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Introduction
Glioblastoma multiforme (GBM) is the most lethal form of 
brain cancer with a median survival of 14 months.1,2 There 
have been numerous studies to generate high-throughput 
datasets to better understand and characterize these tumors at 
the genomic, genetic, and epigenetic levels.1,3–8 Among these 
studies, The Cancer Genome Atlas Project (TCGA) has gen-
erated a vast amount of genomic data for about 500 GBM 
samples.5,7

GBM samples are classified into molecular subtypes 
based on their transcriptomic and epigenetic profiles.  Verhaak 
et al classified GBM samples based on gene expression into 
four subtypes, namely classical, mesenchymal, neural, and 
proneural.7 GBM samples are further classified into two 
major subtypes based on their DNA methylation profiles, 

namely glioma-CpG island methylator phenotype (G-CIMP) 
positive and G-CIMP negative.8 A majority of the G-CIMP 
positive samples are also proneurals,8 which allows split-
ting proneural group into proneural G-CIMP positive and 
proneural G-CIMP negative subtypes (hereafter, proneural+ 
and proneural−, respectively).

Various studies have characterized GBM subtypes based 
on individual mutations, genetic alterations, and pathways 
associated with each subtype. Specifically, in mesenchy-
mal subtype, genes in the tumor necrosis factor  superfamily 
pathway and NF-kB pathway, such as TRADD, RELB, 
and TNFRSF1A are highly expressed.7 In classical samples, 
genes in Notch (NOTCH3, JAG1, and LFNG) and Sonic 
hedgehog (SMO, GAS1, and GLI2) signaling pathways are 
highly expressed.7 Also, EGFR amplification is common in 
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both neural and classical samples.7 In proneural+ samples, 
IDH1 mutation is common.9

Several studies have evaluated the master regulators of 
GBM subtypes. Carro et al reported CEBP and STAT3 as 
the master regulators of the mesenchymal subtype.10 Bhat 
et al also reported mesenchymal-specific regulators such as 
MAFB, HCLS1, TAZ, and YAP.11

Despite these findings, there is still no study that gives 
a comprehensive report of GBM- and GBM subtype-specific 
master regulators, regulatory networks and pathways. In this 
study, we have two main objectives: (i) to compute GBM- 
and GBM subtype-specific master regulators and regulatory 
networks of GBM at the transcriptional level, (ii) to compute 
GBM- and GBM subtype-specific pathways. We used two 
different pathway enrichment algorithms and looked at the 
overlapping significantly enriched pathways for each GBM 
subtype. We also used FastMEDUSA to compute putative 
master regulators and regulatory networks of each subtype. 
Our analysis identified some existing master regulators and 
putative novel regulators of each GBM subtype. We also iden-
tified several GBM- and GBM subtype-specific pathways. 
Our results provide testable hypotheses to further investigate 
potential therapeutic targets for GBM subtypes.

Materials and Methods
Preprocessing of expression dataset. We downloaded 

the TCGA exon expression level 3 dataset of 500 GBM 
and 10 normal brain tissue samples at TCGA Data Por-
tal (https://tcga-data.nci.nih.gov/tcga, accessed in March 
2012). We obtained the molecular subtype and G-CIMP 
calls of these samples from the data freeze package by 
TCGA analysis working group (https://wiki.nci.nih.gov/
download/attachments/39921481/dataFreeze_9_3_2011.tar.
bz2?version = 1&modificationDate = 1315077027000). We 
filtered out 61 samples that were reference samples or sam-
ples without an assigned subtype. We filtered out about 600 
low-signal genes whose log-transformed signal intensity was 
less than 4. We also detected samples that were either outli-
ers within their subtype or had similar expression profiles to 
the samples of another subtype. To detect these samples, we 
computed pairwise Pearson correlation between the expres-
sion profiles of all samples and removed 87 samples, which 
had r , 0.87 for at least 20% of the samples within their sub-
types. After sample filtering, we were left with 101 classical, 
95 mesenchymal, 57 neural, 57 proneural−, 31 proneural+, 
and 10 normal samples.

