes. The set of RNA sequencing

data is available through GEO with ID GSE148901.

2.7 | Quantitative PCR

cDNA from the SMARTer™ Ultra Low RNA kit from Clontech used for

reverse transcription of the RNA obtained by laser micro-dissection

were utilized to perform SYBR™ Green qPCR relative quantification.

The primer pairs for specific genes were purchased from Qiagen

(QuantiTect Primer Assay, listed in Table S1). Relative quantification

was calculated after normalization to the reference genes X-prolyl

aminopeptidase (Xpnpep1) and casein kinase 2 (Csnk2b).

2.8 | Statistical analysis

Data are presented as mean ± SEM or mean ± SD as stated in the figure

legends. Statistical analyses were performed using either MATLAB or Prism

8 software and are specified in the figure legends. For electromyographic

measurements (CMAP), as well as performance in the grid and rotarod

tests, data were analyzed using a two-way (group x time) repeated-

measures ANOVA followed by a Newman–Keuls post hoc test. The num-

ber of MN and NMJ were analyzed using one- and two-way ANOVA

followed by Tukey's post hoc test for multiple comparisons. Analyses of

muscle fiber clustering comparing wild type (WT) and treated mice was

performed using two-tailed unpaired t test. The number and size of muscle

fibers were analyzed using one-way ANOVAwith Bonferroni post hoc test.

For all statistical analyses, the α level of significance was set a 0.05.

3 | RESULTS

3.1 | Expression of miR SOD1 in astrocytes
rescues neuromuscular function in SOD1G93A mice

We assessed the effects of AAV-mediated miR SOD1 gene therapy on

disease progression in SOD1G93A mice. Mice were ICV injected at P2

with the AAV9-gfaABC1D:GFP:miR SOD1 vector (AAV-miR SOD1)

which drives expression of an artificial antihuman SOD1 miR in astro-

cytes (Dirren et al., 2015). As previously shown, AAV9 ICV injection in
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neonatal mice leads to expression of GFP in the brain including the cere-

bral cortex, and along the spinal cord (Dirren et al., 2014). In the injected

mice, GFP was expressed in astrocytes in the lumbar spinal cord, at day

65 and end stage (day 153–185) (Supplemental Figure S1). To assess

neuroprotective effects of the astrocyte-specific silencing of SOD1, the

treated mice were compared to SOD1G93A mice injected with a similar

vector encoding a scramble miR sequence (AAV-miR ctrl), noninjected

SOD1G93A mice (untreated), and WT littermates. Neuromuscular function

was assessed along the course of the disease using electromyography

and behavioral tests (Figure 1a). Amplitude of the muscle evoked

response (CMAP) was measured every week in the triceps surae

(Figure 1b). The effects of the treatment were consistent with the results

reported by (Dirren et al., 2015). Until day 73, there were no significant

effects of AAV-miR SOD1, as CMAP values declined to 62 ± 4.3 mV in

the treated mice, a value only slightly higher than in both control groups

of SOD1G93A mice. CMAP amplitude then increased in the AAV-miR

SOD1 group, to reach 88 ± 7.3 mV at day 87, and then stayed stable

until day 136. In contrast, CMAP values further decreased in the AAV-

miR ctrl and untreated mice. Another miR SOD1-b sequence also

targeting human SOD1 showed similar effects, which are therefore not

specific to the miR sequence (Supplemental Figure S2). Muscle strength

and motor coordination were evaluated with the grid and rotarod tests,

respectively (Figure 1c, d). Control SOD1G93A mice showed a progressive

loss of muscle strength detectable from day 93 on (Figure 1c). As com-

pared to control groups, AAV-miR SOD1 significantly improved muscle

strength from day 119 until end stage (Figure 1c). In the rotarod test, the

latency to fall was only marginally prolonged in the AAV-miR SOD1

treated mice, when compared to untreated SOD1G93A mice, reaching sig-

nificance only at later stages of the disease (Figure 1d). These results

indicate that silencing of mSOD1 in astrocytes protects from the loss of
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the neuromuscular function in SOD1G93A mice, mainly improving muscle

strength as compared to untreated mice.

