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Abstract

The full set of T cell receptors (TCRs) in an individual is known as his or her TCR repertoire. Defining TCR repertoires under
physiological conditions and in response to a disease or vaccine may lead to a better understanding of adaptive immunity
and thus has great biological and clinical value. In the past decade, several high-throughput sequencing-based tools have
been developed to assign TCRs to germline genes and to extract complementarity-determining region 3 (CDR3) sequences
using different algorithms. Although these tools claim to be able to perform the full range of fundamental TCR repertoire
analyses, there is no clear consensus of which tool is best suited to particular projects. Here, we present a systematic
analysis of 12 available TCR repertoire analysis tools using simulated data, with an emphasis on fundamental analysis
functions. Our results shed light on the detailed functions of TCR repertoire analysis tools and may therefore help
researchers in the field to choose the right tools for their particular experimental design.
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Introduction

The set of all T cell receptors in an individual is known as his
or her TCR repertoire. The TCR repertoire is characterized by
incredible diversity, because each TCR is generated through
consecutive biological processes consisting of somatic rear-
rangement, non-template insertion and deletion, and heteroge-
neous chain pairing. Theoretically, the number of distinct TCRs
in an individual is estimated to be as high as 1013∼1015 [1]. This
diversity underlies the immune system’s ability to raise specific
responses against a vast array of antigens, including pathogens,
auto-antigens, toxins, allergens, and tumor neoantigens. Thus,
the TCR repertoire plays a critical role in adaptive immunity, and
analysis of TCR repertoires stands to improve our understanding
of immune responses and may have broad implications for
health and well-being. However, studies of the TCR repertoire
are complicated by the number of molecules involved, because
traditional methods, such as spectratyping, Sanger sequencing,
and flow cytometry, can only characterize a limited number
of TCRs.

High-throughput sequencing (HTS) technology can capture
hundreds to thousands of millions of sequencing reads and
thus enables researchers to characterize TCR repertoires
with unprecedented depth. Indeed, high-throughput TCR
repertoire sequencing (TCR Rep-Seq) and profiling has emerged
as an important tool in fundamental research and clinical
applications, such as vaccine design and monitoring therapeutic
responses. To date, this versatile approach has been applied for
studies of cancer [2], inflammation [3], autoimmune disease [4],
hematopoietic stem cell transplantation [5], infection [6], and
rare diseases [7, 8]. TCR Rep-Seq may also have the potential
to trace an individual’s immune history and evaluate his or her
ability to resist distinct pathogens [9, 10].

However, while capturing millions of distinct TCRs via
HTS technology is straightforward, accurately and effectively
extrapolating biological and/or clinical information from these
data represents a significant challenge. TCR Rep-Seq analyses
can be classified as either low-level or high-level analyses
[11]. Low-level analyses investigate raw data processing, error
correction, V (D) J assignments, and third complementary
determining region (CDR3) extraction. High-level analyses
examine repertoire diversity, shared and private clones, and
antigen specificity. Several tools have been developed to unravel
the complex information contained within TCR repertoires
[12–26]. While the availability of these tools is helpful, there
is no clear consensus of which one yields better results
during analyses.

Afzal et al. reported a systematic comparison of ten TCR Rep-
Seq tools [27]. In addition to the general properties such as ease
of usage, customizability, Linux installation, and dependency
on external tools, their study focused on comparisons of
clonotype detection (i.e., the identification of unique V(D)
J combinations), CDR3 identification, and error correction
accuracy. While a thorough investigation of these high-level
analyses is helpful for the community, the authors did not
explicitly compare the performance of these tools in low-
level or fundamental analyses. V(D) J assignment decodes
the fundamental information for somatic recombination, and
the CDR3 sequence determines the binding specificity for
a particular TCR. The accuracy of these results is essential
for high-level studies and for the subsequent qualitative and
quantitative analysis of TCR Rep-Seq data. Thus, a compre-
hensive comparison of tools for these fundamental analyses
is worthwhile.