Analysis of gene expression dataset. We performed 
batch effect control based on two covariates, namely batch ID, 
which was assigned by TCGA analysis center, and institution 
ID that provided the tissue. We used Partek Genomics Suite 
version 6.5 (Copyright © 2010 Partek Inc., St. Louis, MO, 
USA) to check and remove batch effect. We applied one-way 
analysis of variance (ANOVA) in Partek to compute differ-
entially expressed genes (DEGs) between each subtype and 

normal samples with Benjamini–Hochberg False Discovery 
Rate (FDR) #0.0512 and fold change $1.5.

computing significant pathways and IPA networks. 
We utilized QIAGEN’s Ingenuity® Pathway Analysis (IPA®, 
QIAGEN Redwood City, www.qiagen.com/ingenuity) and 
Gene Set Enrichment Analysis (GSEA)13 tools to compute 
GBM- and GBM subtype-specific significant pathways. 
GSEA is a computational method to determine whether an 
a priori defined set of genes with an interpretable function 
shows statistically significant differences between two biologi-
cal states.13 We ran GSEA using GBM expression dataset to 
identify upregulated and downregulated expression signatures 
associated with individual subtypes. The source of the gene 
sets used in this study was the c2.all.v3.0.symbols.gmt col-
lection from the Broad Institute Molecular Signatures Data-
base (http://www.broadinstitute.org/gsea/msigdb/collections.
jsp#C2), which contains canonical pathways; gene sets derived 
from experimental data with chemical and genetic perturba-
tion, as well as gene sets derived from the reactome pathway 
database (www.reactome.org). All comparisons of the five 
subtypes were performed by mapping all gene sets with size 
 ranging from 10 to 500 in MsigDB v3.0 c2 curated database 
to the ranked gene expression profiles. The enrichment scores 
were calculated by walking down the ordered list, and the 
statistical significance of nominal P values of the enrichment 
scores was estimated using Kolmogorov–Smirnov statistics by 
constructing a cumulative null distribution with 1000 permuta-
tions. To optimize the thresholds for selecting significant gene 
sets in our study, three random datasets, such as one generated 
from real data, two from simulated data, 15 from random gene 
sets, were generated and six methods of multiple comparisons 
correction including Benjamini–Hochberg, Stepdown FDR, 
Bonfferoni, q value, familywise error rate, and GSEA FDR 
were compared for aiding us to make decisions.

To analyze data in IPA, we uploaded the DEGs with 
fold changes for each subtype as input. After running the 
core analysis, we selected canonical pathways that were sta-
tistically significant (FDR #0.05). Then, we computed the 
overlap between significant pathways computed by GSEA 
and IPA. Computing common pathways between IPA 
and GSEA outputs was not straightforward since pathway 
nomenclature is different in these two systems and gene lists 
in proprietary IPA pathways are not readily available. Thus, 
we developed a pipeline to compare the results. First, we 
exported the list of DEGs that were present in each signifi-
cant IPA pathway (IPA does not allow to export all genes in 
pathways but does allow to export DEGs). We also obtained 
a list of all genes in significant GSEA pathways. We first 
converted all gene names to HUGO gene symbols, then 
compared gene sets of each GSEA and IPA pathway pair-
wise. We selected pathway matches whose overlap comprised 
50% of genes in GSEA and 25% of DEGs in IPA pathways 
for manual verification.  During manual verification, we 
eliminated false positive matches.
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To further annotate overall relationship between some genes 
based on literature, we also built IPA networks using these genes. 
Given a set of input genes, IPA uses a heuristic algorithm to con-
struct networks iteratively while  optimizing the interconnectivity 
and number of input genes in the network under a constraint of 
a maximal network size, which is 35 by default. IPA first builds 
networks from input genes iteratively based on their connectivity, 
then merges these networks and grows them to the maximum 
size by adding other genes in its global network iteratively.

computing significant master regulators and gene reg-
ulatory networks. We utilized FastMEDUSA14 to compute 
significant transcription factors (TFs) and TF–gene interac-
tions that were common and unique to each GBM subtype. 
FastMEDUSA is a machine learning algorithm that builds a 
predictive model based on the expression states of genes and 
motif presence in their promoter regions.14 FastMEDUSA 
incorporates discretized gene expression, promoter sequence 
data, and a list of candidate TFs as input. We obtained the 
list of candidate TFs from Genomatix software (Genomatix, 
www.genomatix.de). We obtained 1000 bases upstream of 
5′ UTR of genes from University of California, Santa Cruz 
(UCSC) Genome Browser database.15 For the genes that did 
not exist in UCSC genome browser, we obtained their pro-
moter sequences from Genomatix and Biomart.16