3.2 | Expression of miR SOD1 in astrocytes
protects MN in the lumbar spinal cord but has no
effect on the inflammatory response

Next, we analyzed spinal cord tissue at various time points over the

disease process, from day 65 (initial drop of the CMAP amplitude)

until end stage. The number of choline acetyltransferase (ChAT)-

positive MN was determined in the lumbar region of the spinal cord

(Figure 2a, b). At day 65, MN loss was only marginal in SOD1G93A mice

compared to WT mice (Figure 2b). However, the number of ChAT-

positive MN was significantly decreased in all groups at day 140. At

end stage, the number of surviving MN reached 10.1 ± 2.1 and

12.2 ± 2 MN (mean ± SEM) per section in the AAV-miR ctrl injected

and control untreated ALS mice, respectively. In the AAV-miR SOD1

treated mice however, the number of ChAT-positive MN was signifi-

cantly increased (14.7 ± 2.1 MN per section) (Figure 2b), similar to the

effects reported in (Dirren et al., 2015).

To assess if AAV-miR SOD1 could prevent astrocytic and micro-

glial activation in the spinal cord, we measured the area of GFAP

immunoreactivity and the number of Iba1-positive microglial cells on
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F IGURE 2 AAV-miR SOD1 targeting of astrocytes has protective effects on fast-fatigable motoneurons in the lumbar spinal cord. (a) Representative
pictures of ChAT+MN (red arrows) in the lumbar spinal cord at end stage. (b) Quantification of the number of ChAT+MN per section of the lumbar
spinal cord, from 65 days of age until end stage. Statistical analysis: two-way ANOVA (time effect) with Tukey's post hoc test; compared to day 65, there is

a significant loss of ChAT+MN in the AAV-miR ctrl and untreated SOD1G93A mice only (###p < .001). One-way ANOVA at individual time points with
Tukey's post hoc test; **p < .01, ***p < .001. At end stage, the number of MN is significantly higher in the AAV-miR SOD1 group compared to untreated
SOD1G93A mice. (c) Representative pictures of fast-fatigable MN highly immunoreactive for MMP9 (white arrows) at end stage. (d) Average number of fast-
fatigable MN per section identified by high MMP9 immunoreactivity. Statistical analysis: two-way ANOVA (time effect) with Tukey's post hoc test;
compared to day 65, there is a significant loss of MMP9+MN in all groups of SOD1G93A mice (###p < .001). One-way ANOVA at individual time points
with Tukey's post hoc test; **p < .01, ***p < .001. There is a significant loss of MMP9+MN per section in SOD1G93A mice from day 100 on. Note the
significant protection of MMP9+MN in the AAV-miR SOD1 treated mice at end stage. Data represent mean ± SEM. Scale bars: 50 μm
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lumbar sections at day 65, 100 and 140 (Supplemental Figure S3a–d).

As expected, a significant astrocytic and microglial activation was

observed in SOD1G93A mice, from day 100 onwards. However, there

were no significant differences in the group treated with AAV-miR

SOD1 as compared to control ALS mice. These results indicate that

the treatment did not have any major effects on the progression of

astrogliosis and microgliosis in SOD1G93A mice.

3.3 | AAV-miR SOD1 injection protects a
subpopulation of MMP9 expressing MN

Since all MN subtypes are not equally affected in ALS mice, we fur-

ther evaluated the effects of the treatment based on the expression

of MMP9, a marker highly expressed in fast-fatigable MN, which dis-

play highest vulnerability to mSOD1-induced toxicity (Figure 2c)

(Kaplan et al., 2014; Pun et al., 2006). At day 65, the number of lum-

bar MN highly positive for MMP9 was still very similar to WT mice in

all groups of SOD1G93A mice (Figure 2d). At day 100 however, the loss

of fast-fatigable MN already reached 50% and further declined until

end stage, at which time point only 1.5 ± 0.5 and 2.2 ± 0.8 fast-

fatigable MN were found per lumbar section in the untreated and

AAV-miR ctrl injected mice, respectively. In the AAV-miR SOD1

treated mice, the number of MMP9-positive MN remained stable

from day 100 onwards. At end stage, we measured 5.1 ± 1.3 MN per

lumbar section (mean ± SEM), a number significantly higher than in

control groups of SOD1G93A mice (Figure 2d). These results show that

silencing mSOD1 in astrocytes rescues a subpopulation of fast-

fatigable MN with high MMP9 immunoreactivity.

