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Abstract: For the first time, the binding of ropinirole hydrochloride (ROP) and aspirin 

(ASA) to human holo-transferrin (hTf) has been investigated by spectroscopic approaches 

(fluorescence quenching, synchronous fluorescence, time-resolved fluorescence,  

three-dimensional fluorescence, UV-vis absorption, circular dichroism, resonance light 

scattering), as well as zeta potential and molecular modeling techniques, under simulated 

physiological conditions. Fluorescence analysis was used to estimate the effect of the  

ROP and ASA drugs on the fluorescence of hTf as well as to define the binding and  

quenching properties of binary and ternary complexes. The synchronized fluorescence  

and three-dimensional fluorescence spectra demonstrated some micro-environmental  

and conformational changes around the Trp and Tyr residues with a faint red shift. 

Thermodynamic analysis displayed the van der Waals forces and hydrogen bonds 

interactions are the major acting forces in stabilizing the complexes. Steady-state and  

time-resolved fluorescence data revealed that the fluorescence quenching of complexes are 

static mechanism. The effect of the drugs aggregating on the hTf resulted in an 

enhancement of the resonance light scattering (RLS) intensity. The average binding 
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distance between were computed according to the forster non-radiation energy transfer 

theory. The circular dichroism (CD) spectral examinations indicated that the binding of the 

drugs induced a conformational change of hTf. Measurements of the zeta potential 

indicated that the combination of electrostatic and hydrophobic interactions between ROP, 

ASA and hTf formed micelle-like clusters. The molecular modeling confirmed the 

experimental results. This study is expected to provide important insight into the interaction 

of hTf with ROP and ASA to use in various toxicological and therapeutic processes. 

Keywords: human holo-transferrin; ropinirole hydrochloride; spectroscopic techniques; 

zeta potential; molecular modeling 

 

1. Introduction 

Human holo transferrin (hTf) is a member of the transferrin family that function as iron-binding and 

iron transport proteins. hTf consists of a single-chain glycoprotein with 679 amino acid residues and 

has a molecular weight of ~79 kD. The concentration of hTf is approximately 35 µM (2.5 mg/mL). 

Moreover, hTf has been detected in various body fluids including plasma, bile, amniotic, cerebrospinal 

and lymph fluids, as well as in breast milk [1–4]. The hTf folds to form the homologous N-lobe  

(336 amino acids) and C-lobe (343 amino acids). Each lobe is divided into two sub-domains, which 

form a deep cleft containing a high-affinity binding site for single ferric iron (Fe3+). The saturation of 

iron in holo-transferrin is only 30% and the vacant sites can bind to numerous other metal ions, leading 

to uptake by the transferrin receptor (TfR) through endocytosis. The differic transferrin (holo-Tf) is 

reported to have a higher affinity for TfR than the monoferric and iron-free form (Apo-Tf) [5,6]. Iron 

in the ferric form is bound to hTf in plasma at neutral pH (pH = 7.4). It is subsequently transported 

into the cells and released in the acidic environment (pH = 5.5) of the endosome. When iron is released 

from the N-lobe of hTf, the two domains rotate 63° around a central hinge leading to an open 

conformation (apo-Tf) [1–3,7]. 

The C-lobe must be able to open in a similar way to the N-lobe, although it binds iron more 

strongly and releases it more slowly. Moreover, the C-lobe has appeared to be conformationally less 

flexible. Holo-transferrin has been suggested as a potential drug carrier and delivery system to allow 

specific targeting to, for instance, cancer cells, since the TfR is over-expressed in a broad range of 

cancers [8,9]. hTf has been implicated in the transport of drug molecules [10,11], which may help 

understanding the interaction of drugs with protein molecules in the blood [12,13]. 

Ropinirole hydrochloride [4-[2-(dipropylamino)ethyl]-1,3-dihydro-2H-indol-2-one monohydro-

chloride, ROP, brand-name REQUIP, Figure 1A, is a second-generation non-ergolin dopamine agonist 

(DA) that selectively activates postsynaptic dopamine receptors. ROP binds with higher affinity to D3 

than to D2 or D4 receptor sub-types (D3 > D2 > D4). The molecular weight of ROP is 296.84 Da and it 

presents a solubility in water of 133 mg/mL [14,15]. ROP is approved for treatment of Restless Leg 

Syndrome and Parkinson’s disease and its use has been associated with a lower risk of dyskinesias and 

valvular regurgitation. Recent clinical evidence has shown that the ROP augments the antidepressant 

effects of many standard drugs such as tricyclic antidepressants (TCA) or selective serotonin reuptake 



Molecules 2012, 17 3116 

 

inhibitors (SSRI). Besides, ROP has been reported to possess an anxiolytic and antidepressant profile 

in various animal paradigms in mice, rats and common marmosets [16,17]. 

Figure 1. (A) The chemical structure of ropinirole hydrochloride (ROP); (B) The chemical 

structure of aspirin (ASA). 

 
A 

 
B

Acetylsalicylic acid (ASA) or 2-acetoxy benzoic acid, commonly known as aspirin Figure 1B, is 

widely applied in a variety of medical areas. ASA is a non-steroidal anti-inflammatory drug (NSAID) 

that has been used for primary and secondary prevention of artherosclerotic diseases for over two 

decades. It decreases the onset of cardiovascular disease by 20–25% [18,19]. ASA demonstrates  

anti-coagulating effects, as well as some respiratory, depressive, antithrombotic, tirheumatic, antipyretic, 

analgesic and anxiety effects, and prevents strokes, heart attacks and myocardial infarction [20]. ASA 

may reduce the risk of some types of cancer. Nevertheless, epidemiological evidence also suggests that 

regular use of ASA and other NSAIDs for an extended period of time increases the risk of pancreatic 

and kidney cancers [21].  

This study concerns the characterization by spectroscopic techniques, zeta potential measurements 

and molecular modeling of the binding of ROP and ASA to hTf under physiological conditions  

(pH = 7.4). The biological significance of this work is evident since hTf serves as a carrier molecule 

for multiple drugs. Moreover, the study is also believed to provide important information to clinical 

research and the theoretical basis for the design of new drugs. 

2. Results and Discussion 

2.1. Analysis of the Fluorescence Spectra 

Fluorescence quenching is the decrease of the quantum yield of fluorescence from a fluorophore 

induced by a variety of molecular interactions with a quencher molecule, including excited-state 

reactions, molecular rearrangements, energy transfer, ground-state complex formation and collisional 

quenching processes. The fluorescence of hTf comes from the Trp, Tyr and Phe residues. As a matter 

of fact, the intrinsic fluorescence of hTf is almost exclusively contributed by Trp alone, since Phe has a 

very low quantum yield and the fluorescence of Tyr is practically totally quenched when ionized or 

close to an amino group, a carboxyl group, or a Trp. This viewpoint was backed by the experimental 

observation of Sulkowska et al. [22], when a small molecule was bound to hTf, changes of the intrinsic 

fluorescence intensity of hTf were induced by the micro-environment of the Trp and Tyr residues. The 

participation of Trp and Tyr groups was assessed through different excitation wavelengths. At a 



Molecules 2012, 17 3117 

 

wavelength of 280 nm, both the Trp and Tyr residues in hTf became excited, whereas at 295 nm, this 

was the case only for the Trp residues.  