To discretize gene expression data, we computed fold 
change of expression signal of a gene in a sample to the gene’s 
median expression across normal samples. We called a gene 
in a sample upregulated if its fold change is $t, downregulated 
if it is #−t, and baseline otherwise. We discretized expression 
data for different choices of t and decided to use t = 1.2 for 
genes and t = 1.1 for TFs as it allowed a clear distinction of 
subtypes (Supplementary Fig. 1). We used a lower threshold 
for TFs as they are known to be expressed in lower levels than 
other genes.17 For FastMEDUSA analysis, we ignored genes 
that were consistently up or down across all subtypes, because 
FastMEDUSA could build a predictive model on genes that 
have high variation among experimental conditions.

We first ran FastMEDUSA with cross-validation mode 
to determine a number of optimal boosting steps. We set the 
number of boosting iterations to 1300 as it was optimal based 
on the error ratio curve that was obtained to predict the expres-
sion state of the test set (Supplementary Fig. 2). Then, we ran 
FastMEDUSA five times on the entire data for 1300 itera-
tions and selected top significant TFs as following: for each 
FastMEDUSA run, we computed the significance score of 
each TF by computing the prediction score of genes of interest 
on the original model and on the model after removing that 
TF and all subtrees rooted by that TF as described before.18 
TFs were ranked by their maximum prediction score, which 
was computed by adding up all scores of nodes containing the 
TF, and top 30 TFs were selected. Among the top 30 TFs, the 
ones with a ratio of their prediction score to their maximum 
score higher than 0.35 were chosen as the top TF list of that 
FastMEDUSA run. Finally, TFs that were in the top list in 

three out of five FastMEDUSA runs were selected as the final 
significant TF list.

Assuming that the majority of TFs would be positively 
correlated with their downstream target, we computed predic-
tion score of upregulated (downregulated) TFs by choosing 
upregulated (downregulated) DEGs as target genes of inter-
est. In order to compute gene regulatory networks, we com-
puted the same score for each TF–gene pair in each subtype 
and filtered out the low-scored pairs and plot the remaining 
TF–gene pairs in Cytoscape.19 We used NIH Biowulf cluster 
to run FastMEDUSA in parallel. We used 200–300 cores and 
got the results for each run in about 13 hours.

survival analysis. To further explore potential master 
regulators of GBM subtypes, we used REMBDRANDT 
(https://caintegrator.nci.nih.gov/rembrandt/home.do) to check 
survival of GBM patients based on the expression status of 
these TFs. TFs that stratify patients in low and high survival 
groups based on their expression could be potential biomarkers. 
We chose a twofold change threshold to determine the expres-
sion category of genes and chose the maximum intensity probe 
to determine the expression of the gene.

Gene ontology (Go) enrichment analysis. We used 
DAVID’s functional annotation chart20 pipeline to compute 
the GO term enrichment of genes in gene regulatory net-
works computed by FastMEDUSA. We chose GOTERM_
BP_FAT, GOTERM_CC_FAT, and GOTERM_MF_FAT 
categories in DAVID, which refers to biological process, cel-
lular component, and molecular function, respectively. We 
applied Benjamini Hochberg FDR #0.05 as threshold to 
select significant GO terms.

results
removing batch effect and computing deGs. We com-

puted the source of variation in the expression data by establish-
ing a three-way ANOVA model, where subtype, institution ID, 
and batch ID were the covariates. We found out that 4.94% of 
the variation was due to the batch ID, and the source of varia-
tion due to institution ID was negligible (Supplementary Fig. 3). 
We removed batch effect that was due to the batch ID by using 
the batch effect removal module in Partek Genomics Suite. We 
applied one-way ANOVA to compute DEGs for each subtype 
with respect to normal samples using Partek (FDR #0.05 and 
fold change = 1.5). Figure 1 shows the Venn diagram of upreg-
ulated and downregulated genes for each subtype.