3.4 | Expression of miR SOD1 in astrocytes
rescues NMJ

Despite the partial rescue of spinal cord MN, AAV-miR SOD1 injec-

tion preserved CMAP values (see Figure 1b), which indicates that the

treatment may have additional protective effects at the level of the

NMJ. To address this possibility, we analyzed NMJ occupancy in the

gastrocnemius muscle at day 65, 100, 140, and end stage. Acetylcho-

line receptors were stained with alpha-bungarotoxin to reveal motor

endplates, and colocalization with the antisynaptic vesicle protein

2 (SV2) marker was used to quantify NMJ occupancy (Figure 3a).

Complete overlap between the α-bungarotoxin and SV2 staining

accounted for the presence of a fully innervated NMJ (Figure 3a, b).

At day 65, all groups of SOD1G93A mice, including the group treated

with AAV-miR SOD1, displayed a significant loss of fully innervated

NMJ as compared to WT mice (AAV-miR SOD1: 61 ± 7% occupancy;

WT: 94 ± 2%, mean ± SEM) (Figure 3b). The innervation of motor

endplates further declined until end stage in ALS mice either

untreated (13 ± 7%) or injected with AAV-miR ctrl (16 ± 5%). In the

AAV-miR SOD1 treated group however, the proportion of fully inner-

vated NMJ increased to 84 ± 5% by 100 days, and remained signifi-

cantly rescued until end stage (73 ± 7%), only marginally decreased in

comparison to WT mice (94 ± 32%) (Figure 3b). Therefore, injection

of the AAV-miR SOD1 vector targeting astrocytes has strong neuro-

protective effects on NMJ occupancy, consistent with the results

shown in (Dirren et al., 2015).

3.5 | Expression of miR SOD1 in astrocytes
protects mainly fast-twitch type IIB muscle fibers from
atrophy

To further assess the rescue of motor units by AAV-miR SOD1 injec-

tion, we analyzed the morphology and composition of the triceps surae

at end stage. In particular, changes in the number, size and type of

muscle fibers were assessed by immunohistochemistry in the gastroc-

nemius and plantaris muscles at end stage. In mice, fast-twitch glyco-

lytic type IIB muscle fibers are innervated by fast-fatigable MN, fast-

twitch oxidative type IIA fibers by fatigue-resistant MN, and slow-

twitch oxidative type I fibers by slow MN. Some fibers display a phe-

notype which is intermediate between type IIA and IIB, defined as

type IIX. Major fiber types were identified using specific staining for

myosin heavy chain (MyHC) isoforms (Figure 4a). Dystrophin staining

was used to delineate fiber circumference and quantify the number

and mean area of individual muscle fibers (Figure 4b). As expected,

there was a marked muscle atrophy in SOD1G93A mice either

untreated or injected with the AAV-miR ctrl vector. Atrophy was most

evident in the gastrocnemius muscle, characterized by a major loss of

type IIB muscle fibers, but was less pronounced in the plantaris (mixed

fiber types) and soleus (type I and IIA) muscles (Figure 4a). Compared

to WT mice, the total number of fibers in the gastrocnemius muscle

was decreased by more than 50% in control SOD1G93A mice

(Figure 4c). In contrast, there was a clear protection of muscle fibers

in the AAV-miR SOD1 treated mice. Both the number and the area of

the type IIB fibers remained nearly unchanged in the AAV-miR SOD1

treated mice as compared to WT animals, whereas these parameters

were dramatically decreased in the control groups (Figure 4d, e). In

contrast, there was no significant difference neither in the number,

nor in the area of type IIA, type I and type IIX fibers across groups

(Figure 4d, e). Overall, these results indicate that AAV-miR SOD1

treatment has major protective effects against atrophy of type IIB

muscle fibers, consistent with the observed protection of the fast-

twitch fatigable MN in the lumbar spinal cord (Figure 2d).