In this study, we compared the fundamental perfor-
mance of 12 tools for TCR Rep-Seq data analysis, focusing
on read assignment rate, gene segment assignment accuracy,
clone recall rate, and accuracy. In combination with prior
reviews and comparative studies, these results provide a
full-spectrum characterization of the available tools for TCR
repertoire analysis. This work will be valuable in helping
scientists select a method for their particular experimental
design.

Results
Generic feature comparisons of the TCR Rep-Seq
analysis tools

Table 1 shows the major features of twelve freely available TCR
Rep-Seq analysis tools, ordered by year of publication. Though
these tools were developed in different programming languages,
all but IMGT/HighV-QUEST provide a stand-alone version for the
ease of local implementation. Eight of these twelve tools can also
process B-cell receptor sequencing (Ig-Seq) data. To deal with the
challenge imposed by the huge volume of HTS data, IgBLAST,
MiXCR, IMmunogenetic SEQuence analysis (IMSEQ), TRIg, and
RTCR have implemented multi-thread modules to improve their
efficiency.

Tools that do not follow standard TCR analysis procedure
or that were designed for specific purposes were excluded. For
instance, Molecular Identifier Groups-based Error Correction
(MIGEC) was excluded from the set because it requires a unique
molecular identifier (UMI) in the sequencing reads. To facilitate
the selection of tools based on both experimental design and
analysis requirements, we have provided a decision flowchart
(Figure 1).

Identifying V(D) J gene segments, one of the key processes
in analyzing TCR Rep-Seq datasets, is carried out by different
heuristic algorithms. Most of the tools calculate the frequencies
of k-mer strings in the reference gene/allele set and store their
positions in an indexed database. During assignment, the k-mer
sequences from the query reads are compared to the ones in the
database, and a full alignment is performed by sequential exten-
sion. For example, MiXCR manipulates alignment by introducing
a modified k-mer chaining algorithm that randomly picks seeds
from query sequences to align against a pre-calculated index,
which in turn stores the positions of all seeds in germline
reference sequences for TCR/BCR targeted repertoire sequencing
data. RTCR, on the other hand, benefits from a seeded-alignment
by taking advantage of the fast alignment of the Bowtie tool.
IMGT/HighV-QUEST uses global pairwise alignment to identify
gene segments. All tools except MiTCR can give assignment
details for query sequences, but only a subset of them can
distinguish alleles (see Supplementary Table 1).

To extract CDR3, the critical component of a TCR, all tools
utilize the conserved cysteine (Cys or C) at the 104th position and
the FGXG motif, albeit with slightly different approaches. TCRk-
lass uses a six reading-frame translation for the query sequence
to compare with predefined germline reference k-string pro-
file to locate the positions of conserved residues. LymAnalyzer
identifies the nucleotides that encode FGXG and subsequently
searches upstream nucleotides that encode the C within the
same reading frame. All other tools rely on the assignment of
germline gene segments for CDR3 identification. These tools
have varying tolerances for out-of-frame errors, internal stop
codons, and mutations within the conserved C and FGXG (see
Supplementary Table 1).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz092#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz092#supplementary-data
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Figure 1. Flowchart showing the guidelines for TCR Rep-Seq tool selection. This

flowchart is a step-by-step guideline showing how to select a tool for given input

file formats, different sequencing strategies, customization of reference germ

line databases, and expected output details.

Both PCR- and HTS-based approaches may introduce erro-
neous bases and chimeric sequences [28, 29]. Thus, the TCR
repertoire analysis tools use different error correction strategies
to remove these sequence artifacts. LymAnalyzer and TCRklass
remove reads with low quality and/or low frequency using spe-
cific thresholds. MiTCR, MiXCR, and IMonitor use a cluster-based
error correction method to remove errors through a quality-
based correction algorithm. IMSEQ and RTCR use a complex error
correction scheme in which each base’s quality is considered.

During their development, most of these tools were evalu-
ated by in silico benchmark tests (Table 1). Therefore, simulated
data with known V(D) J recombination and CDR3s represents a

https://scholar.google.com/
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Figure 2. Simulation pipeline for benchmark data. Simulated data were modeled after real-world data from a deep sequencing dataset. This model consists of statistics

for gene usage, gene deletion and gene insertion. These parameters were considered to generate original individual clonotypes, sizes for which were assigned based

on Zipf’s law. Subsequent PCR process and NGS were implemented using an in-house python script and a published sequencing simulator (ART), respectively. The

amplified sequences were then randomly selected for subsequent HTS, which yielded in silico datasets resembling a real-world TCR repertoire dataset.

powerful and effective method for comparing the TCR analysis
tools.