subtype-specific master regulators computed by Fast-
MedUsA. In order to run FastMEDUSA, we first excluded 
DEGs that were differentially expressed in all subtypes. For the 
remaining DEGs, we obtained 1000 bases upstream of their 5′ 
UTR from UCSC Genome Browser database. For about 30 genes 
whose promoter sequences were not available in UCSC Genome 
Browser database, we obtained their promoter sequences from 
Genomatix and BioMart. In total, we had promoter sequences 
of 5141 out of 5167 DEGs. Among these DEGs, 499 of them 
were used as candidate TFs based on Genomatix annotation.
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We ran FastMEDUSA five times with a unique random 
seed each time and obtained five different models. We post-
processed these models to compute significant TFs (ie, master 
regulators) (see Materials and Methods section). The lists of 
significant upregulated and downregulated master regulators 
for each subtype are shown in Tables 1 and 2, respectively. 
Among these TFs, some of them are known previously to 
have a role in GBM such as CEBPD,21 RUNX1,21 LEF1,22 
HES6,23 ASCL1,24 EBF1,25,26 SP100,27 and AEBP1.28 
To check the effects of these TFs on survival, we computed 
 survival plots of these TFs based on GBM gene expression 
data in REMBRANDT database and found out that some of 
these TFs have significant survival difference based on their 
expression status (Fig. 2 and Supplementary Fig. 4).

To examine biological relationship among these TFs 
based on literature, we uploaded the master regulators into 

IPA and ran core analysis to build networks from these regu-
lators. The top-scoring network was associated with functions 
of gene expression, cellular function and maintenance, and 
cellular growth and maintenance (Fig. 3).

subtype-specific gene regulatory networks. We also 
computed TF–gene significance score and computed gene 
interaction networks (see Fig. 4 for the mesenchymal sub-
type and Supplementary Figs. 5–8 for the other subtypes). 
We observed that some of the hub TFs (ie, TFs with high 
connectivity) in these networks were also master regulators 
(eg, RUNX1, SP1, and HES6). There were also some hub TFs 
that were not in the master regulator list, but occurred in all 
networks, particularly STAT5A and WWTR1.

We checked the functional enrichment of genes in 
each network and plotted the enrichment P values in a heat-
map (Fig. 5). GO terms related to TF activity, regulation 
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figure 1. Venn diagram for (A) upregulated and (B) downregulated DeGs for each subtype with respect to normal samples. proneural GPos: proneural+, 
proneural GneG: proneural−.

Table 1. List of upregulated master regulators for each GBm subtype.

CLASSICAL NEURAL MESENChYMAL PRoNEURAL- PRoNEURAL+

aeBP1 BUD31 aeBP1 BUD31 CtDsP1

BUD31 CeBPB BUD31 en2 Dmtf1

CeBPD en2 en2 Hes6 eBf1

en2 foXJ1 HeYL HeYL Hes6

foXJ1 Hes6 Hnf4G HoXD11 PHC1

Hes6 Hnf4G Lef1 Lef1 sIX4

HoXD11 Lef1 LItaf LItaf UXt

Lef1 LItaf Ltf Ltf Znf227

LItaf Ltf nmI nmI Znf85

Ltf nmI PrIC285 rUnX1  

PrIC285 PCGf1 rUnX1 sHoX2  

rUnX1 rUnX1 sHoX2 snaI2  

snaI2 snaI2 snaI2 sPI1  

sP100 sP100 sP100 teaD3  

sPI1 UXt sPI1 UXt  
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of transcription, and metabolic processes were common in 
all subtypes. Mesenchymal group was uniquely enriched in 
GO terms related to immune response, response to stim-
ulus, response to hypoxia, signal transduction, and anti-
apoptosis. Apoptosis and angiogenesis terms were enriched 

in both mesenchymal and neural networks. GO terms 
related to RNA localization were enriched in both classi-
cal and proneural−. The classical group network was also 
uniquely enriched with GO terms related to negative regu-
lation of transcription.
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figure 2. Kaplan–meier survival plots based on the expression status of four master regulators of GBm subtypes computed by fastmeDUsa. each 
regulator name is below the survival plot. Log-rank P , 0.05 for each plot.

Table 2. List of downregulated master regulators for each GBm subtype.

