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Abstract: Background: Early recognition of sepsis and the prediction of mortality in patients with
infection are important. This multi-center, ED-based study aimed to develop and validate a 28-day
mortality prediction model for patients with infection using various machine learning (ML) algo-
rithms. Methods: Patients with acute infection requiring intravenous antibiotic treatment during the
first 24 h of admission were prospectively recruited. Patient demographics, comorbidities, clinical
signs and symptoms, laboratory test data, selected sepsis-related novel biomarkers, and 28-day mor-
tality were collected and divided into training (70%) and testing (30%) datasets. Logistic regression
and seven ML algorithms were used to develop the prediction models. The area under the receiver
operating characteristic curve (AUROC) was used to compare different models. Results: A total of
555 patients were recruited with a full panel of biomarker tests. Among them, 18% fulfilled Sepsis-3
criteria, with a 28-day mortality rate of 8%. The wrapper algorithm selected 30 features, including
disease severity scores, biochemical parameters, and conventional and few sepsis-related biomarkers.
Random forest outperformed other ML models (AUROC: 0.96; 95% confidence interval: 0.93-0.98)
and SOFA and early warning scores (AUROC: 0.64-0.84) in the prediction of 28-day mortality in
patients with infection. Additionally, random forest remained the best-performing model, with an
AUROC of 0.95 (95% CI: 0.91-0.98, p = 0.725) after removing five sepsis-related novel biomarkers.
Conclusions: Our results demonstrated that ML models provide a more accurate prediction of
28-day mortality with an enhanced ability in dealing with multi-dimensional data than the logistic
regression model.

Keywords: biomarker; logistic regression; machine learning; mortality prediction; sepsis

1. Introduction

Sepsis was first defined as a documented or suspected infection with systemic in-
flammatory response syndrome (SIRS) [1]. However, this conventional definition was
abandoned in 2016, and “sepsis-3” serves as a new definition of “sepsis”, intending to
increase prognostic accuracy [2]. The incidence of sepsis has been steadily increasing
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since the early 2000s [3] and has been estimated at approximately 6 cases per 100 adult
hospitalizations per year, which has not changed significantly in the last decade in both the
United States and the world [4,5]. The sepsis fatality rate was approximately 30% in the
early 2000s [6] with a decreasing trend in mortality between 2009 and 2011, but not after
2011 [7].

Predicting the outcomes of patients with infection continues to be a topic of interest.
However, no single biomarker can be used to predict sepsis satisfactorily [8]. Efforts to
combine predictors, such as the sequential organ failure assessment (SOFA) score [9] and
the chills, hypothermia, anemia, red cell distribution width and malignancy (CHARM)
score [10] are evidence that researchers hope to develop a feasible and accurate prediction
model for clinical utility. However, their capacity to predict mortality in patients with
infection is inadequate (area under the receiver operating characteristic curve (AUROC) of
SOFA ranged 0.66-0.84) [11-14].

In the past few decades, regression models have dominated the field of clinical predic-
tion modelling, largely because of their simplicity in application and easy interpretation.
However, regression models do not perform well in nonlinear distributions, complicated
interactions, and high dimensionality, and the results may be invalid when the expectations
are not met. Some interesting activities stemming from the fields of machine learning (ML)
have varying success in the prediction of mortality caused by sepsis (Table S1) [15,16]. A
meta-analysis suggested that ML approaches performed better than the existing scoring
systems, such as SIRS, National Early Warning Score (NEWS), Modified Early Warning
Score (MEWS), gSOFA, and SOFA in predicting the onset of sepsis [17]. We aimed to de-
velop and validate a machine learning-based model to predict 28-day mortality for patients
with infection in a prospective, multi-center, hospital-based cohort study, which included
demographics, comorbidities, clinical signs and symptoms, disease severity, hemodynamic
indicators, biochemical profiles, and relevant biomarker panels.