3.6 | miR SOD1 gene therapy targeted to
astrocytes induces axonal sprouting and muscle fiber
type grouping

The significant rescue of NMJ occupancy observed in the AAV-miR

SOD1-treated group indicates that motor nerve sprouting may have

occurred in the gastrocnemius muscle. To qualitatively assess axon

sprouting events, we performed a co-staining of NMJ with

α-bungarotoxin, SV2 and NFM-145, a marker for axonal neuro-

filaments. At day 100, terminal sprouting characterized by the
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presence of axons extending beyond the motor endplate was indeed

observed in AAV-miR treated mice (Figure 5a), which indicates that

the treatment may have induced reinnervation of vacant endplates.

In neurogenic muscle atrophy, muscle fiber type grouping is often

observed when denervation is followed by reinnervation. To assess

plastic changes in the skeletal muscle, we sought to determine the

level of clustering of muscle fibers by comparing WT and AAV-miR

SOD1-treated ALS mice. This analysis was only possible on non-

atrophied muscle tissues. While the overall number of muscle fibers

was similar in both groups (see Figure 4c), MyHC staining revealed

signs of fiber-type grouping in the treated SOD1G93A mice. In

Figure 5b, this effect is particularly evident in the plantaris muscle,

where different types of muscle fibers are intermingled. To quantify

the clustering of type I, IIA and IIX muscle fibers, we measured the

average distance between fibers from the same type (Figure 5c) and

the percentage of fibers that are adjacent to at least one other fiber

from the same subtype (Figure 5d). Both parameters revealed signifi-

cant fiber grouping effects for all three fiber types in the gastrocne-

mius and plantaris muscles of AAV-miR SOD1-treated mice. As there

is no loss of type IIB fibers to explain this apparent clustering in the

AAV-miR SOD1-treated mice, it is likely to reflect fiber type conver-

sion due to reinnervation of vacant endplates via the outgrowth of

motor axon collaterals.

3.7 | Transcriptional signature of MN in the spinal
cord of miR SOD1-treated ALS mice reveals changes
in genes controlling microtubule stability

Next, we sought to explore the changes in gene expression induced

by the presence of mSOD1-expressing astrocytes in the lumbar spinal

cord. Similar to our previous experiment, SOD1G93A mice were ICV

injected at 2 days of age either with the AAV-miR SOD1 vector or

with AAV-miR ctrl. An additional group of noninjected SOD1G93A lit-

termate mice was included in the experiment. At day 65, a trans-

criptomic analysis was performed on MN captured by laser

microdissection in the ventral horn. This time point was selected for

analysis of gene expression across conditions, as the number of sur-

viving MN was previously found to be very similar in each group (see

Figure 2b), avoiding any confounding effects due to differences in

MN survival. Whole transcriptome was analyzed by next generation

sequencing, reaching on average 5.3E7 ± 1.0E7 reads per sample

(mean ± SD), out of which 4.2E7 ± 0.9E7 reads where aligned to the

reference mouse genome.

With the statistical tool DESeq2, we found 95 genes with

changes in expression induced by SOD1 silencing with a false discov-

ery rate (FDR) below 10% (Figure 6a and Supplemental Table S2).