CLASSICAL NEURAL MESENChYMAL PRoNEURAL- PRoNEURAL+

CHD3 arID4a CHD3 DaCH2 arntL2

DaCH2 CHD3 DaCH2 eZH1 KLf16

eZH1 DaCH2 eZH1 IKZf5 LZtfL1

IKZf5 eZH1 IKZf5 KLf16 mef2a

KLf13 IKZf5 JmY mms19 nPas2

LCor JmY KLf13 mta3 nr3C2

LDB1 KLf13 LDB1 nCoa1 PCGf5

mms19 LCor mta3 nPas2 PHf15

mta3 LDB1 mYst4 nr3C2 PLaGL1

nr3C2 mta3 nCoa1 PHf15 rnf14

tCeaL7 mYst4 nr3C2 tCeaL7 satB2

tIam1 sUDs3 tIam1 tIam1 stat6

ZmYnD11 ZmYnD11 ZmYnD11 ZmYnD11 tCeaL7

Znf208 Znf208 Znf248 Znf208 tfPt

Znf248 Znf248  Znf248 tLe4
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To further annotate these genes, we also uploaded them 
into IPA and examined networks with similar functions as 
found by GO terms. The network for the mesenchymal sub-
type is shown in Figure 6 and other networks are shown in 
Supplementary Figure 9.

Identify abnormal pathways in GbM subtypes by IPA 
and GseA analysis. We ran IPA core analysis on DEGs of 
TCGA gene expression dataset with respect to normal sam-
ples and found 246 canonical pathways that were statistically 
significant in at least one subtype (FDR #0.05). There were 
157, 177, 225, 154, and 105 canonical pathways enriched in 
classical, neural, mesenchymal, proneural− and proneural+ 
samples, respectively (Supplementary Table 1). We also com-
puted IPA networks that have enrichment of DEGs. Some 
of these networks contained significant TFs found by Fast-
MEDUSA (Supplementary Fig. 10).

We also ran GSEA on the gene expression dataset. 
Figure 7 shows the number of shared upregulated and down-
regulated pathways found in each subtype. We observed that 
mesenchymal and proneural- groups had about 100 unique 
significant upregulated pathways. The majority of downregulated 
pathways were shared by all subtypes, whereas there were only 
nine upregulated pathways shared by all subtypes.

We compared IPA and GSEA pathway results to find 
common pathways. In this comparison, we tended to use a 

less-stringent threshold for each subtype (P # 0.15) to increase 
sensitivity. The number of common pathways found for each 
subtype is listed in Table 3. The list of pathways that were signif-
icant in both IPA and GSEA is listed in Supplementary Table 2. 
Figure 8 shows the Venn diagram of these pathways. Here, we 
focused on the intersection list and subtype-specific pathways 
reported as significantly enriched by both GSEA and IPA. 
The common pathways identified by both IPA and GSEA and 
enriched in all GBM subtypes are listed in Table 4. As expected, 
glioma pathway and notch signaling pathway were in this list.

There were 15 significant pathways uniquely enriched 
in the mesenchymal subtype (Table 5). All these pathways 
except for KEGG_VEGF_SIGNALING_PATHWAY were 
upregulated. We observed that immune response-related 
pathways comprised the vast majority of the list as in the 
mesenchymal gene-regulated network computed by Fast-
MEDUSA. The higher rate of immune response activity in 
mesenchymal GBMs has been reported recently.29 The VEGF 
signaling pathway was enriched in the mesenchymal subtype 
uniquely. VEGF activity is associated with angiogenesis,30 
which was one of the GO terms associated with mesenchymal 
gene networks in FastMEDUSA results (Fig. 5). There were 
also apoptosis-related pathways.

Two pathways, namely BIOCARTA_STRESS_PATH-
WAY and ST_INTEGRIN_SIGNALING_PATHWAY were 

figure 3. IPa network built from master regulators of GBm subtypes computed by fastmeDUsa. Colored nodes are the master regulators (red: 
upregulated, Green: downregulated).
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figure 4. Gene regulatory network of mesenchymal subtype computed by fastmeDUsa. the network shows the association of upregulated tfs with 
upregulated gene. Each rectangle node is a TF and each oval node is a gene. The width of the edge is proportional to the TF–gene significance score. 
The inset figure shows the zoomed view of central area.

figure 5. Heatmap of GO term enrichment of genes in FastMEDUSA gene regulatory networks. Only the significant P values are colored via log 
transformation (White: no significance, Blue: low enrichment, Red: high enrichment). GO terms are categorized into more general terms in rows.

http://www.la-press.com
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enriched uniquely in the classical subtype. The BIOCARTA_
STRESS_PATHWAY, which was upregulated in the classi-
cal subtype, involves two cell surface receptors, TNFR1 and 
TNFR2, to regulate apoptotic pathways31 and activate stress-acti-
vated protein kinases.32 The ST_INTEGRIN_SIGNALING_