2. Materials and Methods
2.1. Study Design and Study Population

This prospective observational study was conducted in the emergency departments
(EDs) of three secondary and tertiary teaching hospitals in Northern Taiwan, from February
2014 to September 2017. The study was approved by the Institutional Review Board of the
Chang Gung Memorial Hospital (approval number: 201800543B0). Patients who met the
selection criteria were enrolled after signing an informed consent form. Patients with acute
infection who required hospital admission for intravenous antibiotics treatment were eligi-
ble in the study, while patients who were transferred from other hospitals or hospitalized
within the previous 2 weeks due to infectious disease, had received antibiotics of un-
known classes and dosing schedules, received a blood transfusion within 24 h, or received
renal dialysis within 12 h were excluded. Discordant diagnoses were resolved by an
expert panel to confirm their eligibility. We followed a prospective-specimen-collection,
retrospective-blinded-evaluation (PRoBE) design [18] in which biologic specimens are
collected prospectively from the target population.

2.2. Measurements

Blood samples were tested for complete cell counts, biochemical parameters, coagula-
tion function, liver and renal function, immunological function, and sepsis-related novel
biomarkers, such as acute-phase proteins: Pentraxin-3; cytokines and chemokines: tu-
mor necrosis factor-alpha (TNF-), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10
(IL-10), and interferon-gamma (IFN-v); cell surface markers: cluster of differentiation-14
(sCD14), cluster of differentiation-64 (sCD64) and the soluble cluster of differentiation-163
(sCD163); receptor markers: triggering receptor expressed on myeloid cells-1 (TREM-1); and
endothelial damage markers: angiopoietin-2, E-selectin, P-selectin, intercellular adhesion
molecule-1 (ICAM-1), and vascular cell adhesion protein-1 (VCAM-1). The sepsis-related
novel biomarker tests were performed using the multiplex platform of Bio-Plex ProTM
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Assays (Bio-Rad Laboratories, Hercules, CA, USA). For specimens with insufficient volume
for all biomarker examinations, novel sepsis-related biomarkers were prioritized for testing.
Various disease scoring systems, including SOFA and ASOFA scores (change in total SOFA
score between the ED visit and the baseline value; Supplemental boar), CHARM score,
NEWS, MEWS, and SIRS were calculated to assess the severity of illness. A detailed history
of present illness, vital signs, basic biochemical profile, chief complaints, comorbidities,
and disease severity during hospitalization were obtained by dedicated research personnel.
Sepsis-1 was defined as infection that fit two or more criteria of SIRS. Sepsis-3 and septic
shock were defined according to the third international consensus for the definition of
sepsis and septic shock (Table S7) [19]. The clinical gestalt was obtained prospectively by
inquiring of the primary care physician in the EDs about the estimated possibility of death
on a five-point Likert scale. The primary outcome was defined as the 28 d mortality, which
was obtained through electronic medical records for in-hospital patients and telephone
follow-up survey for those discharged patients.

2.3. Data Partitioning

We adopted a stratified random sampling strategy to divide our dataset into a 70% train-
ing dataset and 30% testing dataset stratified by outcome (28-day mortality). Owing to
the relatively small sample size, we used a three-fold cross-validation method to fine-tune
our prediction models on the training dataset. Briefly, we randomly divided the training
dataset into three folds of equal size. For each round of cross-validation, two of these folds
were used to train our models, and the third was used to evaluate the performance and
fine-tune the hyperparameters.

2.4. Feature Engineering and Feature Selection

Based on the characteristics of the datasets, two types of feature engineering methods
were applied in this study: multiplication of features to amplify the effect and centering
of data with U-shaped relationships with 28-day mortality via visual identification of the
turning points in locally weighted scatter-plot smoothing curves. The centered features
were subsequently squared to amplify the signals in the models. For feature selection,
we adopted one of the wrapper algorithms, the “Boruta” algorithm, to rank the features
associated with mortality in the random forest (RF) models [20].

2.5. Data Preprocessing

Features with missing values were evaluated for the missing mechanism, followed by
their association with mortality. The missing values were then replaced with medians for
continuous features and modes for categorical features [21]. We normalized the continuous
features to facilitate model training.

2.6. Machine Learning-Based Models

In this study, we evaluated seven ML algorithms, including four tree and ensemble-
based models: extreme gradient boosting, conditional random forest, random forest, and
random forest generator; one distance-based model, support vector machine; and two
neural network-based models: artificial neural networks and deep neural networks, and
compared them with one regression-based model: logistic regression (Table S8).