Sixty-four genes were significantly upregulated and 31 genes down-

regulated in the AAV-miR SOD1 mice, as compared to untreated and

AAV-miR ctrl injected SOD1G93A mice. For several differentially

expressed genes, the changes in gene expression were confirmed by

qPCR (Supplemental Table S1). A gene ontology analysis for biological

processes was performed with the software Gorilla (Eden et al., 2009),

taking into account the genes with a FDR below 20% (473 genes) as

compared to the total list of identified genes. Analysis showed a sig-

nificant enrichment for genes involved in heme biosynthesis

(p = 8.15E-9), chromatin organization (p = 8.53E-5), microtubule sta-

bility (p = 5.24E-4) and synaptic glutamatergic transmission

(p = 7.49E-4). To assess the presence of transcripts derived from

astrocytic or microglial material contaminating the microdissected

MN, the level of three astrocytic markers (Gfap, Aldh1l1, S100b) and

three microglial markers (Aif1, Tmem119, Trem2) was compared to

MN markers (Chat, Slc18a3, Mmp9). There was no difference between

groups in the level of astrocytic markers (Supplemental Figure S4a),

indicating that the amount of contaminating astrocyte-derived mate-

rial was very similar across conditions. However, we found an

upregulation of microglial transcripts in the AAV-miR SOD1 treated
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AAV-miR SOD1. Analysis of the innervation of motor endplates in the
gastrocnemius muscle. (a) Immunostaining for SV2 (synaptic marker)
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(arrow). (b) Quantification of the percentage of fully innervated NMJ
in the gastrocnemius muscle. At day 65, NMJ occupancy is
significantly decreased in all groups of SOD1G93A mice. Note the
significant rescue of NMJ occupancy at days 100, 140 and end stage
in the gastrocnemius muscle of AAV-miR SOD1-treated SOD1G93A

mice, as compared to the continuous decrease observed in the AAV-
miR ctrl-injected and untreated mice. Statistical analysis: two-way
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ANOVA at individual time points with Tukey's post hoc test; *p < .05,
**p < .01, ***p < .001. Data represent mean ± SEM. Scale bar 75 μm
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mice as compared to the control groups (Supplemental Figure S4b).

This effect was mainly due to the higher level of Trem2 expression in

this condition (FDR = 0.16, p = .005), which might be related to the

observed neuroprotective effects of the treatment.

Next, we sought for gene expression changes related to possible

effects of AAV-miR SOD1 on neuronal plasticity. As compared to con-

trol conditions, we found three genes of the Stathmin family to be

downregulated (Stmn2, Stmn3, and Stmn4) (Figure 6b). Stathmins are

involved in neuronal plasticity and have been shown to destabilize

microtubules and inhibit their polymerization by sequestering

αβ-tubulin heterodimers (Chauvin & Sobel, 2015). The Mapt gene

encoding the microtubule-binding protein tau was also downregulated

in the AAV-miR SOD1 condition (Figure 6b). In addition, expression of

the α-tubulin-acetyl transferase gene Atac1 was significantly down-

regulated, in contrast to the expression of the kinesin motor proteins

Kif18a and Kif18b, which were upregulated following SOD1 silencing

(Figure 6b). Overall, these changes in gene expression showed that

the AAV-miR SOD1 treatment affects microtubule dynamics in spinal

cord MN, at the level of factors controlling the polymerization, stabil-

ity and post-translational modifications of tubulin. Furthermore, the

expression of Fbxo5 was significantly upregulated in the treated mice

(Figure 6b). Fbxo5 is a suppressor of Cdh1 implicated in

axoneogenesis in the adult CNS (Haenold et al., 2014). Unexpectedly,

AAV-miR SOD1 treated mice showed downregulation of BDNF

(Figure 6b), a neurotrophic factor implicated in the competition

between axons for making neuromuscular connections (Je

et al., 2013). Importantly, the effects of BDNF depend on the proteo-

lytic conversion from the pro- to the mature form of the neurotrophic

factor. Indeed, the transcription of Furin, a key enzyme in this process,

was increased in AAV-miR SOD1-injected mice (Figure 6b).

Changes in MN activity were previously observed in models of

SOD1-related ALS, shifting from hyper- to hypoexcitability in adult

spinal MN (Delestrée et al., 2014; Martínez-Silva et al., 2018). In addi-

tion, expression of mSOD1 affects the ability of astrocytes to regulate

glutamate receptor expression in MN (Damme et al., 2007). Here,

AAV-miR SOD1 had a significant effect on the expression of several
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genes involved in synaptic neurotransmission. Notably, subunit-