Fluorescence spectroscopy is an extremely sensitive technique that has provided a wealth of insight 

into biological processes [23]. By studying this quenching processes, one can obtain information about 

the binding of ROP and ASA to hTf, such as the binding mechanism, binding constant and binding 

site. An intrinsic fluorescence experiment was thus performed to evaluate the interaction of ROP and 

ASA with hTf. Figure 1A,B displays the fluorescence quenching of hTf induced by ROP and ASA  

(a single drug), excited at 280 nm. As can be seen, the fluorescence intensity of hTf gradually 

decreased upon increasing the concentration of ROP or ASA, indicating that the two drugs became 

bound to hTf. On the other hand, the emission spectra for binary systems portrayed an isobestic point, 

pointing at the existence of bound and free ROP and ASA in equilibrium. The quenching took place 

when the quencher was sufficiently close to Trp or/and Tyr residues [24].  

Figure 1. (A) Fluorescence emission spectra of the hTf-ROP system. [hTf] = 3.8 × 10−3 mM 

and [ROP] was increased from 0 to 1.06 × −4mM; (B) Fluorescence emission spectra  

of the hTf-ASA system. [hTf] = 3.8 × 10−3 mM and [ASA] was increased from 0 to  

8.4 × −3 mM; (C) Fluorescence emission spectra of the (hTf-ASA)-ROP system.  

[hTf] = 3.8 × 10−3 mM and [ROP] was increased from 0 to 1.24 × −4 mM,  

[ASA] = 4.62 × 10−3 mM; (D) Fluorescence emission spectra of the (hTf-ROP)-ASA 

system. [hTf] = 3.8 × 10−3 mM and [ASA] was increased from 0 to 8.28 × −3 mM,  

[ROP] = 1.33 × 10−5 mM. The a and b represent the curves of ROP and ASA, respectively. 

All experiments were performed under identical conditions (T = 298 K; pH 7.4,  

ex = 280 nm). The horizontal arrow shows the red shift. 
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Figure 1. Cont. 
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Figure 1C,D illustrate the fluorescence intensity of hTf by ROP and ASA (ternary systems), excited 

at 280 nm. The fluorescence of hTf was quenched upon interaction with ROP and ASA, and during the 

interactions, the isobestic point was observed. Under the experimental conditions, the ROP presented 

no emission spectra within the 300–500 nm and the emission from ASA was registered in the emission 

ranges 300–320 nm and 380–500 nm. The shift in maximum wavelength towards longer wavelengths 

(red shift) for the binary and ternary systems was believed to be due to the conformational changes 

induced by the interactions, leading to a further exposure of Trp and Tyr residues to a polar solvent 

and an increased polarity of the fluorophores [25,26]. 

The overlapping of the quenching curves may indicate that different binding sites of ROP and ASA 

existed in sub-domains of hTf. In order to confirm the quenching mechanism, the fluorescence 

quenching data was analyzed by the Stern-Volmer equation: 

F 0 /F = 1 + K SV  [Q] = 1+ k q τ 0 [Q] (1) 

where F0 and F denote the steady-state fluorescence intensities in the absence and presence of a 

quencher, respectively; Ksv is the Stern-Volmer quenching constant; [Q] is the concentration of 

quencher; kq is the quenching rate constant; and τ 0  is the average lifetime of the bio-molecule without 

quencher (i.e., 10−8 s) [27,28]. Hence, Equation (1) was applied to determine Ksv by linear regression 

of a plot of F0/F against [Q]. The Ksv values for binary and ternary systems at different temperatures 

(298, 308 and 318 K) were calculated and are listed in Table 1.  

Table 1. Thermodynamic parameters and Ksv values for the drugs when bound to hTf in 

binary and ternary systems at various temperatures (pH 7.4). 

System T/K 
KSV1/M

−1 

λ ex  = 280 nm 

KSV2/M
−1 

λ ex  = 280 nm G/kJ mol−1 H/kJ mol−1 S/J mol−1 R 

hTf-ROP 298 (1.16 ± 0.02)  107 (5.29 ± 0.02)  106 −36.93 ± 0.32   0.9982 

 308 (1.03 ± 0.02)  107 (5.05 ± 0.02)  106 −35.71 ± 0.26 −79.17 ± 0.29 −145.25 ± 0.31 0.9983 

 318 (9.83 ± 0.02)  106 (4.92 ± 0.02)  105 −35.01 ± 0.29   0.9981 

(hTf-ASA)ROP 298 (2.34 ± 0.03)  105 ------ −36.17 ± 0.21   0.9976 

 308 (2.13 ± 0.03)  105 ------ −35.83 ± 0.31 −71.54 ± 0.32 −120.22 ± 0.29 0.9983 

 318 (2.02 ± 0.03)  105 ------ −35.14 ± 0.27   0.9981 

hTf-ASA 298 (2.94 ± 0.02)  104 ------ −37.14 ± 0.27   0.9978 

 308 (2.47 ± 0.02)  104 ------ −36.21 ± 0.27 −69.32 ± 0.14 −110.36 ± 0.31 0.9980 

 318 (2.15 ± 0.02)  104 ------ −35.41 ± 0.31   0.9977 

(hTf-ROP)ASA 298 (3.35 ± 0.03)  104 ------ −36.81 ± 0.33   0.9985 

 308 (3.02 ± 0.03)  104 ------ −36.04 ± 0.27 −81.21 ± 0.30 −151.76 ± 0.28 0.9991 

 318 (2.77 ± 0.03)  104 ------ −31.11 ± 0.30   0.9983 

The results demonstrated that the values of Stern-Volmer quenching constants, Ksv, decreased with 

rising temperatures, which indicated that the possible quenching mechanism of fluorescence of hTf by 

ROP and ASA, were of the static quenching type. Furthermore, the maximum diffusion collision 

quenching rate constant, kq, of various quenchers with the biopolymer is 2.0 × 1010 L mol−1 s−1, which 

revealed that the probable quenching mechanism of binary and ternary systems were initiated by 
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complexes formation rather than by dynamic collision. Since static quenching is due to ground-state 

complexes formation between the fluorophore and quenchers [23–25,29]. 

The Stern-Volmer quenching constant increased with an increasing affinity binding of hTf, ROP 

and ASA. Figure 2 displays the Stern-Volmer plots of binary (hTf-ROP or ASA) and ternary  

[(hTf-ROP)-ASA and (hTf-ASA)-ROP] systems excited at 280 nm. The Stern-Volmer dependencies 

of hTf-ROP (Figure 2A) demonstrated a deviation from the straight line when the concentration of 

ROP was higher than 3.22 × 10−5 mM. Therefore, the hTf could be quenched by two binding sites with 

different interaction behavior. The quenching was not purely collisional but may be due to the 

formation of either the ground-static complex or the static quenching process. Alternatively, there 

might be more than one independent binding site on the hTf for ROP and they are not all accessible to 

the hTf-ROP complex. The Stern-Volmer linear curves for (hTf-ASA)-ROP, (hTf-ASA) and  

(hTf-ROP)-ASA (see Figure 2B) revealed that static quenching occurred when these drugs approached 

the environment of the hTf fluorophores. 