Generation of in silico datasets

TCR repertoire data is characterized by differential germline
gene expression, preferential D-J recombination [30], random
insertions and deletions (indels) at the V-D and D-J junctions,
and artifacts caused by PCR and HTS. There are many tools
that can simulate TCR Rep-Seq data. Safonova et al. developed
IgSimulator, which is suitable for antibody repertoire simulation
but neglects the specific features mentioned above [31]. IGoR
is capable of learning the empirical features from a training
dataset, but does not account for artifacts introduced in
the PCR process [32]. We constructed a simulation pipeline
that incorporates known recombination features and artifacts
aforementioned (Figure 2).

To mimic the real TCR repertoire data as much as possible,
we calculated the properties of TCR repertoires, including
the usage of V(D) J gene segments, indels in the V-D and D-
J junctions, and the distribution of CDR3 length from real-
world datasets [33]. A combination of in-house python scripts
and A next-generation sequencing Read simulaTor (ART) was
used to incorporate these properties accordingly. To evaluate
the performance of the TCR Rep-Seq tools, we generated two
different sets of data. Both datasets were generated based on
the properties learned from two different real-world data (see
Materials and Methods). The first dataset (hereafter referred to
Dataset A) contains 200,000 clones with a shallower sequencing
depth, more singleton TCRs, and less indels in the junctional
region. The other data set (hereafter referred to Dataset B)
contains 15,000 clones with a deeper sequencing depth (no
singletons) and more indels in the junctions. We compared
the simulated data to real-world data to ensure quality (see
Supplementary Figure 1). Our subsequent analyses focused
on Dataset A, and any necessary comparisons to Dataset B
were performed when different results occurred between
them.

Comparisons of germline gene segment assignment

As discussed above, germline gene assignment is the foundation
for novel germline gene prediction, CDR3 extraction, and subse-
quent evaluation of repertoire diversity and evenness. Therefore,
accurate assignment of reads to gene segments is critical in TCR
Rep-Seq data processing.

To ensure a fair comparison,we used the same germline ref-
erence sequences for all analyses (see Materials and Methods).
For Decombinator, we modified the tag file after replacing the
germline reference files. Figure 3a and b show the percent of
V and J gene assignment and the corresponding assignment
accuracy for all tools with Dataset A. All tools except MiTCR
provide read assignment information. Ten of the other eleven
tools assigned germline variable (V) or junctional (J) gene
segments to nearly all reads for Dataset A (Figure 3a and b).
IMSEQ distinguished itself by a slightly lower assignment rate
(around 95%). It is worthwhile to mention that IMSEQ computes
reverse complements of the V(D)J reads (Read 2) for input files
by default (the blue dots in Figure 3a and b). The input reads
were therefore standardized to a single direction to process
reads with different orientations. The V and J gene assignment
percentages of LymAnalyzer, IMSEQ and Decombinator were
notably lower in Dataset B (Supplementary Figure 2a and b). A
careful investigation of these incorrectly assigned reads revealed
that these tools are susceptible to deletions occurring in the V
and J gene segments. This effect is caused by the fact that during
the assignment step, these tools heavily depend on preselected
tags or substrings located at the 3’ end of the germline reference
sequences. Long deletions tend to interfere with this initial
match with the germline reference. As shown in Figure 3c and d,
TCRklass, Decombinator, and TRIg do not report alleles for
V and J alleles assignment. While the other tools performed
well in J allele assignment, the assignment accuracy for the V
alleles varied. Among the tested tools, IMonitor showed 20%
incorrect V allele assignments. Most of these misassignments
happened between alleles of the same genes. For example, 30.3%,
15.7%, and 13% reads between allele pairs TRBV20-1∗01 and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz092#supplementary-data
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Figure 3. Statistics and comparisons of V and J gene segment assignments. (Left Y axis) The red boxplots show the percentage of reads assigned with V (a) and J (b)

gene segments, V (c) and J (d) alleles. (Right Y axis) The blue dashed line indicates the accuracy of germline gene segment assignment. Note: aMiTCR does not report

gene fragment assignments; bTCRklass, bDecombinator, bTRIg do not report allele information.