encoding genes of the ionotropic glutamate receptor family such as

Gria1 (glutamate ionotropic receptor 1, AMPA1) and Grid2 (glutamate

ionotropic receptor delta type subunit 2) were significantly down-

regulated (Supplemental Figure S5a, b). Similarly, the levels of the

transcripts encoding the gamma-aminobutyric acid (GABA) A receptor

subunits γ1 and γ2 were significantly reduced in the AAV-miR SOD1

treated condition (Supplemental Figure S5c, d). Genes implicated in

cholinergic neurotransmission such as ChAT (choline acetyl transfer-

ase) and Slc5a7 (high affinity choline transporter 1) were also down-

regulated (Supplemental Figure S5e, f). Changes in the expression of

genes implicated in neurotransmission may reflect MN plasticity and

motor circuit homeostasis following AAV-miR SOD1 gene therapy

targeting astrocytes.

4 | DISCUSSION

In the SOD1G93A mouse model of ALS, we show that gene therapy to

express specifically in astrocytes an artificial miR driving the selective

silencing of human SOD1 leads to an improvement of the neuromus-

cular function in SOD1G93A ALS mice. In the hind limbs, the effects of

the treatment are characterized by the protection of fast-fatigable

motor units. The use of an AAV9 vector combined with the gfaABC1D

promoter leads to transgene expression mainly in astrocytes until dis-

ease end stage. Of note, expression of the transgenes in other cell

types including some neuronal cells cannot be ruled out (Griffin

et al., 2019; Taschenberger et al., 2017), especially in disease condi-

tions which can strongly affect cell transcriptional activity (Hol

et al., 2003). Furthermore, miRNAs can be transferred from astrocytes

to other cell types, including neurons (Gharbi et al., 2020), which could

also extend the effects of gene therapy beyond the glial cells primarily

targeted by the vector. Nevertheless, these results support the impor-

tant role of astrocytes in ALS and this cell type should be considered

as a prime target for gene therapy. Along these lines, WT glial-

restricted progenitor cells implanted into the spinal cord of SOD1G93A

rats were shown to efficiently differentiate into astrocytes and

improve neuromuscular function (Lepore et al., 2008). Similar results

were obtained by transplanting astrocytes derived from healthy

human iPSC into the spinal cord of SOD1G93A mice (Kondo

et al., 2014). Conversely, the transplantation of astrocytes expressing

mSOD1 in WT mice leads to MN dysfunction, with negative effects

on the neuromuscular function (Papadeas et al., 2011).

Although AAV-miR SOD1 gene therapy targeting astrocytes does

not reduce astrogliosis, it appears to enhance the propensity of MN

to form new synapses on motor end plates. Astrocytes are known to

release molecules that modulate synaptic activity and also control the

formation, stabilization and elimination of synapses (reviewed in

[Clarke & Barres, 2013]). Astrocytes can secrete matricellular proteins

such as thrombospondin (TSB), secreted protein acidic and rich in
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F IGURE 5 Axonal sprouting and fiber type grouping in the triceps
surae of AAV-miR SOD1-treated SOD1G93A mice. (a) Representative
photomicrograph of NMJ stained with α-bungarotoxin (white), SV2
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cysteine like1 (SPARCL1), and SPARC (an antagonist of SPARCL1 also

known as osteonectin), which have been shown to regulate syn-

aptogenesis (Blakely et al., 2015; Christopherson et al., 2005;

Kucukdereli et al., 2011). These mechanisms are typically mediated by

astrocytes in close contact with synaptic connections. However, it is

unclear how the astrocyte-MN crosstalk in the spinal cord may
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F IGURE 6 Differentially expressed genes in spinal cord motoneurons of SOD1G93A mice following AAV-miR SOD1 targeting of astrocytes. A
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regulate the distal formation of NMJ. Factors secreted by astrocytes

and Schwann cells can mediate synapse formation in spinal MN cul-

tures (Ullian et al., 2004). In Drosophila, glial cells present at the NMJ

contribute to the remodeling of the synaptic connections by removing

presynaptic debris and immature boutons (Fuentes-Medel

et al., 2009). In vertebrates, it is mainly terminal Schwann cells which

have been reported to control the formation, maintenance, repair and

pruning of the synapse at the NMJ (Feng & Ko, 2008). In SOD1G93A

mice, Schwann cells express Sema3a, a chemorepellent inhibiting axo-

nal outgrowth at the NMJ of type IIB/IIX muscle fibers (Winter

et al., 2006). Furthermore, the loss of terminal Schwann cells as well

as macrophage infiltration are observed specifically at type IIB fibers

after induced partial denervation in ALS mice (Harrison &

Rafuse, 2020). These findings are likely to underlie the deficits in

sprouting of type IIB fibers in ALS (Frey et al., 2000; Gordon

et al., 2010; Schaefer et al., 2005).