Figure 2. (A) Stern-Volmer plots for the binding of ROP to hTf in the absence and 

presence of ASA. [ASA] = 4.62 × 10−3 mM, binary system (○); ternary system (●);  

(B) Stern-Volmer curves for the binding of ASA to hTf in the absence and presence of 

ROP. [ROP] = 1.33 × 10−5 mM, binary system (∆); ternary system (▲). 
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2.2. Binding Parameters 

When small molecules bind independently to a set of equivalent sites on a macromolecule, the 

binding constant (Kb) and the number of binding sites (n) can be determined by the following equation:  

log [(F 0  − F)/F] = log K b + nlog [Q] (2) 

where F0 and F are the fluorescence intensity of the protein in the absence and presence of a quencher, 

and [Q] is the quencher concentration [30]. The values of Kb and n for binary and ternary systems were 

calculated and are presented in Table 2. 

Table 2. The binding constants (K b ) and the number of binding sites (n), for the binary 

and ternary systems at pH = 7.4 and T = 298 K. 

System 
K b  (L mol−1) 

λ ex  = 280 nm 

n 

λ ex  = 280 nm R 
K b  (L mol−1) 

λ ex  = 295 nm 

n 

λ ex  = 295 nm R 

hTf-ROP K 1b  = (1.69 ± 0.03) × 106 

K 2b  = (1.86 ± 0.03) × 105 

n 1  = 0.82 

n 2  = 0.59 

0.997 

0.998 

(3.75 ± 0.03) × 108 1.52 0.998 

hTf-ASA (7.83 ± 0.02) × 103 0.74 0.999 (5.51 ± 0.02) × 103 0.78 0.998 

(hTf-ASA)-ROP (8.42 ± 0.02) × 105 1.14 0.998 (5.44 ± 0.02) × 106 1.20 0.996 

(hTf-ROP)-ASA (2.06 ± 0.02) × 104 0.89 0.997 (3.58 ± 0.02) × 104 1.19 0.995 

According to Equation (2), the Hill plot of hTf-ROP can be fitted with two lines, which would 

indicate the presence of two binding sites with different Kb values. Each linear function represents the 

ROP interaction to hTf with special behavior, whereas one saturable binding site was found for  

hTf-ASA in the absence and presence of ROP. The strong binding of ROP to hTf took place or that the 

transfer of energy from excited fluorophores to ROP molecule facilitated. This suggests that the hTf 

fluorescence was significantly more quenched by ROP. The decrease in binding constant revealed the 

availability of higher concentrations of free drugs in the plasma. 

2.3. Analysis of Second Derivative Fluorescence Spectra 

Second derivative fluorescence spectroscopy is a sensitive and reliable technique for monitoring 

and characterizing the transitions that take place in the Trp micro-environment of proteins. Figure 3A–D 

display the second derivative fluorescence spectra for binary and ternary systems, featuring two 

negative bands at 319 nm and 334 nm. The origin of these bands was presumably the transition of the 

electrons back to the different vibration levels of the ground state. When the concentrations of ROP 

and ASA in the binary and ternary systems were increased, the intensity of the shortest wavelength 

band was altered. The increase in the intensity of the shortest wavelength band was observed upon 

increasing the concentration of ROP and ASA, signifying that the binding of ROP and ASA to hTf 

became affected in addition to conformational changes in hTf and the micro-environment of the Trp 

residues. As can be seen in Figure 3 the negative band at 319 nm for the binary and ternary systems 

was the most sensitive to the changes in the tertiary structure of hTf upon addition of ROP and ASA. 

The structure of the C-lobe of hTf imposed extra rigidity and less flexibility as opposed to the  

N-lobe [8,9,31], for which reason the negative band at 319 nm was related to the conformational 
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changes of the N-lobe. Hence, the modifications of the tertiary structure of the C-lobe concerned the 

negative band at 334 nm. This result demonstrated the partially unfolded states of hTf.  

Figure 3. (A) The second derivative fluorescence spectra of hTf in the presence of ROP; 

(B) The second derivative fluorescence spectra of hTf in the presence of ASA; (C) The 

second derivative fluorescence spectra for the (hTf-ASA)-ROP system; (D) The second 

derivative fluorescence spectra for the (hTf-ROP)-ASA system; (E) A plot of the H versus 

[ROP] for hTf-ROP in the absence and presence ASA. Binary system (○); ternary system 

(∆). [ASA] = 4.62 × 10−3 mM for the ternary system; (F) A plot of the H versus [ASA] for 

hTf-ASA in the absence and presence ROP. Binary system (□); ternary system (▲).  

[ROP] = 1.33 × 10−5 mM for the ternary system. 
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Figure 3. Cont. 
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The H parameter (H = h/h′) depended on the dielectric constant of the solvent and was used as an 

empirical measure of the effect of the relative hydrophobicity of solvent in the second derivative of the 

spectra. Here, h is the difference in intensities between the minimum, around 320–350 nm, and the 

shoulder, at 370 nm, and h′ represents the difference in intensities between the minimum, around  

320–350 nm, and the maximum, at 400 nm. H is the only empirical parameter and is related to changes 

in the degree of polarity in the environment of all the Trp residues in hTf [32]. 

Figure 3E,F present a plot of the H values versus the concentrations of ROP and ASA for the binary 

and ternary systems, and as can be seen, a decrease in H values upon addition of ROP and ASA 

indicated a red shift. The polarity around the Trp residues was increased and the hydrophobicity was 

decreased, causing a further exposure of Trp residues from the core of hTf to the polar solvent.  

Figure 3E shows a higher slope for the binding of ROP to hTf, probably due to the conformational 

changes of the Trp residues and the further exposure to the polar solvent. As can be seen in Figure 3F, 

the hTf-ASA and (hTf-ROP)-ASA spectra overlapped, revealing that ROP did not affect or only 

weakly participated in the changes of the tertiary structure of hTf, in the presence of ASA. 

2.4. Synchronous Fluorescence 

The synchronous fluorescence spectroscopy technique was introduced by Lioyd in 1971. The 

method provides information about the molecular environment in the vicinity of chromophore 

molecules with several advantages, such as sensitivity, spectral simplification, spectral bandwidth 

reduction and the avoidance of several perturbing effects. According to the theory of Miller, when the 

D-value () between excitation and emission wavelengths becomes stabilized at 15 nm or 60 nm, the 

synchronous fluorescence gives the characteristic information of Trp or Tyr residues [33,34]. Thus, the 

synchronous fluorescence applied to the synchronous luminescence is:  

)()(   exememexSF EkcdEI  (3) 

where ISF is the relative intensity of synchronous fluorescence; Eex is the excitation function at the 

given excitation wavelength; Eem is the normal emission function at the corresponding emission 
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wavelength; c is the analytical concentration; d is the thickness of the sample cell; and k is the 

characteristic constant comprising the instrumental geometry factor and related parameters. Due to the 

relationship of the synchronous fluorescence intensity (ISF) and the concentration of hTf, ISF should be 

in direct proportion to the concentration of hTf [35]. 

The synchronous fluorescence of hTf at  = 15 nm and 60 nm are characteristic of Tyr and Trp 

residues, respectively. It is considered that the max of the Trp residues are relative to the polarity of the 

micro-environment. As reported, the max at 330–332 nm indicates that Trp residues are located in the 

nonpolar region. In other words, they are buried in a hydrophobic cavity in hTf. The max at  

350–352 nm shows that Trp residues are exposed to polar solvent, hence, the hydrophobic cavity in 

hTf is disagglomerated and the structure of hTf is looser [36].  