TRBV20-1∗02, TRBV10-3∗01 and TRBV10-3∗02, and TRBV7-2∗01
and TRBV7-2∗04, respectively were missassigned. Two sequence
alignments showed that the differences between each pair of
sequences are minor: an insertion/deletion at the 3’ terminus
and one nucleotide mismatch before the 87th nucleotide.
Because the first 87 bases were cut off by IMonitor when building
germline references and because indels occur frequently at the
V-D junction, these pairs of alleles are indistinguishable with
IMonitor (Supplementary Figure 3a, b, and c).

CDR3 extraction

The diversity and richness of a TCR repertoire are also essen-
tial data points, and confidently acquiring these measurements
relies on the preciseness of CDR3 extraction and clonotype anal-
ysis. Though great efforts have been made in the past decade
to standardize TCR repertoire data sharing and comparison, the
field has not yet achieved a unanimous clonotype definition
(Supplementary Table 1) [34, 35]. Nevertheless, the nucleotide
CDR3 sequence is generally accepted as the identity of a TCR
clone. We therefore used the nucleotide CDR3 sequence in the
following analyses.

In most analyses, only productive reads are considered infor-
mative. However, the definitions of productivity vary among the
tools used. In this study, we chose to retain reads with functional
CDR3s – the ones that had no frame-shift mutations or internal
stop codons and ran from the conserved 104th C to the FGXG.
If a tool reported only amino acid CDR3s, the corresponding
nucleotide sequences were extracted accordingly.

CDR3s identified by the tools were classified into three cate-
gories: true CDR3s, non-singleton false-positive CDR3s, and sin-
gleton false-positive CDR3s (Figure 4a). For Dataset A, eight tools
(Decombinator, IMGT/HighV-QUEST, IMSEQ, IMonitor, IgBLAST,
LymAnalyzer, TRIg, and Vidjil) successfully recovered nearly all
genuine CDR3s, but still reported a considerable number of
false positives, dominated by singletons, were also incorrectly
identified. In all, 41.3 to 49.4 percent of the CDR3s reported by

these eight tools did not exist in the simulated data. On the other
hand, MiTCR, MiXCR, RTCR, and TCRklass reported negligible
false positives ranging from 0.4 to 7.6 percent. However, MiTCR,
MiXCR and TCRklass failed to identify 23 to 41 percent of true
CDR3s. As shown in Figure 4b, RTCR surpassed all other tools in
both recall and accuracy of CDR3 extraction.

We then focused on the causes of the incorrectly identi-
fied CDR3s. We first examined the clone size distribution of
the false-negative CDR3s. Most of the CDR3s that were not
identified were from smaller clones and especially singletons
(Supplementary Figure 4a). More than 60% of the false nega-
tives identified by MiXCR and TCRklass are singletons in the
simulated data. Singleton CDR3s also constituted 47% of the
false negatives identified by MiTCR. Indeed, all the tested tools
missed a range of singleton CDR3s in the in silico data (Figure 4c).
Singleton CDR3s with sequencing errors were frequently missed
by all tools. MiTCR, MiXCR, and TCRklass also failed to identify a
considerable number of error-free CDR3s. We then examined the
false-positive CDR3s. Most of the false-positive CDR3s shown in
Figure 4a were caused by base errors generated during PCR or
HTS (Figure 4d).