AAV-miR SOD1 treatment enhances limb strength in the grip

test, which is coherent with the observed protection of type IIB mus-

cle fibers in the triceps surae, and the significant protection of MN

with high MMP9 expression. These neurons may constitute a pool of

fast-fatigable MN protected from neurodegeneration. This effect

might as well reflect a gain of MMP9 expression in the remaining pool

of MN, similar to what has been observed in another transgenic

mouse model of ALS following suppression of the cytosolic TDP-43

transgene (Spiller et al., 2016). It remains however unclear whether

the expression of MMP9 is necessary for NMJ reinnervation. In non-

diseased conditions, NMJ reinnervation following injury has been

found to occur more rapidly in fast-fatigable than in slow MN

(Nishizawa et al., 2006). In rodent models of ALS however, sprouting

events appear to mainly occur in fatigue-resistant and slow MN,

whereas there is so far no evidence for similar effects in the fast-

fatigable pool (Frey et al., 2000; Harrison & Rafuse, 2020; Schaefer

et al., 2005). Here, the remarkable protection of type IIB fibers indi-

cates that gene therapy targeting astrocytes in the SOD1G93A mouse

model of ALS may enhance reinnervation even in fast muscles.

Fiber type grouping is observed in patients suffering from spinal and

bulbar muscular atrophy, but to a lesser extent in ALS patients (Baloh

et al., 2007; Jokela et al., 2016). In contrast to other neuromuscular dis-

orders, it is therefore possible that either the ability of MN to remodel

neuromuscular synaptic connections is impaired in ALS, or that disease

causes extensive degeneration before muscle fiber grouping can be

observed. The increase in clustering of type I and type IIA muscle fibers

shows that the AAV-miR SOD1 treatment enhances the ability of the

surviving MN to make new functional connections with the muscle

towards disease end stage, and that this effect is likely to involve all

types of MN in the spinal cord. Similarly, treatment of SOD1G93A ALS

mice with antisense oligonucleotides (ASO) targeting SOD1 also induces

a gain in CMAP amplitude at a later stage of the disease, indicating possi-

ble rescue effects also with this mode of treatment (McCampbell

et al., 2018). However, it is unclear to which extent the ASO treatment

targets mSOD1 expression in astrocytes.

The analysis of gene pathways in MN highlights changes in the

expression of genes regulating microtubule dynamics following AAV-

miR SOD1 treatment. In particular, genes of the Stathmin family are

consistently downregulated, which may reflect increased microtubule

stability. Previous studies have shown in a mouse model of spinal

muscular atrophy that decreased expression of stathmins ameliorates

neuromuscular defects (Wen et al., 2013). In SOD1G93A mice, Stmn1

and Stmn2 are upregulated at presymptomatic stage, which can con-

tribute to the loss of microtubules and Golgi fragmentation in MN

(Bellouze et al., 2016). Following AAV-miR SOD1 gene therapy, the

observed downregulation of Stathmin mRNA expression at day

65 indicates that microtubule stabilization may benefit MN at pres-

ymptomatic stage of the disease induced by mutated SOD1, possibly

limiting the retraction of axons and facilitating the formation of new

branches (Poulain & Sobel, 2007). However, previous studies have

shown that Stmn2 downregulation also contributes to neu-

rodegeneration in ALS, in particular via the regulatory role of TDP-43

(Klim et al., 2019; Melamed et al., 2019). TDP-43 binds Stmn2 pre-

mRNA to prevent alternative splicing of a cryptic exon which gener-

ates a premature stop codon and polyadenylation (Klim et al., 2019;