For the first time, ROP and ASA were used to determine the hTf with a synchronous fluorescence 

technique. Figure 4 shows the Trp and Tyr residues of the fluorescence spectra of hTf at various 

concentrations of ROP and ASA for binary systems, respectively. It is apparent from Figure 4A,B that 

the addition of ROP and ASA to hTf (binary and ternary systems) led to a dramatic decrease in the 

intensity of fluorescence emission maximum of the Trp and Tyr residues. As seen in Figure 4A,B, the 

maximum emission wavelength of the Trp and Tyr residues do not have a significant shift. As 

displayed in Figure 4C,D for hTf-ASA complex and ternary systems (data not shown), the emission 

maximum of Trp and Tyr residues were red-shifted, which demonstrated that the polarity of the 

fluorophores increased, causing the hydrophobic cavities to be moved to a more hydrophilic environment. 

Figure 4. (A) Synchronous fluorescence spectra of the hTf-ROP system. [hTf] = 3.8 × 10−3 mM 

and [ROP] was increased from 0 to 1.06 × 10−4 mM, ∆λ = 60 nm; (B) Synchronous 

fluorescence spectra of the hTf-ROP system. [hTf] = 3.8 × 10−3 mM and [ROP] was 

increased from 0 to 1.06 × 10−4 mM, ∆λ = 15 nm; (C) Synchronous fluorescence spectra of 

the hTf-ASA system. [hTf] = 3.8 × 10−3 mM and [ASA] was increased from 0 to 8.4 × 10−3 mM, 

∆λ = 60 nm; (D) Synchronous fluorescence spectra of the hTf-ASA system.  

[hTf] = 3.8 × 10−3 mM and [ASA] was increased from 0 to 8.4 × 10−3 mM, ∆λ = 15 nm.  
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Figure 4. Cont. 
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Figure 5A displayed a higher slope when was 15 nm, indicating a significant contribution of Tyr 

residues of hTf in the absence and presence of ASA, and ROP closer to Tyr residues as compared to 

Trp residues. The binding of ROP with hTf when was 60 nm, revealing a contribution of Trp 

residues in the fluorescence of hTf (without the ASA), and ROP closer to the Trp residues. The 

synchronous fluorescence quenching of hTf by ROP, in the presence of ASA, differed only slightly 

when was 15 nm (data not shown). Consequently, this suggested that the ROP and ASA 

approaching the Tyr residues were equal. Figure 5B demonstrates that the slope was similar for the 

hTf-ASA system whether was 15 nm or 60 nm, indicating that the opportunity of ASA to approach 

the Tyr and Trp residues was the same. Hence, it could be concluded that ASA bound to the central 

cavity of hTf thus forming an hTf-ASA complex [37].  

It is also shown, in the inset of Figure 5B that the slope was higher when was 60 nm, 

demonstrating a significant contribution of Trp residues of hTf in the presence of ROP, and the fact 

that ASA was closer to the Trp residues as compared to the Tyr residues. Indeed, the structure of the 

micro-environment of the Trp residues was altered by ASA in the presence of ROP. The higher slope 

for (hTf-ROP)-ASA when was 60 nm, which was the result of a main contribution of Trp residues 

of hTf in the presence of ROP, bringing ASA closer to the Trp residues (data not shown). One can see 

that the slope was similar when was 15 nm, revealing that ASA and ROP in (hTf-ROP)-ASA 

approached the Tyr residues (data not shown). 

Figure 5. (A) Synchronous fluorescence spectra of the quenching of hTf by ROP. (○)  

∆λ = 15 nm and (●) ∆λ = 60 nm. Inset (A) Synchronous fluorescence spectra of the 

quenching of hTf by ROP in the presence of ASA. (□) ∆λ = 15 nm and (■) ∆λ = 60 nm; 

(B) Synchronous fluorescence spectra of the quenching of hTf by ASA. (∆) ∆λ = 15 nm 

and (▲) ∆λ = 60 nm. Inset (B) Synchronous fluorescence spectra of (hTf-ROP)-ASA 

system. (□) ∆λ = 15 nm and (■) ∆λ = 60 nm.  
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Figure 5. Cont. 

 

2.5. Thermodynamic Parameters and Nature of the Binding Forces 

The interaction forces a small molecule and macromolecule commonly include hydrophobic force, 

electrostatic interactions, van der Waals interactions and hydrogen bond, etc. The thermodynamic 

parameters dependent on temperature are calculated according to the van’t Hoff equation in order to 

elucidate the interaction forces between hTf, ROP and ASA and are listed in Table 1: 

ln K = −H/RT + S/R (4) 

Thus the enthalpy change (H) and entropy (S) for the binding reaction can be determined from 

a plot of ln K versus 1/T (spectra are not shown). Subsequently the free energy change (G) is 

calculated by the following equation:  

G = H − TS = −RT ln K (5) 

where K is the binding constant at the corresponding temperature and R is the gas constant [28–30,38]. 

The negative sign for G means that the binding process was spontaneous. The negative values of 

entropy indicated that the binding was mainly entropy-driven and the enthalpy values were 

unfavorable for binary and ternary systems. Ross and Subramanian have characterized the sign and 

magnitude of the thermodynamic parameter associated with various individual kinds of interaction that 

may take place in protein association process, which can be easily concluded as: (a) H > 0 and  

S > 0, hydrophobic force; (b) H < 0 and S < 0, van der Waals force and hydrogen bond;  

(c) H < 0 S > 0, electrostatic interactions [39]. Thus, from the thermodynamic characteristics 

summarized above, the negative H and S values demonstrate that van der Waals force and 
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hydrogen bond played major roles in the binding of ROP and ASA to hTf and contributed to the 

stability of the complexes.  

2.6. Circular Dichroism (CD) Analysis 

Circular dichroism is an extremely convenient technique for detecting and monitoring the extent of 

conformational changes that may be associated with the activity or regulation of a protein. To further 

verify the possible influence of ROP and ASA (binary and ternary systems) on the secondary structure 

of hTf, far-UV CD studies (free and within the mixture) were performed with ROP and ASA.  

The CD spectra of hTf in the absence and presence of ROP are displayed in Figure 6. It was 

apparent that these spectra exhibited two negative bands in the UV region at 208 nm and 222 nm, 

characteristic of an -helical structure of hTf. A reasonable explanation is that the negative peaks at 

208 nm and 222 nm both resulted from n → π* transfer for the peptide bond of the -helix. In addition, 

the band intensities of hTf at 208 nm and 222 nm decreased with the negative cotton effect through the 

binding of ROP without causing conspicuous shifts of the peaks, clearly indicating that ROP induced a 

slight decrease in the -helical structure content of hTf. From the above results, it was evident  

that the effect of ROP on hTf caused secondary structural changes to the hTf with loss of the helical 

stability [40].  