2.7. Performance Evaluation and Model Interpretation

The AUROC was used to assess the performance of the constructed models [22]. We
also used the Shapley additive explanation value to interpret the output of the models
that helped us to understand the direction and strength of a single feature in the final
model [23,24].
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2.8. Sensitivity Analysis

To increase the practicality of the prediction model, we performed sensitivity analyses
by (1) removing the sepsis-related novel biomarkers from the candidate features to make
the model more practical and (2) using only the top five candidate features in the model.
We also evaluated whether the synthetic minority oversampling technique (SMOTE) could
improve the performance of our models by up- or down-sampling methods to handle the
potential data imbalance on the training dataset [25].

2.9. Statistical Analysis

Data on demographics and clinical characteristics are presented as mean (standard
deviation) or median (interquartile range) for continuous features and counts and per-
centages for discrete features. Descriptive statistics were compared using the Wilcoxon
rank-sum test for continuous data comparisons and the chi-square test for categorical data.
All statistical tests were two-sided, and statistical significance was set at p-value < 0.05.
Statistical and ML algorithms were performed using R (version 4.0.1, Vienna, Austria)
with the caret package. Comparisons of the AUROC between prediction models were
made using the DeLong method of the pROC package [22]. To achieve a 0.8 power with
0.95 accuracy, the minimal number of test groups needs to be 100 in supervised learning
methods. We reported our study according to the Transparent Reporting of a multivariable
prediction model for Individual Prognosis or Diagnosis Statement (TRIPODS) [26].

3. Results
3.1. Study Population and Characteristics

During the study period, 555 patients with a full panel of biomarker tests were
recruited. Patients were predominantly males with a mean age of 62.48 £ 17.55 years,
in which 75% fulfilled the Sepsis-1 criteria and 18% fulfilled the Sepsis-3 criteria. Vital
signs, disease severity scores, and most of the sepsis-related novel biomarkers and indices
demonstrated trends in accordance with disease severity (Tables 1 and S2).

Table 1. Patient baseline demographics, comorbidities, and disease severity, stratified by stage of sepsis.

Features Total Sepsis-1 Sepsis-3 Septic Shock ! Septic Shock 2

Numbers (%), (Mean (SD) 555 (100) 418 (75.32) 101 (18.20) 58 (10.45) 7 (1.26)
Demographics

Age (years) 62.48 (17.55) 63.17 (17.11) 68.58 (15.22) 69.17 (15.53 57.14 (20.38)

Male gender 350 (63.1) 271 (64.8) 69 (68.3) 44 (75.9) 6 (85.7)
Vital signs

Body temperature (°C) 38.0 (1.26) 38.2 (1.25) 38.2 (1.26) 38.3 (1.24) 37.7 (0.68)

Pulse (bpm) 109 (21.42) 115 (19.82) 114 (22.88) 115 (22.35) 112 (23.23)

Respiratory rate (breaths/min) 21 (3.45) 21 (3.62) 22 (3.75) 22 (4.07) 22 (4.6)

SBP (mmHg) 137 (30.33) 138 (30.09) 128 (32.93) 125 (31.63) 100 (26.25)

DBP (mmHg) 78 (17.34) 78 (17.68) 72 (16.89) 71 (17.58) 62 (19.69)
GCS coma scale 15 (15-15) 15 (15-15) 15 (11-15) 14 (10.25-15) 15 (14.5-15)
Comorbidities
Diabetes 220 (39.6) 168 (40.2) 42 (41.6) 24 (41.4) 0(0.0)
Tumor 96 (17.3) 74 (17.7) 13 (12.9) 11 (19.0) 2 (28.6)
disizzzmc obstructive pulmonary 99 (17.8) 80 (19.1) 22 (21.8) 9 (15.5) 0(0.0)
Congestive Heart Failure 42 (7.6) 32(7.7) 8(7.9) 2 (3.4) 0 (0.0)
Chronic Kidney Disease 45 (8.1) 32(7.7) 16 (15.8) 9 (15.5) 0 (0.0)
Hemiplegia or paraplegia 80 (14.4) 60 (14.4) 18 (17.8) 10 (17.2) 1 (14.3)
Liver disease 83 (15.0) 64 (15.3) 12 (11.9) 7 (12.1) 0 (0.0)
Malignancy 155 (27.9) 117 (28.0) 30 (29.7) 21 (36.2) 3 (42.9)
Mild Liver Disease 70 (12.6) 52 (12.4) 10 (9.9) 6 (10.3) 0 (0.00

Cirrhosis Liver Disease

52 (9.4) 39 (9.3) 5 (5.0) 1(17) 0 (0.0)
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Table 1. Cont.