Since base errors caused by PCR and high-throughput
sequencing are inevitable, we went on to characterize the false
discovery rates in CDR3 identification step with error-free reads.
As shown in Table 2, only LymAnalyzer generated high percent
of false positive CDR3s. Even the tools without error correction,
such as IgBLAST and TRIg performed very well. MiTCR, MiXCR,
and TCRklass failed to identify 24% to 43% of the CDR3s in
Dataset A, which mimics the lower depth and more clones. How-
ever, their false negative rates were acceptable with Dataset B.
This indicates that higher sequencing depth is important for
accurately identifying CDR3s for these three tools. Moreover,
more indels in the junctional regions in Dataset B caused
higher false positives in general (Supplementary Figure 5). To
summarize these tools’ performance with error-free reads,
LymAnalyzer suffered from significant false positive; MiTCR,
MiXCR, and TCRklass may fail to identify singleton CDR3s; and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz092#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz092#supplementary-data
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Figure 4. CDR3 identification results. a. The bar graph shows the ratio of the reported number of unique CDR3 nucleotide sequences to the “True” number (Left Y axis).

The ratio of CDR3 identification is calculated as the number of reported CDR3s divided by the number of true CDR3s. The sections of blue, light orange, and light grey

indicate the proportion of “True” CDR3s, non-singleton false positives, and singleton false positives, respectively. The error bars indicate the standard deviations. The

grey line shows the percentage of singleton false positives identified by each tool (Right Y axis). MiTCR, MiXCR, RTCR and TCRklass reported the fewest false-positive

CDR3s. b. Recall and accuracy of the resulting repertoires generated by twelve tools for five replicates. Recall (X axis) is defined as the fraction of simulated CDR3s

that were correctly identified. Accuracy is defined as the fraction of simulated CDR3s in the total identified ones (Y axis). c. The fraction of singletons among the

false-negative CDR3s. The light blue bars at the bottom indicate the fraction of singleton CDR3s with either PCR or sequencing errors, and the darker blue bars stand for

those singletons without errors. d. The fraction of false positives that were caused by PCR or HTS errors. The X axis indicates the number of false positives identified

by different tools, and the Y axis shows the fraction of error-containing false positives.

all other tools performed well. Combining with the previous
result, one can tell that the base errors introduced during sample
preparation and sequencing are the major problems for CDR3
calling. In other words, most of the tools faithfully reported
CDR3s with base errors caused by sample amplification and
sequencing. However, these errors are intrinsic to the TCR Rep-
seq. Since the errors are not avoidable, increasing sequencing
depth and choosing the tools with better error correction
performance seem to be the solution for the time being.

In addition, we also identified differences in the performance
of the tools tested. While most of the identified false-positive
CDR3s share a uniform length distribution, LymAnalyzer
also reported a set of CDR3s of longer than 200 nucleotides
(Supplementary Figure 4b). The algorithms used to identify
CDR3s make it susceptible to substitution error in conserved
locus, for LymAnalyzer identifies the nucleotides that encode
FGXG and subsequently searches upstream nucleotides which
encode the C within the same reading frame. In contrast
to LymAnalyzer, IMGT/HighV-Quest, IgBLAST can accurately
extract CDR3s (Supplementary Figure 6). The false positives
aforementioned were caused by sequencing error. When
analyzing Dataset B, which is characterized by a greater
sequencing depth and no singletons, MiXCR identified nearly
all CDR3s. Taken together, the intrinsic sequencing errors in
TCR Rep-seq data are the major roadblock for CDR3 extraction.

Table 2. The false discovery rates for these 12 tools with error-free
reads

Software Dataset A Dataset B
FP (%) FN (%) FP (%) FN (%)

Decombinator 0.0427 0.6391 0.3248 0.4637
IgBLAST 0.0000 0.0085 0.1303 0.2029
IMGT/HighV-QUEST 0.0009 0.0063 0.1736 0.1596
IMonitor 0.0000 1.1637 0.1765 1.6920
IMSEQ 0.0000 3.0483 0.0000 0.8741
LymAnalyzer 7.0614 0.9908 59.5584 1.3454
MiTCR 0.0000 43.2870 0.0159 9.0488
MiXCR 0.0000 24.0104 0.1612 1.7092
RTCR 0.0336 2.4030 0.1159 0.3545
TCRklass 0.1378 24.5734 2.9391 4.4167
TRIg 0.0000 1.2274 0.0295 1.7520
Vidjil 0.0002 0.0375 0.2457 0.2029

Note: FP: false positive. FN: False negative. The first column listed all the tools
used in this analysis.