Figure 6. Far-UV CD spectra of hTf in the absence and presence of ROP. pH 7.4 and  

T = 298 K. [hTf] = 3.8 × 10−3 mM. The concentrations of ROP ranged from 0 to  

1.78 × 10−4 mM. 
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The CD results are expressed as MRE (Mean Residue Ellipticity) in deg cm2 dmol−1, which is 

defined as: 

MRE = obs /C p nl × 10 (6) 



Molecules 2012, 17 3130 

 

where obs  is the CD in milli-degree; C p is the mole fraction; n is the number of amino acid residues 

(679); and l  is the path length of the cell. The -helical content could be calculated from the MRE 

values at 208 nm using the following equation:  

-helical (%) = (−MRE 208  − 4000/33000 − 4000) × 100 (7) 

where MRE 208  is the observed MRE value at 208 nm; 4,000 is the MRE of the form and random coil 

conformation cross at 208 nm; and 33,000 is the MRE value of an -helix at 208 nm. 

Table 3 demonstrate the effect of ROP and ASA (in binary and ternary systems) on the relative 

amounts of -helical, β-sheet, turn and unordered coil fractions in hTf. Since there occurred a decrease 

of the content of -helix whereas there was an increase in β-sheet, turn and unordered coil contents in 

the hTf-ROP complex, the fraction of secondary structure was closely related to the biological activity 

of hTf. A decrease in -helical structure from 37.4% to 33.7% reveals a loss of the biological activity 

of hTf with the highest concentration of ROP. Hence, hTf adopted a more incompact conformation 

state [34,35,41,42]. These results indicated an increase of the -helix fraction and a decrease of the 

contents of β-sheet, turn and unordered coil in hTf-ASA in the absence and presence of ROP and  

(hTf-ROP)-ASA complexes. The increase of the secondary helical structure content demonstrated that 

ASA induced this structure in hTf. 

Table 3. Fractions of the secondary structure and binding distance (r) values of hTf with 

ROP and ASA complexes as binary and ternary systems, at pH = 7.4 and T = 298 K. 

System -helix % β-sheet % Turn % Unordered % r/nm 

hTf 37.4 28.3 15.4 18.9 ----- 
hTf-ROP 33.7 29.4 16.5 20.4 1.92 
(hTf-ASA)-ROP 37.6 28.2 15.2 19.0 2.17 
hTf-ASA 40.2 27.4 15.1 17.3 2.13 
(hTf-ROP)-ASA 39.5 27.7 15.1 17.7 2.22 

2.7. Characteristics of the Resonance Light Scattering Spectra 

Light-scattering has been widely applied to study the aggregation, size, shape and distribution of 

particles in solution. When the excitation wavelength is close to the absorption bands, greatly 

enhanced Rayleigh light-scattering signals can be expected, known as resonance light scattering 

(RLS). The resonance light scattering spectra of ROP and ASA with hTf (in the binary and ternary 

systems) became enhanced upon increasing the concentration of drugs (see Figure 7A,B). Under the 

experimental conditions, the RLS intensity of hTf was high and the coexistence of hTf and a certain 

concentration of ROP and ASA solutions led to a raise in RLS intensity. The results pointed at the 

conclusion that ROP and ASA induced aggregation of the hTf, giving rise to an enhancement of the 

RLS intensity. This followed the formula of RLS: 

])()[(3/32 224
0

223
knRLS NnVI    (8) 

where n is the refractive index of the medium; N is the molarity of the solution;  is the wavelength of 

incident and scattered light; V2 is the square of the molecular volume; and δn and δk are the fluctuations 
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in the real and imaginary components of the refractive index of the particle, respectively [43,44]. 

When other factors are constant, IRLS is related to the size of the formed particle and is directly 

proportional to the square of the molecular volume (i.e., V2). Apparently, with the increase of the 

molecular volume, IRLS was enhanced. The values of IRLS were plotted against varying concentrations 

of ROP and ASA (in the binary and ternary systems) (see Figure 7) and it was found that the 

enhancement of the RLS intensity differed as a function of the concentrations of ROP and ASA. When 

the ROP and ASA concentrations were too low, the RLS intensity of the binary and ternary systems 

hardly changed. However, with increasing ROP and ASA concentrations, the RLS intensity of these 

systems gradually increased, and precipitation was even observed to occur in the solutions containing 

high concentrations of drugs.  

The relationship between the RLS intensity and these drug concentrations was nonlinear. The 

vertical arrow shows the critical induced aggregation concentrations (CCIAC) of ROP and ASA 

inducing drug aggregation on hTf [45,46]. 

Under identical experimental conditions, smaller CCIAC values for the ternary systems signified a 

lower concentration of ROP and ASA for the induction of hTf aggregation. The CCIAC values of the  

hTf-ROP and (hTf-ASA)-ROP complexes were 9.49 × 10−6 mM and 1.04 × 10−5 mM, respectively (see 

Figure 7C,D), and the values for the hTf-ASA and (hTf-ROP)-ASA complexes were 5.92 × 10−4 mM 

and 1.75 × 10−3 mM, respectively. The phenomenon indicated that ROP and ASA could precipitate on the 

hTf in binary and ternary systems. 

Figure 7. (A) The RLS spectra of hTf at varying concentrations of ROP.  

[hTf] = 3.8 × 10−3 mM; (B) The RLS spectra of hTf at different concentrations of ASA. 

[hTf] = 3.8 × 10−3 mM, pH 7.4; (C) A plot of the ∆IRLS intensity of hTf at various 

concentrations of ROP in the absence and presence of ASA. [hTf] = 3.8 × 10−3 mM, and 

[ASA] = 4.62 × 10−3 mM for the ternary system. (○) binary system, (●) ternary system;  

(D) A plot of the ∆IRLS intensity of hTf at several concentrations of ASA in the absence and 

presence of ROP. [hTf] = 3.8 × 10−3 mM, and [ROP] = 1.33 × 10−5 mM for the ternary 

system. (∆) binary system, (▲) ternary system. All experiments were performed under 

identical conditions, T = 298 K, pH = 7.4. 
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Figure 7. Cont. 
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2.8. Binding Distance and Energy Transfer for Binary and Ternary Systems 

In order to determine the precise location of ROP and ASA for binary and ternary systems in hTf, 

the efficiency of energy transfer were studied according to the forster resonance energy transfer theory 

(FRET), if the emitted fluorescence from a donor could be absorbed by an acceptor, energy may 

transfer from the donor to the acceptor. Energy transfer will happen under the following conditions:  

(a) the donor can produce fluorescence light; (b) the absorption spectrum of the receptor overlaps 

enough with the donor’s fluorescence emission spectrum; (c) the distance between the donor and the 

acceptor is less than 7 nm. The fluorescence quenching of hTf after binding with ROP and ASA 

indicated that the transfer of energy have occurred [47]. The following equation can be used to 

calculate the efficiency (E) of energy transfer between the donor and acceptor: 

E = 1 − (F/F 0 ) = R 6
0 /(R 6

0  + r 6 ) (9) 

where F and F 0  are the fluorescence intensities of the biomolecule in the presence and absence of a 

quencher, r is the donor- acceptor distance and R 0  is the critical energy transfer distance, at which 

50% of the excitation energy is transferred to the acceptor. It is given by the following equation: 

R 6
0  = 8.8 10 25 K 2 N 4 J (10) 

where K 2 is the orientation factor of the dipole of the donor and acceptor, N is the refractive index of 

the medium, is the fluorescence quantum yield of the donor in the absence of the acceptor and J 

expresses the degree of spectral overlap between the donor emission spectrum and the acceptor 

absorption spectrum. The value of J is given by: 

J = F()() 4 )/F() (11) 

where F() is the fluorescence intensity of the fluorescent donor at wavelength and () is the molar 

absorption coefficient of the acceptor at wavelength From the above relationships, J and E can be 

easily obtained, from which follows that R 0  and r can be further calculated [48]. As seen in Figure 8, 

there were a considerable overlap between the absorption spectrum of ROP with the fluorescence 

emission spectrum of hTf in the presence of ASA, which formed the basic of FRET. The average 

distance r < 7 nm and 0.5 R 0 < r < 1.5 R 0  indicated that the energy transfer for binary and ternary 

systems occurred with a high probability. 