Features Total Sepsis-1 Sepsis-3 Septic Shock ! Septic Shock 2

Site of infection

Respiratory 221 (39.8) 169 (40.4) 42 (41.6) 21 (36.2) 4(57.1)

Genitourinary 179 (32.3) 131 (31.3) 25 (24.8) 14 (24.1) 3 (42.9)

Skin 50 (9.0) 38 (9.1) 10 (9.9) 3(5.2) 0(0.0)

Abdominal 41 (7.4) 32(7.7) 9(8.9) 5 (8.6) 1(14.3)

Central Nervous System 5(0.9) 4 (1.0 0(0.0) 0(0.0) 0 (0.0)

Unspecified 277 (49.9) 221 (52.9) 62 (61.4) 38 (65.5 6 (85.7)
Disease severity score (Median (IQR))
SOFA 2 (1-4) 2 (1-4) 4 (3-6) 5 (3-7) 11 (7.5-13)
ASOFA 0 (—2-1) 0(—2-1) 3 (2-5) 4 (3-6) 10 (7.5-12)
MEDS 6 (3-9) 6 (3-9) 8 (6-11) 8.5 (6-11) 9(7-9)
CHARM 2 (1-3) 2(1-3) 2 (1-3) 2 (1.25-3) 2 (1.5-2.5)
NEWS 6 (4-9) 7 (5-9) 8 (6-10) 8 (5.25-10) 8 (6-10.5)

MEWS 4 (2-5) 4 (3-6) 5 (3-6) 5 (3-6.75) 5 (3.5-5)
Outcomes (Number (%))

ICU admission 27 (4.9) 23 (5.5) 6 (5.9) 6 (10.3) 3 (42.9)

In-hospital death 45 (8.1) 42 (10.04) 16 (15.84) 12 (20.69) 4 (57.14)

Sepsis-1 was defined as two or more criteria (score > 2) of SIRS (Systemic Inflammatory Response Syndrome)
plus suspected or documented infection. Sepsis-3 was defined as evidence of infection plus an acute increase
of SOFA Score (ASOFA > 2) compared to the baseline values. Two definitions of septic shock were applied:
1 (ASOFA > 2 + Lactate > 18 mg/dL) and 2 (ASOFA > 2 + Lactate > 18 mg/dL) + Vasopressor usage. GCS: Glas-
gow Coma Scale; SOFA: Sequential Organ Failure Assessment Score; MEDS: Mortality in Emergency Department
Sepsis score; CHARM: Chills, Hypothermia, Anemia, Red Cell Distribution Width and Malignancy score; NEWS:
National Early Warning Score; MEWS: Modified Early Warning Score.

The 28-day mortality rate of the study cohort was 8%. Non-survivors tended to be
older and male, with a higher proportion of having malignancies, presenting with a lower
GCS of less than 15, increased respiratory rate and poorer oxygen saturation, abnormal
hematological profiles, such as lower hematocrit and higher red cell distribution width,
and were more likely to have sepsis-3 and septic shock (Table 2). The mean levels of the
sepsis-related novel biomarkers measured at baseline were higher in non-survivors than
in survivors (Table S3). Patients with missing data had no significant difference in 28-day
mortality compared to those without missing data.

3.2. Machine Learning Development and Evaluation

First, we divided the overall dataset into training and testing sets with sample sizes of
389 and 166, respectively, which contained 219 features (Table S4). Among them, 70 features
were continuous, and 12 features had U-shaped distributions and were centered before
feature selection, including pulse rate, respiratory rate, systolic blood pressure, diastolic
blood pressure, mean arterial pressure, blood sugar, activated partial thromboplastin time,
phosphorous, calcium, protein C, bicarbonate, and white blood cell count (Figure S1).