One can choose tools without error-correction functions such as
IMGT/HighV-QUEST, IgBLAST, or TRIg if these errors are removed
or mitigated beforehand via specific tools [36–38]. To use raw
sequencing reads, MiXCR and RTCR should be the tools of choice.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz092#supplementary-data
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Clonality and runtime efficiency analysis

TCR clones that specifically recognize antigens expand to
become the major clones in an individual’s TCR repertoire. Thus,
the clones that represent more T cells and subsequently more
reads in the repertoire sequencing dataset are of particular
interest in the study of adaptive immunity. We therefore
evaluated the performance of these tools in clonality analyses.
We first examined the recovery of individual clones as a
function of their frequency. For the top 100 ranked clones,
all tools performed well, with correlation coefficients greater
than 0.9 compared with the true ranked clones (Figure 5a, see
Materials and Methods). Eight tools achieved near identical coef-
ficients. For the top 1000 clones and all non-singleton clones, the
overall performance of all tools improved, but certain variabili-
ties exist. Overall, the performance of MiXCR and RTCR remains
stably the best (Supplementary Figure 7). A careful examination
of the clonotype data showed that several tools (excluding
IMGT/HighV-QUEST, IgBLAST, MiXCR, vidjil and RTCR) failed to
identify certain major clones (Supplementary Figure 7c). Thus,
IMGT/HighV-QUEST, IgBLAST, MiXCR, vidjil and RTCR represent
the best choices for clonotype analyses.

The Hamming distance between the nearest clones and the
clonal plane has been proposed to be a good measurement
of TCR repertoire analyses [39]. MiXCR and RTCR showed the
closest Hamming distance to the actual value (Figure 5b). RTCR
was also more faithful in clonal plane analyses of repertoire
evenness and richness distributions (Figure 5c).

Finally, we compared the runtime efficiencies for all tools
with 2,472,403 raw reads (SRR8733525). IMGT/HighV-QUEST is
running online and thus was omitted from this comparison. Of
the other tools, Decombinator and MiTCR are the fastest, and
Vidjil and IgBLAST are the slowest (Figure 5d; running environ-
ment and conditions provided in Supplementary Information). If
high performance computing is available to the researchers, the
runtime should not be an issue for any of the tested tools.

Conclusions and discussion
The TCR repertoire is an essential constituent of adaptive immu-
nity. Perturbation of an individual’s TCR repertoire leads to vul-
nerability to infections and diseases, and infections can alter a
person’s TCR repertoire. Physiological changes have also been
proved to associate with fluctuations of the repertoire [40, 41].
Therefore, the accurate characterization and delineation the
TCR repertoire in cross-sectional and longitudinal studies are
important for fundamental studies and for clinical applications
related to adaptive immunology. The immense diversity of the
TCR repertoire has been a major roadblock for the researchers
in the field. However, the advent of HTS technology has made
it possible to investigate the TCR repertoire as well as its con-
stituent TCR molecules.

Here we report a systematic comparison of 12 TCR repertoire
tools, with an emphasis on fundamental analyses. These results
may help researchers in the field choose the optimal tool for
their analyses. If an experimental design requires annotating
germline genes, researchers should avoid MiTCR, which does
not report germlines. In addition, IMSEQ requires that the input
reads be provided in a single strand and performed less ide-
ally. Moreover, if distinguishing alleles are desired, researchers
should avoid TCRklass, Decombinator, and TRIg, which do not
report allele assignments.

While these tools can also extract CDR3 sequences, most of
the tools are limited by false-positive CDR3s. And the intrinsic

base error introduced during PCR and sequencing are the reason
for high false discovery rates for many tools. Once these inherent
sequencing errors are removed beforehand, IMGT/HighV-QUEST,
IgBLAST, and Vidjil would perform well. If raw reads are to be fed
to the tools, RTCR is the best choices. Moreover, MiXCR would
also suffice if the sequencing depth is deep enough.