Melamed et al., 2019). Therefore, the loss of nuclear TDP-43 associ-

ated with ALS and frontotemporal dementia leads to the production a

nonfunctional truncated protein and the loss of normal STMN2

expression (Prudencio et al., 2020). Furthermore, STMN2 over-

expression induces axonal regeneration in iPSC-derived MN following

TDP-43 knockdown (Melamed et al., 2019). These results highlight

the multiple roles of Stathmins in the degeneration and regeneration

of MN axons, which are not only controlled at transcriptional level,

but also by other factors such as autophagic activity, post-

translational modifications and interaction with STAT3 (He

et al., 2016; Ng et al., 2006; Watabe-Uchida et al., 2006).

We found that the treatment affects the expression of other

microtubule-associated proteins in MN. There is a significant down-

regulation of the Mapt gene, which has previously been associated

to the risk of developing sporadic ALS (Karch et al., 2018; Sundar

et al., 2007). Changes in the expression level of the microtubule-

binding tau protein affect cytoskeleton dynamics, via mechanisms

controlling the formation of long labile microtubule domains and

the organization of microtubules into stable bundles (Baas &

Qiang, 2019; Qiang et al., 2018). Upregulation of the kinesin-8 fam-

ily members Kif18a and Kif18b, two molecular motors with

microtubule-depolymerizing activity, may further control axon length

(Kevenaar et al., 2016). Remarkably, transcriptomic analysis also

reveals changes related to the post-translational modifications of

tubulin. The transcriptional downregulation of Atat1 (alpha tubulin

acetyltransferase 1), an enzyme controlling α-tubulin acetylation,

may facilitate axonal branching (Wei et al., 2018). Atat1 also nega-

tively regulates microtubule stability independently from its activity

on tubulin acetylation (Kalebic et al., 2013). Overall, the transcrip-

tional changes in MN reveal that the AAV-miR SOD1 treatment

may contribute to changes in the cytoskeletal network at this early

stage of the SOD1-induced pathology. The observed changes are con-

sistent with enhanced microtubule stability (Stmn, Kif18, Atat1) oppos-

ing the hyperdynamic microtubule phenotype previously found in

SOD1G93A mice (Fanara et al., 2007), whereas other transcriptional
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effects (Mapt, Atat1) indicate microtubule re-organization possibly

facilitating neuronal plasticity.

Unexpectedly, transcription of the neuroprotective factor Bdnf

was found to be downregulated in ALS mice treated with AAV-miR

SOD1. Recently, the role of BDNF in ALS has been debated as this

neurotrophic factor may also enhance MN death by increasing gluta-

mate excitotoxicity (Mojsilovic-Petrovic et al., 2006; Pradhan

et al., 2019). Bdnf downregulation could be an adaptation of lower

MN as part of their activity in the motor circuit. Of note, the expres-

sion of the proteolytic enzyme Furin is upregulated, which may facili-

tate the activity-dependent stabilization of NMJ via the processing of

mature Bdnf (Je et al., 2013; Seidah et al., 1996).

Overall, the use of AAV-based therapy targeting astrocytes as a

platform to silence mSOD1 in the motor system of SOD1G93A ALS mice

enhances the ability of MN to maintain functional connections with mus-

cle fibers. These effects are particularly evident in the pool of fast-

fatigable MN innervating fast-twitch type IIB muscle fibers, which are

the most vulnerable to ALS. In the present study, gene therapy targeting

mSOD1 was injected to neonatal ALS mice and therefore covered the

entire course of the disease. Of note, in a previous report, we also

observed a significant albeit more partial protection of the motor func-

tion following intrathecal injection of the same astrocyte-targeting AAV-

miR SOD1 vector in young adult ALS mice (Dirren et al., 2015), at the

time fast-fatigable MN start to degenerate. Overall, these results indicate

that astrocyte-targeting gene therapy can slow down ALS progression.

When considering its application towards later stages of SOD1-linked

ALS, this approach could effectively complement neuroprotective treat-

ments by facilitating muscle reinnervation.
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