The parameters regarding the FRET are presented in Table 3. This results suggested that the bound 

ROP and ASA had a different distance to the tryptophan residues for binary and ternery complexes. 

The reasons for this, was that the binding sites for ROP and ASA in hTf, depending the chemical 

structure, molecule’s size and electro negativity of drugs [49]. Moreover, The r values decreased with 

increasing values of the binding constant and binding affinity for binary and ternary systems. 

2.9. Time-Resolved Fluorescence 

Fluorescence lifetime decay measurements supply one of the best parameters that help us to 

distinguish between static and dynamic processes. In order to further substantiate the quenching 

mechanism of ROP and ASA to hTf, fluorescence lifetime of hTf were ascertained in the absence and 

presence of ROP and ASA as binary and ternary systems. Average fluorescence lifetime () for 
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biexponential iterative fittings was calculated from the decay times and the relative amplitude () 

using the following equation: 

 = 11 + 22 (12) 

Time-resolved fluorescence decay of hTf in the absence and presence of ROP and ASA are 

summarized in Table 4 (the concentrations of hTf, ROP and ASA for binary systems are  

3.8 × 10−3 mM, 8 × 10−4 mM and 5 × 10−2 mM, respectively, although for ternary systems the 

concentrations of ROP and ASA are 7.27 × 10−5 mM and 4.6 × 10−3 mM, respectively). The average 

fluorescence lifetime reduces from 4.20 to 3.59 ns, without and with the ROP and ASA for binary and 

ternary systems, attesting that the fluorescence quenching is essentially static mechanism. Hence, both 

steady-state and time-resolved measurements hint to the occurrence of static type fluorescence 

quenching caused by specific interaction, mainly by ground-state complex formations [50–52]. 

Figure 8. Spectral overlap of the fluorescence spectra of hTf in the presence of ASA (a) 

with the absorption spectra of ROP (b) at pH 7.4 and T = 298 K. [hTf] = 3.8 × 10−3 mM, 

[ASA] = 4.6 × 10−3 mM and [ROP] = 7.27 × 10−5 mM. 

 

Table 4. Lifetime of hTf in the presence of ROP and ASA as binary and ternary systems, 

(: the relative amplitude and 2: the error in the calculated fluorescence) at pH 7.4,  
T = 298 K and λ ex  = 295 nm. 

System 1/ns 1 2/ns 2 /ns 2 

hTf 1.957 0.5947 6.125 0.4972 4.209 0.9519 
hTf-ROP 1.938 0.7634 6.033 0.3719 3.723 0.9611 
(hTf-ASA) ROP 1.894 0.7954 5.772 0.3627 3.599 0.9520 
hTf-ASA 1.942 0.7724 6.086 0.3771 3.795 0.9519 
(hTf-ROP) ASA 1.907 0.7517 5.921 0.3661 3.601 0.9521 
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2.10. Three-Dimensional Fluorescence Spectra 

Three-dimensional fluorescence spectroscopy is a vigorous method for providing conformational 

and structural information of proteins. The outstanding advantage of three-dimensional fluorescence 

spectra is that information regarding the fluorescence characteristics can be entirely acquired  

by simultaneously changing the excitation and emission wavelengths. The maximum emission 

wavelength and the fluorescence intensity of the residues have a close relation to the polarity of their 

micro-environment [53].  

The three-dimensional fluorescence spectra and the contour maps for both the binary and ternary 

systems are shown in Figure 9A–D. As can be seen, peak a is the Rayleigh scattering peak (λex = λem) 

and peak b is the second-ordered scattering peak (λem = 2λex). The fluorescence intensity of peak a and 

peak b increased with the addition of ROP and ASA (in the binary and ternary systems). The possible 

reason for this was that complexes came into being after addition of the drugs, increasing the diameter 

of the hTf which in turn resulted in enhanced scattering spectra.  

At the same time, there were two “humps” in the three-dimensional spectra for both binary and 

ternary complexes marked peaks 1 and 2. Peak 1 revealed the spectral behavior of the Trp and Tyr 

residues. The reason for this was that when the hTf was excited at 280 nm, it mainly demonstrated  

the intrinsic fluorescence of Trp and Tyr residues, and the fluorescence of Phe residues could be 

neglected. The fluorescence spectral behavior of the polypeptide backbone structure of hTf was also 

reflected by peak 2, which was caused by the transition of π → π* of hTf’s characteristic polypeptide 

backbone structure C=O. The fluorescence intensity of peak 2 decreased after the addition of ROP and 

ASA, signifying that the peptide strands structure of hTf had been modified [54,55].  

Figure 9. (A) Three-dimensional fluorescence spectra of hTf; (B) Three-dimensional 

fluorescence spectra of the hTf-ROP system; (C) Three-dimensional fluorescence spectra 

of the hTf-ASA system; (D) Three-dimensional fluorescence spectra of the hTf-ROP-ASA 

system. All experiments were performed under identical conditions, [hTf] = 3.8 × 10−3 mM, 

[ROP] = 7.27 × 10−5 mM, [ASA] = 4.54 × 10−3 mM, pH = 7.4 and T = 298 K. 
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Figure 9. Cont. 

 

 

 

The decrease of the intensity of peaks 1 and 2 in combination with the results from the synchronous 

fluorescence spectroscopy displayed that the binding of ROP and ASA to hTf induced the slight 

unfolding of the polypeptides of hTf, which led to a conformational change of hTf that increased the 
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exposure of some hydrophobic regions that were previously buried. All these phenomena obtained 

from analyzing the two peaks indicated that the binding of ROP and ASA to hTf and the formation of 

binary and ternary complexes induced certain changes in the micro-environment and conformation  

of hTf.  

2.11. Zeta-Potential Measurements 

By measuring the zeta-potential, it is possible to probe a characteristic colloidal property in a complex 

mixture of particles, making it a useful technique to explain their behavior. The zeta-potential is 

generated when a liquid is forced to flow directly through a small gap, formed by two sample surfaces, 

under pressure. The charge carrier bound in the double layer will thus be removed, after which the 

potential can be measured between two electrodes. Consequently, the biomaterial’s zeta-potential 

demonstrates the electric surface properties. A surface charge in protein particles is due to the partial 

ionization of various amino acid residues. The effective charge on a protein particle is affected by pH, 

ionic strength and the accumulation of ligands or surfactant at the interface [56,57]. The zeta potential 
can be calculated from the electrophoretic mobility’s, E , using the Henry equation [58]: 

))(/1)(2/3( 0 afrE    (13) 

where 0  is the permittivity of vacuum; r  and   are the relative permittivity and viscosity of water, 

respectively; a  is the particle radius; and   is the Debye length. The function )( af  depends on the 

particle shape and was determined for the systems by:  

)/330()2/75()2/9()3/2()( 3322 aaaaf    (14) 

This expression is valid for a  > 1. The interaction between the adsorbed molecules may be either 

attractive or repulsive, depending on the kind and magnitude of electric charge of the residues. These 

complicated processes involving protein adsorption are also reflected in the zeta-potential changes. 