After centering for the U-shaped association, 30 features were selected using the wrap-
per algorithm around the random forest (RF) models, and their mean weighted contribution
and AUROC for prediction are listed in Table S5. Among these selected features, four were
disease severity scores (SOFA, SOFA-respiratory, SOFA-coagulation, and ASOFA), nine
were arterial blood gas parameters (AaDO;, pH, total CO,, ABE, SBC, SBE, HCO3, pCO;,
and FiOy), five were sepsis-related novel biomarkers (IL-8, IL-6, angiopoietin-2, E-selectin,
and VCAM1), and the rest were routine biochemical and conventional biomarkers (D-dimer,
fibrin degradation products, procalcitonin, and lactate). Among these candidate features,
SOFA score, normalized IL-8, D-dimer, cortisol, and albumin had the highest univariable
AUROC of 0.74-0.83. In addition, although not selected by the wrapper algorithm, the clin-
ician’s gestalt also had an acceptable performance in predicting 28-day mortality (AUROC:
0.83; 95% confidence interval (CI): 0.69-0.90).
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Table 2. Patient characteristics, stratified by 28-day in-hospital mortality.

28-Day In-Hospital Mortality

Features Mean (SD)/n (%) Survivor (n = 510) Death (n = 45)
Demographics
Age (years) * 61.87 (17.71) 68.88 (14.5)
Male 314 (61.9) 36 (75.0)
Underlying disease
Malignancy * 127 (25) 28 (58.3)
Vital signs
Body temperature (°C) * 38.02 (1.25) 37.46 (1.17)
SBP (mmHg) 137.59 (29.74) 131.27 (35.87)
DBP (mmHg) 77.96 (16.71) 75.81 (23.13)
Respiratory rate (breaths/min) * 20.51 (3.10) 23.96 (5.06)
Pulse (bpm) * 108.9 (20.19) 114.06 (30.86)
SPaO; (%) * 93.6 (4.43) 90.11 (7.08)
GCS* 15 (15-15) 15 (10.75-15)
Hemogram and biochemical profile
Hemoglobin (g/dL) * 12.21 (2.15) 10.64 (1.93)
Red Blood Cell (10° uL) *7T 4.17 (0.75) 3.74 (2.12)
RDW (%) *T 14.41 (2.02) 15.78 (2.05)
Band (% of WBC) * 1.7 (4.25) 5.49 (7.07)
Platelet (103 uL) *7T 213.39 (96.82) 153.77 (96.50)
AST (U/L)T 47.57 (114.29) 79.76 (106.31)
BUN (mg/dL) *T" 20.95 (18.30) 38.55 (36.54)
Albumin (g/dL) *™ 3.48 (0.54) 2.77 (0.68)
Uric acid (mg/dL) *TT" 5.48 (2.30) 6.85 (3.03)
Potassium (mEq/L) * 3.82(0.59) 4.15(0.84)
Phosphorous (mg/dL) * 2.92 (1.50) 3.9(1.57)

Protein C 777

726.69 (1048.14)

970.28 (1182.41)

Coagulation profiles

Prothrombin Time (s) *™ 13.94 (2.97) 16.09 (4.69)
INR *777 1.23 (0.27) 1.39 (0.35)
FDP (ug/mlL) *7TT 18.94 (15.03) 34.84 (24.90)
Cortiso%(ug/dL) *TT 22.89 (16.56) 42.41 (33.66)

Gas profile

AaDO, (mmHg) ** 55.50 (30.36) 115.90 (163.33)
pH *® 7.41 (0.05) 7.33 (0.16)
Total CO, (mmol/L) ® 25.15 (4.19) 24.30 (8.05)
ABE (mmol/L) *® —0.39 (3.59) —2.80 (8.85)
SBC (mmol /L) *%% 23.34 (3.50) 19.84 (9.12)
SBE (mmol /L) *® —0.58 (4.13) —2.86 (9.61)
HCO; (mmol/L) ® 23.80 (3.89) 22.8 (8.04)
pCO, (mmHg) *® 38.48 (8.39) 43.08 (14.14)
FiO, *7 26.20 (11.21) 34.73 (25.73)

Conventional biomarkers
Procalcitonin (ng/mL) *T

0.55 (0.09-5.18)

1.99 (0.36-26.2)

Lactate (mg/dL) *™ 14.3 (10.47-20.92)
C reactive protein *7 80.04 (37-158.3)
D-dimer (ng/mL) *TT7 1183.5 (509.5-2374.25)