PATHWAY, which was downregulated in the classical subtype, 
involves integrins as primary sensors of the extracellular matrix 
(ECM) environment for cell migration, growth, and survival.33

In the neural subtype, BIOCARTA_SHH_PATH-
WAY, BIOCARTA_TCR_PATHWAY, and KEGG_FC_

figure 6. IPa network built from genes in gene regulatory network of the mesenchymal subtype. Colored nodes are the genes in the mesenchymal gene 
regulatory network (red: upregulated, Green: downregulated).

figure 7. Venn diagram of (a) upregulated and (B) downregulated Gsea pathways enriched in GBm subtypes (P , 0.05). Pnpos: proneural+, Pnneg: 
proneural−.
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Table 3. Number of subtype-specific significant pathways in IPA and GSEA, and number of common significant pathways. The last row shows 
the number of pathways common to both IPa and Gsea.

CLASSICAL MESENChYMAL NEURAL PRoNEURAL+ PRoNEURAL-

IPA significant (FDR ,0.15) 34 46 36 27 34

GSEA significant (P , 0.15) 23 38 25 21 26

Common to IPA and GSEA 17 33 17 15 18
 

EPSILON_RI_SIGNALING_PATHWAY were uniquely 
and significantly downregulated, and KEGG_ONE_CAR-
BON_POOL_BY_FOLATE pathway was upregulated. In 
the BIOCARTA_SSH_PATHWAY, Sonic HedgeHog (SSH) 
plays a distinct and crucial role in development such as prolif-
eration of neuronal precursor cells in the developing cerebellum 
and other tissues.34,35 The BIOCARTA_TCR_PATHWAY 
(T-cell receptor pathway) plays a key role in the immune system. 
The KEGG_FC_EPSILON_RI_SIGNALING_PATH-
WAY (Fc epsilon RI-mediated signaling pathway) in mast 
cells are initiated by the interaction of antigen (Ag) with IgE 
bound to the extracellular domain of the alpha chain of Fc epsi-
lon RI. The activated mast cells release especially histamines 
and  heparin. Genes in the neural gene regulator network were 
enriched in GO terms related to hemopoiesis, which is modu-
lated by histamine receptor signaling.36 The KEGG_ONE_
CARBON_POOL_BY_FOLATE pathway is in the category 
of metabolic pathways. Metabolic process-related GO terms 
were enriched in genes in neural gene regulatory network.

In the proneural- subtype, KEGG_MISMATCH_
REPAIR, KEGG_PYRIMIDINE_METABOLISM, 
REACTOME_ACTIVATION_OF_THE_PRE_REP-
LICATIVE_COMPLEX, and REACTOME_G2_M_
CHECKPOINTS pathways were uniquely and significantly 
upregulated. The KEGG_MISMATCH_REPAIR and the 
REACTOME_G2_M_CHECKPOINTS pathways play a key 
role in correcting DNA mismatches during DNA replication, 
thus maintains genomic stability. The REACTOME_ACTI-
VATION_OF_THE_PRE_REPLICATIVE_COMPLEX is 
associated with initiation of DNA replication, and the KEGG_
PYRIMIDINE_METABOLISM pathway has been studied in 
human gliomas for its relation to chromosomal aberrations.37

In proneural+ subtype, REACTOME_DOUBLE_
STRAND_BREAK_REPAIR and BIOCARTA_KERA-
TINOCYTE_PATHWAY were uniquely enriched. 
REACTOME_DOUBLE_STRAND_BREAK_REPAIR 
pathway, which has a key role in DNA repair, was upregu-
lated, and BIOCARTA_KERATINOCYTE_PATHWAY, 

figure 8. Venn diagram of number of common pathways of each subtype. Common pathways are the significant pathways found by both GSEA and IPA.
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which has a role in inducing differentiation and inhibiting 
apoptosis, was downregulated.

discussion
In this work, we analyzed the gene expression dataset of 
TCGA GBM samples to compute master regulators and 
gene regulatory networks for each subtype, namely classical, 
mesenchymal, neural, proneural+, and proneural-. We also 
performed pathway analysis by using GSEA and IPA. We 
found some master regulators that are known previously to 
play a role in GBM biology, as well as some other potentially 
important regulators. In pathway analysis, we focused on 
subtype-specific and GBM-specific pathways by taking the 
intersection of IPA and GSEA results.