Figure 10 shows the effect of ROP and ASA concentrations on the zeta-potential of hTf (in the 

binary and ternary systems). At first, the adsorption of ROP and ASA on the hTf surface increased 

with an increasing zeta-potential after which an abrupt change occurred, decreasing the values of the 

zeta-potential. Higher zeta-potential values confirmed that the electrostatic forces were the primary 

interaction of ROP and ASA with hTf in the present study. The negative values of the zeta-potential 

conformed with hydrophobic interactions between ROP, ASA and hTf. Hence, the stability of the 

binary and ternary systems decreased when decreasing the zeta-potential values. The raise in surface 

charge on the colloidal particles augmented the magnitude of inter-particle electrostatic repulsion, 

which tended to disrupt existing protein aggregates and discourage further aggregate formation [59]. 

Consequently, the ROP and ASA molecules were able to bind to hTf through a combination of 

electrostatic and hydrophobic interactions, forming micelle-like clusters. 

2.12. Molecular Modeling 

Any of the ligands, when docked in hTf, becomes attached to the N-lobe of the hTf and shows the 

most affinity to approximately the same active site. The best docking results for binary and ternary 

systems are shown in Figure 11 and Figure 12, respectively. 
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Figure 10. (A) Zeta-potential spectra at varying concentrations of ROP in the absence and 

presence of ASA. [hTf] = 3.8 × 10−3 mM, [ASA] = 4.62 × 10−3 mM, for the ternary system; 

(B) Zeta-potential spectra at various concentrations of ASA in the absence and presence of 

ROP. [hTf] = 3.8 × 10−3 mM, [ROP] = 1.33 × 10−5 mM, for the ternary system. pH 7.4 and 

T = 298 K. 
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When docked alone, ROP formed a hydrogen bond to Cys179 and properly fits the binding pocket 

(Figure 11B). However, when introduced to the hTf-ASA complex, it could not attach to pocket in the 

same orientation; and created instead a hydrogen bond to Ser189 (Figure 12B). The inhibition constant 

declined to about one fourth of the previous value due to poor orientation and improper van der Waals 

interactions. ASA, although unable to form hydrogen bonds, had a good placement in terms of 
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electrostatic energy and yielded a decent inhibitory constant (Figure 11A). The presence of ROP in the 

complex forced ASA to dock in a different pocket and stabilize by formation of two intramolecular 

hydrogen bonds [60–62]. It is predicted that presence of ROP when docking ASA shouldn’t have a 

major effect on affinity (Figure 12A). The molecular dynamic results confirmed the obtained 

experimental data that mentioned in Table 2. 

Figure 11. Docking of ASA (A) and ROP (B) onto hTf. ASA and ROP are shown as balls 

and sticks. FeCO3, if visible, is shown as sticks. Hydrogen bonds are shown as green 

dotted lines. 

 

Figure 12. Docking of ASA (A) as a third ligand onto the ROP-hTf complex. ROP (B) 

docked onto the ASA-hTf complex. ASA and ROP are shown as balls and sticks. FeCO3, 

if visible, is shown as sticks. Hydrogen bonds are shown as green dotted lines. 

 

3. Experimental 

3.1. Materials and Solutions 

All reagents were of analytical grade, purchased from the Sigma-Aldrich Corporation, (St. Louis, 

Mo, USA) and used without further purification. The hTf solution (3.8 × 10−3 mM) was prepared at 
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room temperature as a dissolution in a 50-mM potassium phosphate buffer solution with pH = 7.4. The 

ROP solution (8 × 10−4 mM) and an ASA solution (5 × 10−2 mM) in potassium phosphate buffer were 

also prepared. Water was purified with a Milli-Q purification system (Millipore USA) to a specific 

resistance: 16.4 MΩcm−1. All solutions were stored in a refrigerator at 4 °C in the dark. 

3.2. Apparatuses 

3.2.1. Fluorescence Spectroscopy 

Fluorescence measurements were obtained using a Hitachi F-2500 spectrofluorometer equipped 

with a Xenon lamp. The widths of the excitation and emission slits were set to 5.0 nm, and the 

response time (auto) and excitation voltage (medium) were kept constant for each data set. The 

excitation wavelengths were set at 280 nm and 295 nm, and the emission wavelength was recorded 

between 300 nm and 500 nm. The operation software automatically corrected the spectral scan for 

photomultiplier characteristics. Moreover, the fluorescence intensities were corrected for inner filter 

and dilution effects before analysis of the binding and quenching data. An appropriate buffer was taken 

as a blank and subtracted from the experimental spectra to correct for the background of fluorescence. 

One-centimeter quartz cells were used throughout the experiments and all the measurements were 

performed at different temperature. The average of five scans was subjected to smoothing using a  

10-point smoothing average. Finally, the second derivative of the smoothed spectrum was obtained 

with the same software. A smoothing step of the normalized data was required to reduce the noise in 

the second derivative. The criteria for smoothing was that the overall shape and intensity of the raw 

emission scan was not affected by the smoothing and, at the same time, that the overall shape of the 

bands in the second derivative was preserved and the excess noise removed.  

3.2.2. Resonance Light Scattering 

Resonance light scattering (RLS) spectra were recorded by scanning both the excitation and 

emission monochromators of a common spectrofluorometer with λ = 0 nm. RLS can be developed 

and has proven to be able to investigate the aggregation of small molecules as well as the long-range 

assembly of drugs on biological templates. All RLS spectra were obtained by simultaneously scanning 

the excitation and emission monochromators from 220 nm to 600 nm with slit widths of 5.0 nm for the 

excitation and emission.  

3.2.3. Synchronous Fluorescence Spectroscopy 

Synchronous fluorescence spectroscopy was carried out by simultaneously scanning the excitation 

and emission monochromators. The spectra only showed the Tyr and Trp residues of hTf, when the 

wavelength interval (was 15 nm and 60 nm, respectively. 

3.2.4. Time-Resolved Fluorescence Measurements  

Time-resolved fluorescence spectra were executed in a time correlated single photon counting 

system from ARCUS Fluorometer (LKB, Turku, Finland) with excitation wavelength at 295 nm. The 
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data are fitted to biexponential function by an iterative reconvolution approach by the DAS6 decay 

analysis software utilizing reduced the error in the calculated fluorescence (2) and weighted residuals 

as parameters for goodness of fit.  

3.2.5. UV-Vis Spectroscopy  

The UV-vis absorption spectra were obtained with a JascoV-630 spectrophotometer. The optical 

system was based on a split-beam with a grating band width of 5 nm. The light source was a Xenon 

lamp. The absorption measurements of all samples were carried out using quartz cells with a 1-cm 

optical path. All experiments were performed at room temperature. 