Disease severity

22.8 (15.45-37.9)
120.86 (70.84-200.27)
3609.5 (1592.5-10,000)

Sepsis-3 * 87 (17.06) 14 (31.11)
Septic Shock * 48 (9.41) 10 (22.22)
CHARM * . 2 (1-2) 3 (2-4)
agll%th of hospital stay (days) Median 10 (7-16) 15.5 (6.25-24.75)
Clincial gestalt * 2.25(0.71) 3.05 (0.87)

Missing data: T <1%; 7 1~5%; 777 5~10%; 5 30~80%; 50 >80%; * p-value < 0.05. ABE: actual base excess;
SBE: standard base excess; SBC: standard bicarbonate measurement: Septic shock defined as Sepsis-3 and
lactate > 18 mg/dL.

The top 30 features were then used to determine the best model (Table S5). In the
testing dataset, RF performed best, with an AUROC of 0.96 (95% CI: 0.93-0.98) when
all 30 selected features were used (number of trees: 500, and number of variables ran-
domly sampled as candidates at each split: 34). After removing five sepsis-related novel
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biomarkers, RF remained the best-performing model, resulting in a similar AUROC of 0.95
(95% CI: 0.91-0.98, p = 0.725). By further reducing the number of features, the prediction
performance began to decline. eXtreme Gradient Boosting performed best with an AUROC
of 0.86 if only the top five features were used for model input (95% CI: 0.76-0.97) (Table 3).

Table 3. The area under the receiver operating characteristic curves of seven machine learning models

when various features were selected.

8 25 Selected Features

30 Selected Features (Remove Biomarkers)

88 Top 5 Features Only

Models
Training Testing Training Testing Training Testing
é)r(:;l:;i 0.989 0.934 0.975 0.924 0.920 0.860
) (0.981-0.997) (0.887-0.980) (0.960-0.990) (0.876-0.972) (0.880-0.960) (0.755-0.965)
Boosting
Conditional 0.943 0.933 0.939 0.931 0.933 0.843
random forest (0.916-0.969) (0.889-0.977) (0.910-0.968) (0.890-0.972) (0.898-0.967) (0.721-0.965)
Random Forest 1.000 0.959 1.000 0.948 1.000 0.831
(1.000-1.000) (0.927-0.983) (1.000-1.000) (0.913-0.977) (1.000-1.000) (0.724-0.924)
RANdom forest 0.991 0.940 0.990 0.938 0.958 0.843
GEneRator (0.984-0.999) (0.899-0.981) (0.982-0.998) (0.896-0.980) (0.933-0.983) (0.734-0.952)
Support vector 0.977 0.881 0.921 0.871 0.999 0.693
machine (0.953-0.999) (0.796-0.966) (0.879-0.962) (0.783-0.959) (0.999-1.000 (0.491-0.895)
Neural network 0.894 0.821 0.878 0.713 0.894 0.800
(0.848-0.940) (0.715-0.926) (0.824-0.931) (0.525-0.901) (0.840-0.947) (0.676-0.925)
Deep neural 0.850 0.846 0.718 0.708 0.817 0.707
network (0.793-0.906) (0.774-0.917) (0.626-0.810) (0.573-0.844) (0.759-0.874) (0.544-0.871)
Logistic 0.934 0.785 0.929 0.734 0.879 0.827
regression (0.900-0.967) (0.642-0.929) (0.894-0.964) (0.537-0.932) (0.823-0.934) (0.694-0.960)

8 Removed biomarkers: IL-8, IL-6, angiopoietin-2, E-selectin and VCAM1. 85 Top five features: total SOFA score;
IL-8; D-dimer; platelet and albumin.

3.3. Model Interpretation

Figure 1 shows the importance of the independent features ranked in a descending
order in the final Random Forest model. The top five most important features in predicting
28-day mortality are the SOFA score, IL-8, D-dimer, IL-6, and angiopoietin-2. In general,
the higher the levels of these biomarkers and disease scores, the more positive the impacts
were in predicting 28-day mortality. On the contrary, the lower the albumin and platelet lev-
els observed, the greater the risk of 28-day mortality. These observations were compatible
with the simple univariate analysis (Tables S3 and S5).