Aside from germline reference customization, all compar-
isons were conducted with the default or recommended param-
eters, and thus the accuracy of some tools may be sub-optimal.
Unique molecular barcodes (UMIs) have been used for better
qualitative and quantitative analyses of immune repertoires
[42, 43]. However, because majority of the tested tools do not
incorporate the related algorithms, the performance of these
datasets with UMIs was not evaluated. We believe that future
studies will be aided by more advanced tools and comprehensive
analysis modules to complement TCR repertoire sequencing.

Materials and Methods
Inclusion criteria for the TCR analysis tools

To process the huge size of high-throughput sequencing data
conveniently, most of the tools selected for this study must
have a standalone version that can be implemented within a
high performance computing (HPC) environment. We further
required the tools to incorporate standard TCR analysis pro-
cedures, including germline gene segment assignment, CDR3
extraction, etc. IMGT/HighV-QUEST was also included as it was
developed first and represents the most cited tool for this work.

In silico data simulation

In order to generate in silico datasets with TCR repertoire-specific
features, we downloaded germline database version 3.1.18 from
IMGT (http://www.imgt.org) on April 20, 2018. Based on a previ-
ous report, the selections of D and J are dependent upon each
other [30]. Thus, the usage frequencies of the V and D-J gene
segments were calculated from real-world data from the PBMC
from male 1 at day 1 (SRR060699-SRR060725) and a dataset gen-
erated by our laboratory [33]. For each germline gene segment,
we performed a statistical analysis of the 3’ end deletion in V,
the 5’ end deletion in J, and the 5’ and 3’ end deletions in D
from a real-world dataset generated by our lab as well as the
published dataset. The insertion size and frequency between V-
D and D-J were also calculated. Accordingly, an initial number of
unique TCR beta chain sequences were generated, each of which
represents a clone. The clone sizes of these initial sequences
were then assigned following Zipf’s law [44]. To incorporate the
amplification efficiency and nucleotide substitution (frequency:
5.0e-5 [45]), we generated more than one billion in silico PCR
products using an in-house Python script. We then used the
sequencing read simulator ART to generate raw sequencing data
that incorporated the variations in sequencing errors and base
qualities [46].

Germline reference unification across tools

All tools but IgBLAST and TCRklass were installed with a
built-in TRB reference set. However, diversified spectrums of
germline references have been observed for those tools, making
a comparison of performance across assignments difficult.
We therefore selected 146 alleles corresponding to sixty-six
TRBV genes, 3 alleles corresponding to two TRBD genes and 16
alleles corresponding to fourteen TRBJ genes as the standard

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz092#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz092#supplementary-data
http://www.imgt.org
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Figure 5. Clonality and runtime efficiency analyses results. a. Rank consistency of the top 100 clones between the true set and each tool’s recovery set. The grey bars

indicate the average Spearman rank correlation coefficient based on 5 replicates, and the error bars indicate standard deviations. Higher bars indicate better recovery

for the top 100 clones. b. Distribution of Hamming distance between nearest neighbor CDR3s. Each CDR3 was compared to all CDR3s with the same length, and the

closest match is defined as its nearest neighbor. The Hamming distance was then calculated accordingly (X axis). The Y axis indicates the percent of CDR3s having

specific distance to their nearest neighbors. Distributions closer to the True distribution are better than others. c. The distributions of repertoire richness and evenness.

The richness and evenness were calculated according to Renyi entropies (see Materials and Methods). d. Runtime comparisons among tools. The bars indicate how

many seconds does a tool needed to finish the calculation with same memory and CPU unit. The faster tools are indicated by the lower bars.

germline reference set for all tools (with MiTCR excluded)
(Supplementary Table 2). Germline references for IMGT/HighV-
QUEST could not be customized as flexibly as were the other
standalone tools, so we selected the ‘F+ORF+in-frame’ for
IMGT/HighV-QUEST reference directory set, and all genes within
the predefined standard germline reference set were included
in this directory, enabling no intrinsic error due to germline
reference incompleteness. Germline reference normalization
for IgBLAST and TCRklass was as easy as following germline
reference building guidelines provided within their manual. For
the rest of the tools, more effort should be made to manage
customization.