3.2.6. Three-Dimensional Fluorescence Spectroscopy 

Three-dimensional spectra were performed on a Jasco FP-6200 spectrofluorimeter, equipped with 

1.0-cm quartz cells. The measurement condition were the following: the excitation and emission 

wavelengths were recorded between 220 nm and 500 nm with an increment of 5 nm, the number of 

scanning curves was 31 and the other scanning parameters were identical to those of the fluorescence 

emission spectra. 

3.2.7. Circular Dichroism Spectroscopy 

Far-UV CD experiments were performed on a Jasco-815 spectropolarimeter equipped with a Jasco 

2-syringe titrator. Spectra were recorded with the same protein concentration in a 1-mm path length 

quartz cuvette. A bandwidth of 1 nm and a response of 2 s were used with a scanning rate of  

50 nm min−1 to obtain the final spectra as an average of five scan. The instruments were calibrated 

with ammonium d-10-camphorsulfonic acid. The induced ellipticity, given in degrees, was obtained by 

the ellipticity of the drug-protein mixture after subtraction of the ellipticity of the drug at the same 

wavelength. The results are expressed as the mean residue ellipticity [], defined as [] = 100 × obsd/(LC), 

where obsd is the observed ellipticity in degrees, C is the concentration in residue mol cm−3, and L is 

the length of the light path in cm. All pH measurements were performed with a Metrohm digital  

pH-meter (Metrohm, Germany). 

3.2.8. Zeta-Potential Measurements 

Colloidal particles accumulate charge at their surface, which can be expressed as a surface 

potential. The surface potential is an important factor for determining the magnitude of charged-based 

colloidal interactions of a particle, most crucially electrostatic repulsion of other charged particles. The 

surface charge on a particle perturbs the ionic distribution in the medium surrounding it. First, a layer 

of tightly bound counter-ions accumulates at the particle surface, i.e., the Stern layer, and beyond this, 

a region of decaying excess concentration, the diffuse layer, extends a considerable distance (~nm) 

into the surrounding aqueous media. Measuring the colloidal charge typically involves applying an 

electrical voltage to the particle and determining the speed of the induced movement. The zeta-potential 

measurement was performed by using the Zeta-sizer (Nano-ZS) from Malvern Instruments and 

Dispersion Technology Software (DTS) Zetamaster 5002 by taking the average of five measurements 
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at the stationary level. The cell used a 5 nm × 2 nm rectangular quartz capillary. The temperature of 

the experiments was 298 ± 0.01 K. All measurements were carried out on hTf, ROP and ASA 

solutions with concentrations of 3.8 × 10−3 mM, 8 × 10−4 mM and 5 × 10−2 mM, respectively.  

3.3. Procedures 

hTf, ROP and ASA were dissolved in potassium phosphate buffer, and their concentrations were 

3.8 × 10−3 mM, 8 × 10−4 mM, 5 × 10−2 mM, respectively. Aliquots of ROP and ASA were injected into 

the hTf solution at 5-min intervals to allow for equilibration, and each experiment was repeated three 

times. The hTf solution was added to a quartz cell to make up 2 mL and the range of (1) a single drug 

(ROP or ASA) and (2) the two drugs, was gradually titrated manually in the cell using a  

micro-injector. The fluorescence spectra were then measured (the excitation wavelengths were 280 nm 

and 295 nm, and the emission wavelength was 300-500 nm). Both the entrance and exit slit widths 

were 5 nm and the scanning speed was 240 nm min−1, rendering it possible to obtain both fluorescence 

quenching spectra and synchronous fluorescence spectra. The far-UV CD spectra of hTf, ROP and 

ASA were recorded and spectral scanning curves were obtained under identical conditions. All 

solutions were freshly prepared for each experiment. 

3.4. Molecular Modeling 

The crystal structure of human transferrin in complex with its receptor was retrieved from PDB (1) 

(PDB ID: 1SUV(2)). Unnecessary parts were removed using ViewerLite. N-lobe and C-lobe were 

overplayed in Swiss PDBViewer with respective stand-alone structures from PDB (PDB ID: 1A8Efor 

N-lobe and for C-lobe 3K0V) to ensure that the conformation of the protein had not changed during 

the course of attachment. The compounds were energy-minimized by means of AM1 semi empirical 

force field in the Hyperchem software. The energy-minimized ligands were further processed using an 

Autodock tools program (3). Partial atomic charges for each atom were added and the rigid root and 

rotatable bonds for each ligand was calculated automatically. Docking was primarily done using a grid 

box covering the whole protein to find the active site. A grid map for the entire protein structure was 

generated with the default 1.000 Å spacing by means of the Autogrid program. The sigmoidal 

distance-dependent electric permittivity of Mehler and Solmajer was utilized for the calculation of the 

electrostatic grid maps. The Lamarkian genetic algorithm method was applied for minimization. 

Default parameters were used and random orientations and torsions were employed for the ligands. 

After finding the active site, docking was performed with the same parameters in a limited grid box of 

0.500 Å spacing. In a final step, the ternary docking was performed after energy minimization of the 

binary system through a molecular mechanics method with a minimum RMS gradient of 10 kcal/mol 

or a maximum of 32767 cycles. 

4. Conclusions 

This paper has described an investigation through various spectroscopic techniques, zeta-potential 

measurements and molecular modeling of the interactions of ROP and ASA with hTf (in binary and 

ternary systems) at pH 7.4. The quenching of the intrinsic fluorescence and a red shift in the maximum 



Molecules 2012, 17 3143 

 

wavelength indicated that an increased polarity of the micro-environment of the fluorophores in hTf 

was induced by the binding of ROP and ASA as binary and ternary systems. The quenching rate 

constant, binding constant, number of binding sites and corresponding thermodynamic parameters 

were calculated according to the relevant fluorescence data. The effect of the displacement of one drug 

from the complex of the other with hTf has been described on the basis of the comparison of 

quenching curves and binding constants. From the steady-state and time-resolved fluorescence 

illustrated that the quenching are static mechanism for binary and ternary complexes. Negative values 

of thermodynamic parameters namely enthalpy change (H) and entropy change (S) indicated that 

van der Waals force and hydrogen bonds were the dominant intermolecule force in stabilizing the 

complexes. The results of synchronous fluorescence and three-dimensional fluorescence spectra 

demonstrated that the structure of the micro-environments of the Trp and Tyr residues was altered by 

ROP and ASA. The interaction of ROP and ASA with hTf resulted in an enhancement of the RLS 

intensity, proposing a method for the determination of binary and ternary systems. Therefore it was 

possible to determine the critical induced aggregation concentration (CCIAC) of ROP and ASA inducing 

the hTf aggregation. The binding distance and the energy transfer efficiency between hTf, ROP and 

ASA were manifested. The circular dichroism (CD) data revealed that the presence of ROP decreased 

the -helical content of hTf, whereas for other complexes, the fraction of -helix increased. The ROP 

and ASA molecules bound to the hTf through a combination of electrostatic and hydrophobic 

attractions. The competition of these drugs in the binding to hTf pointed at precautions being required 

in a treatment when combinations of drugs are used at the same time. In conclusion, both ROP and 

ASA formed a binding site in the N-lobe of hTf, thus necessitating the use of monitoring therapy 

owning to the possible increase of uncontrolled toxic effects.  
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