3.4. Comparison between the Best Machine Learning and Traditional Scoring Systems

Compared with all the traditional scoring systems, RF performed best in predict-
ing 28-day mortality on the testing dataset (AUROC: 0.96; 95% CI: 0.93-0.98, p < 0.001;
Figure 2), and the AUROC remained high after removing the five sepsis-related biomark-
ers (AUROC: 0.95; 95% CI: 0.91-0.99). Among the seven traditional scoring systems,
the CHARM score demonstrated the second-best performance with an AUROC of 0.86
(95% CI: 0.79-0.91) for 28-day mortality prediction, whereas SIRS performed the worst
(AUROC: 0.53; 95% CI: 0.40-0.77).
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Vascular cell adhesion protein 1
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Figure 1. The Shapley Additive exPlanations (SHAP) summary plot of the final Random Forest
models. The horizontal location of this SHAP plot demonstrates whether the effect of the value of that
feature is associated with a higher or lower prediction of the model output, and the color indicates
whether that feature is high (red) or low (blue) for that observation. SOFA, Sequential Organ Failure
Assessment; SOFA score-Res, SOFA-respiratory; SOFA score-Coag, SOFA-coagulation; FDP, fibrin
degradation products.

1.00

sensitivity
o
(6]
o

0.00{
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Random forest (30): 0.96 (0.93-0.98)
Random forest (25): 0.95 (0.91-0.99)
CHARM score: 0.86 (0.79-0.91)
SOFA score: 0.84 (0.67-0.93)

* Clinical_gestalt: 0.83 (0.69-0.90)

NEWS score: 0.71 (0.53-0.84)
MEWS score: 0.64 (0.46-0.80)
delta SOFA score: 0.55 (0.37-0.74)
SIRS score: 0.53 (0.40-0.77)

0.75 1.00
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Figure 2. Area under the receiver operating characteristic curves derived from Random Forest,
CHARM, SOFA, Clinical Gestalt, NEWS, MEWS, SIRS and ASOFA scores for the prediction of
28-day mortality on the testing dataset (1 = 166). CHARM (Chills, Hypothermia, Anemia, Red Cell
Distribution Width and Malignancy score); SOFA score (Sequential Organ Failure Assessment score);
clinical gestalt (primary care physician’s estimation of the possibility of death); NEWS (National Early
Warning Score); MEWS (Modified Early Warning Score); SIRS (Systemic Inflammatory Response
Syndrome); delta SOFA score (change in total SOFA score between ED visit and the baseline value).
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3.5. Imbalance Data Management

By applying SMOTE for both the up-sampling and down-sampling procedures, we
found that the process did not improve the performance. Therefore, imbalanced processing
was not adopted in this study (Table S6).

4. Discussion

In this prospective hospital-based cohort study, ensemble-based ML models, especially
the random forest (RF) model, outperformed deep learning and logistic regression models
and other traditional scoring systems in the prediction of 28-day mortality for patients
with infection. We demonstrated that the ML models could be developed incorporating
conventional features to assist the daily practice in the frontline health care settings. With
25 conventional features, the RF model had an AUROC of up to 0.95 in predicting 28-day
mortality on the testing dataset. Many single biomarkers, such as IL-8, albumin, and
D-dimer, were also found to have predictive power similar to that of the SOFA score.
Sepsis-related novel biomarkers, including IL-8, IL-6, and angiopoietin-2, were included in
the final models, but could also be substituted by other features without significant impact
on the performance.

In our study, we demonstrated that RF can be used to rank the importance of features
and derive a powerful prediction model with complicated interactions between features.
RF can generate hundreds of decision trees to fit the dataset. By averaging the variances in
the number of trees, RF reduces the high variance derived from a single tree. RF enables the
evaluation of more features and interactions compared to traditional modelling approaches.
A similar study that predicted 28-day mortality of ED patients with sepsis using real-world
data carried out by Taylor et al. also demonstrated that the RF model performed better
than the logistic regression model (AUROC of 0.86 vs. 0.76) [15].