We ran FastMEDUSA five times on the expression and 
promoter sequence dataset to compute master regulators and 
gene regulatory networks for each subtype. Some of the mas-
ter regulators were reported to play a role in GBM biology, 
such as CEBPD,21 RUNX1,21 LEF1,22 HES6,23 ASCL1,24 

EBF1,25,26 SP100,27 and AEBP1.28 Some of the master regu-
lators were common to several subtypes; for instance, BUD31, 
EN2, LTF, and RUNX1 were computed as a master regula-
tor for each subtype except for proneural+, UXT was a mas-
ter regulator for proneural−, proneural+, and neural subtypes 
only, and PRIC285 was a master regulator for classical and 
mesenchymal subtype only. There were also subtype-specific 
master regulators. For instance, HES6 was a master regula-
tor for proneural+ subtype (Table 1) and it was also a hub 
TF in the gene regulatory network of proneural+ subtype 
(Supplementary Fig. 8). HES6 expression is known to be 
associated with proneural group (Supplementary Fig. 11) and 
could play a role in cell proliferation and migration.23

Gene regulatory networks computed by FastMEDUSA 
do not necessarily demonstrate direct interactions between 
TFs and genes. Due to the complexity of GBM biology, and 
high dimensionality and noise of the data, FastMEDUSA 
gene regulatory networks are not completely accurate. How-
ever, these networks would give an overall representation of 

Table 5. List of significant common pathways found by IPA and GSEA that were enriched in mesenchymal subtype only.

PAThwAY NAME ANNoTATIoN

KeGG_reGULatIon_of_aCtIn_CYtosKeLeton organismal growth and development

reaCtome_semaPHorIn_InteraCtIons Cellular Growth, Proliferation and Development

KeGG_VeGf_sIGnaLInG_PatHWaY Cellular growth, Proliferation and development, Growth factor signaling

BIoCarta_DeatH_PatHWaY apoptosis

BIoCarta_HIVnef_PatHWaY apoptosis

BIoCarta_toLL_PatHWaY apoptosis, Cellular Immune response

reaCtome_toLL_LIKe_reCePtor_4_CasCaDe apoptosis, Cellular Immune response

KeGG_aCUte_mYeLoID_LeUKemIa Cancer

KeGG_GaLaCtose_metaBoLIsm Carbohydrate metabolism

KeGG_starCH_anD_sUCrose_metaBoLIsm Carbohydrate metabolism

KeGG_Graft_VersUs_Host_DIsease Immune response

KeGG_aUtoImmUne_tHYroID_DIsease Immune response

BIoCarta_ComP_PatHWaY Immune response

BIoCarta_IL2rB_PatHWaY Immune response

KeGG_antIGen_ProCessInG_anD_PresentatIon Immune response

Table 4. The list of significant common pathways found by GSEA and IPA and that were significantly enriched in all subtypes. The pathway 
names in Gsea database are listed.

PAThwAY NAME (IN GSEA dATABASE) ANNoTATIoN

BIoCarta_G1_PatHWaY Cell cycle regulation 

KeGG_GLIoma Cancer

KeGG_LonG_term_DePressIon neurotransmitters and other nervous system signaling

KeGG_LonG_term_PotentIatIon neurotransmitters and other nervous system signaling

KeGG_notCH_sIGnaLInG_PatHWaY Cancer, organismal Growth and Development

KeGG_o_GLYCan_BIosYntHesIs Glycan biosynthesis and metabolism

KeGG_renaL_CeLL_CarCInoma Cancer
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the subtype biology. For instance, we observed that some of 
the hub TFs in these networks were also identified as mas-
ter regulators (Table 1, Fig. 4, Supplementary Figs. 5–8). We 
used IPA to retrieve existing literature data to build networks 
from these genes in these regulatory networks (Fig. 6 and 
Supplementary Fig. 9). We also observed that the GO term 
enrichment of these networks recapitulate the overall subtype 
biology. Thus, we believe that FastMEDUSA gene regulatory 
networks encode a significant number of useful interactions 
that merit further experimental validation.