Germline references for LymAnalyzer were included in
the compressed.jar file. Thus, the germline reference substi-
tution took place after the.jar file was decompressed. Later
recompression created a functional.jar file again. A tool named
repseqio (Version v1.2.12) was employed for germline reference
normalization for MiXCR. Decombinator required a predefined
tag list, each of which uniquely identified a gene. An in-house
python script was used to extract tags for supplement genes.
Importantly, two gene pairs, TRBV6-2/ TRBV6-3 and TRBV24-
1/TRBV24/OR9-2, were identical in sequence. For each pair,
only one of them was selected for representation. Intergenic
assignments within the two pairs were considered accurate gene

recoveries. IMonitor provided a shell script named run.sh for
germline reference customization. As for IMSEQ, RTCR, TRIg and
Vidjil, formatted germline reference sequences were carefully
prepared and were used to replace old ones. The germline
reference within TRIg’s built-in directory is characterized by
a complete long nucleotide sequence extracted from human
chromosome 7 that covers all TRBV, TRBD, and TRBJ gene
locations. Due to the inclusion of orphan genes (i.e., TRBV),
we extracted nucleotide sequences from chromosome 9 (hg19)
to include those gene locations (location information based
on hg19 was obtained from the NCBI Gene Database), and an
additional length of 10 kb both upstream and downstream were
extracted together.

Assignment accuracy calculation

The exact V, D, and J gene segments is known for each of
the simulated reads. After each tool finished its assignment
of these reads, we extracted the assigned germline gene
segment for each read. We defined a correct assignment as a
match between the simulated gene with the assigned gene.
The accuracy was calculated as the percentage of the total
correctly assigned reads relative to the total number of assigned
reads.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz092#supplementary-data
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Recall and accuracy

Because the data were simulated, we know precisely the correct
CDR3 for every read. We refer to the correct CDR3 for each
read and each dataset and refer them as the true CDR3. We
then calculated two indices, recall and accuracy to evaluate the
performance of tools. We defined recall as the CDR3s correctly
identified by each tool divided by the true CDR3s. We defined
accuracy as corrected CDR3s divided by the CDR3s found by the
software.

Clone rank consistency measurement

Spearman rank correlation coefficients (ρ) were used to measure
clone rank consistency between the true clone set and each tool’s
recovery set. Specifically, for each true clone, we could obtain
two ranks, a true rank known from a simulated model and a
recovered rank that was reported by each tool. For this analysis,
missing clones are simply not taken into consideration. In this
way, for each tool, we could get a series of rank pairs, based
on which ρ can be derived. We utilized the cor function in R
(v3.2.1) to implement this analysis, with parameter “use” is set
as “complete.obs”.

Richness and evenness

The Rényi entropy of order α, where α≥ 0 and α �= 1, is defined
as:

Hα (X) = 1
1 − α

log

(
S∑

i=1

pα
i

)
.

The richness is defined when α= 0 as:

Hα=0 = lim
α→0

1
1 − α

log

(
S∑

i=1

pα
i

)

= logS.

The evenness is defined as when α→ ∞ as:

Hα→∞ = lim
α→∞

1
1 − α

log

(
S∑

i=1

pα
i

)

= lim
α→∞

1
1 − α

logp̂α

= lim
α→∞logp̂

α
1−α

= log p̂−1

= log
1
p̂

,

Where p̂ is the maximal frequency among all the clones.

Runtime calculation

To make a fair comparison of the runtime of these tools, we
set reasonable parameters and provided each with equal com-
putational resources. All tools that incorporated a multi-thread
programing module were run on a single thread. Memory sizes
for MiTCR and LymAnalyzer were set as 16 GB. IMGT/HighV-
QUEST is a web-based analysis tool and was not included in our
runtime analysis. The command lines for all tools are provided
in the supplementary files.

Data availability

The two simulated datasets were submitted to the NCBI
Sequence Read Archive. The accession numbers for Dataset A
are from SRR8733522 to SRR8733526. The accession numbers for
Dataset B are from SRR8755318 to SRR8755322.

Key Points:
• Compares the performance of TCR Rep-Seq analysis

tools carrying out fundamental analysis
• Reveals significant differences in gene assignment and

error correction performance among these tools
• Provides additional guidelines for TCR Rep-Seq analysis

tool selection
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