The SOFA score was an important feature in our feature selection process and ML
modelling in predicting 28-day mortality for patients with infection, in accordance with
many other retrospective studies (pooled AUROC of 0.75-0.78) [12,19,27,28]. Furthermore,
the SOFA respiratory score was selected in addition to the total SOFA score in our final
RF model. Our findings suggest that respiratory dysfunction is an important predictor
of mortality in patients with infection, which is supported by many other studies [5,29].
In addition, the gSOFA score, which was developed to screen for patients with possible
sepsis-3, also contains the respiratory rate [19]. We believe that respiratory dysfunction
contributes more to sepsis-associated mortality and should be considered an important risk
factor in future research.

Several commonly measured biomarkers in clinical settings were selected for our
final model. D-dimer is a fibrin degradation protein fragment that is formed after a
blood clot is degraded by fibrinolysis. Severe infection may lead to the activation of an
inflammatory cascade that can trigger this coagulopathy process [30]. Furthermore, the low
serum albumin level in the acute phase of sepsis may be due to the inhibition of the
albumin gene caused by TNF-a overexpression during inflammation [31]. This decrease
in albumin level was significantly associated with the risk of death in septic patients [32].
Additionally, the presence of a large amount of lipopolysaccharides during sepsis activates
the hypothalamus-pituitary—adrenal axis and the sympathoadrenal system, which leads
to an increased output of cortisol and catecholamines, and ultimately an elevated serum
lactic acid level, which has been widely recognized as a marker of tissue hypoxia or
hypoperfusion and increased risk of multiple organ dysfunction syndrome [33].

Inflammation-related biomarkers, such as IL-8 and IL-6, were predictive of 28-day mor-
tality both in the univariate analysis and in the final RF model. As a single biomarker, IL-8
has a similarly acceptable performance as the SOFA score (AUROC 0.83 vs. 0.82) and has
been associated with 28-day mortality in a smaller study [34]. In contrast, the contributions
of the other sepsis-related novel biomarkers were less prominent in our study. One possible
reason is that the timing of sampling affected their predictive power, as many markers may
only elevate at certain phases of disease progression and rapidly subside [35]. However,
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patients at different stages of infection severity were enrolled in this study. Therefore,
we hypothesize that multiple measurements may capture the dynamic patterns of these
indicators and better correlate with patient outcomes.

In this study, the clinician’s gestalt demonstrated moderate predictive accuracy and
precision (AUROC: 0.83; 95% CI: 0.69-0.90). However, it was not selected in the RF models
of our study. The wrapper algorithm ranks features that are selected in a model with high-
order feature interactions, which indicates that the importance of clinical gestalt can be
replaced by other features. Since the development of ML algorithms, researchers have been
trying to enhance human experience and judgement by translating data into a language
that the machine can understand [36]. In reality, clinician’s gestalt is seldom assessed
together with the performance of machine-aided decision making, but if ever performed
simultaneously and reported, the decision aid rarely outperformed human judgment [37].

Compared to previous studies that used retrospective electronic medical record data
for model inputs, our study has the advantage of having good-quality data prospectively
collected from three different emergency departments. This study still has some limi-
tations. First, from the standpoint of clinical practicality, not all the information used
for modelling inputs in this study is routinely collected from the emergency department.
Nonetheless, the reduced model without those sepsis-related novel biomarkers still per-
forms relatively well in our study. However, it is worth recognizing that the predictive
capability of traditional score systems can be improved by applying ML algorithms to
handle multidimensional features. Additionally, if laboratory and vital sign data can be
collected repeatedly over time, this may allow more precise analysis to reflect the time-
dependent nature of sepsis progression [38]. Lastly, the outcome that we adopted in this
study, the 28-day mortality, might not be the best endpoint to improve the care of septic
patients. Future models are needed to be developed to predict the response, such as fluid
and inotropic agents for patients with suspected sepsis.

5. Conclusions

We derived and tested a multi-feature prediction model that estimates the mortality
probability in adult patients with infection. We demonstrated that the ML model could
enhance the ability to deal with multidimensional data and achieve excellent performance
in outcome prediction. Our ML model does an excellent job in predicting mortality but
at the expense of gathering a large number of data, which might not be cost-effective in
real-world clinical settings. While it adds more understanding on enhancing the utility of
health data through ML algorithms, critical issues remain to be resolved; further studies
that evaluate the clinical utility of the developed models and predictors are required.
Additionally, external validations to confirm whether these algorithms provide improved
predictive value in identifying at-risk patients in various clinical settings is warranted
before it can move forward to clinical application.
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