There were two TFs, STAT5A and WWTR1, that 
were not reported as master regulators, but were hub TFs in 
all gene regulatory networks. WWTR1 (TAZ) has a role in 
regulating the mesenchymal differentiation in GBMs11 and 
has been reported as master regulator of glioblastoma in a pre-
vious computational study,38 and STAT5 is known to regulate 
glioma cell invasion.38 Another interesting TF was TLE3, 
which was a hub TF in proneural+ gene regulatory network 
(Supplementary Fig. 8). TLE3 (transducin-like enhancer of 
split 3) encodes a transcriptional co-repressor protein that 
belongs to the transducin-like enhancer family of proteins. Its 
expression is known to be associated with sensitivity to taxane 
treatment in ovarian carcinoma.39 There is no current study to 
discuss the association of TLE3 with proneural+, so it mer-
its the further exploration of the role of TLE3 in proneural+ 
biology.

Performing pathway analysis in GSEA and IPA and 
 taking the intersection of the findings, we found some GBM- 
and GBM subtype-specific pathways. As expected, we found 
glioma and notch signaling pathways as GBM specific. We 
also observed that the methylation subtype was enriched in 
immune response-related pathways as reported recently.29 The 
proneural+ group was enriched in DNA repair-related path-
ways, which could explain the better survival of proneural+ 
samples.8 The pathway analysis did not reveal a clear unique 
pathway for classical samples. This could be because classi-
cal samples could be split into the remaining subtypes found 
by Verhaak et al7 when the classification scheme by Phillips 
et al.40 is followed.41
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supplementary Materials
supplementary Figure 1. Clustering of GBM samples 

based on discretized gene expression. (A) PCA after dis-
cretizing genes with t = 2, TFs with t = 1.5; (B) PCA after 
discretizing genes with t = 1.5, TFs with t = 1.2; (C) PCA 
after discretizing genes with t = 1.2, TFs with t = 1.1; (D) 
hierarchical clustering after discretizing genes with t = 1.2, 

TFs with t = 1.1. Sample coloring: Red, classical; blue, 
mesenchymal; green, neural; purple, proneural−; orange, 
proneural+.

supplementary Figure 2. Percentage of test loss for dif-
ferent number of boosting iterations.

supplementary Figure 3. The source of variation of 
batch ID and GBM subtype in TCGA exon data based on a 
two-way ANOVA model.

supplementary Figure 4. Kaplan–Meier survival plots 
for nine master regulators of GBM subtypes. Each regulator 
name is below the survival plot. Log-rank P , 0.05.

supplementary Figure 5. Gene regulatory network of 
the classical subtype. The network shows the association of 
upregulated TFs with upregulated gene. Each rectangle node 
is a TF and each oval node is a gene. The width of the edge is 
proportional to the TF–gene significance score.

supplementary Figure 6. Gene regulatory network of 
the neural subtype. The network shows the association of 
upregulated TFs with upregulated gene. Each rectangle node 
is a TF and each oval node is a gene. The width of the edge is 
proportional to the TF–gene significance score.

supplementary Figure 7. Gene regulatory network of 
the proneural− subtype. The network shows the association of 
upregulated TFs with upregulated gene. Each rectangle node 
is a TF and each oval node is a gene. The width of the edge is 
proportional to the TF–gene significance score.

supplementary Figure 8. Gene regulatory network of 
the proneural+ subtype. The network shows the association of 
upregulated TFs with upregulated gene. Each rectangle node 
is a TF and each oval node is a gene. The width of the edge is 
proportional to the TF–gene significance score.

supplementary Figure 9. IPA networks built from genes 
in gene regulatory network of the (A) classical (B)  proneural−, 
(C) neural, (D) proneural+ subtypes. Colored nodes are the 
genes in the corresponding gene regulatory network (Red: 
upregulated, Green: downregulated).

supplementary Figure 10. IPA networks derived 
from DEGs of (A) classical, (B) mesenchymal, (C) neural, 
(D) proneural− samples. Nodes annotated with a star are sig-
nificant master regulators.

supplementary Figure 11. Expression dot plot of 
HES6 in GBM subtypes.

supplementary table 1. Significant IPA canonical path-
way for each GBM subtype. All P values are ,0.05. Blank 
cells refer to P value . 0.05.

supplementary table 2. List of pathways that was sig-
nificant in both IPA and GSEA. For each pathway, the sub-
types that have that pathway have a “1” in that row.
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