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The tumor metabolic reprogramming contributes to the progression and prognosis
of cervical cancer (CC). However, the potential remodeling mechanisms of tumor
metabolism in the immune microenvironment of CC remain largely unknown. In this
study, we first performed microarray analysis to identify differential metabolic gene
expression. A novel 5-metabolic-related genes (MRGs) signature comprising P4HA1,
P4HA2, ABL2, GLTP, and CYP4F12 was established to better predict prognosis of
CC using LASSO-Cox regression analysis. This signature could reveal the metabolic
features and monitor the immune status of tumor microenvironment (TME). Among
them, P4HA2 was significantly upregulated in CC tissues and negatively correlated
with CD8+T cells. Knockdown of P4HA2 inhibited lipid droplets (LDs) accumulation
and cancer cells invasion. Moreover, P4HA2 knockdown significantly suppressed PD-L1
expression. This study provides a new and feasible method for evaluating the prognosis
of CC and explores the potential value to navigate metabolic pathways to enhance
anti-tumor immunity and immunotherapy.
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INTRODUCTION

Cervical cancer (CC) is the]aqvskip-2pc top two cause of cancer death affecting women worldwide
(Siegel et al., 2020). Due to limited therapeutic options, the 5-year overall survival (OS) of
CC patients with recurrent, persistent and metastatic is only about 15% (Liu et al., 2019). As
an increasing understanding of tumor microenvironment (TME), immunotherapy has been a
promising approach to advanced/metastatic CC (Attademo et al., 2020). How to screen the patients

Abbreviations: CC, cervical cancer; OS, overall survival, FA, fatty acid; TCGA, The Cancer Genome Atlas; MRG, metabolic-
related gene; STR, short tandem repeat; qRT-PCR, quantitative real-time PCR; LASSO, least absolute shrinkage and selection
operator; CI, confidence interval; TME, tumor microenvironment; TIMER, Tumor Immune Estimation Resource; HPA,
Human Protein Atlas; KM, Kaplan–Meier analysis; GSEA, gene set enrichment analysis; DFS, disease-free survival; ROC,
receiver operating characteristic; P4HA2, prolyl 4-hydroxylase subunit alpha 2; P4HA1, prolyl 4-hydroxylase subunit
alpha 1; ABL2, ABL proto-oncogene 2; CYP4F12, cytochrome P450 family 4 subfamily F member 12; GLTP, glycolipid
transfer protein; AUC, area under the curve; PTME, primary tumor microenvironment; IHC, immunohistochemistry; CAF,
cancer associated fibroblast cells; MSI, microsatellite instability; TMB, tumor mutational burden; P4Has, collagen prolyl
4-hydroxylases; LDs, lipid droplets.
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who can benefit from immunotherapy and increase the
sensitivity of the chemotherapy, is a hot topic and needs to be
further explored.

The reprogramming of energy metabolism which an emerging
hallmarks of cancer, is well-established prominent hallmarks of
cancer (Hanahan and Weinberg, 2011). Interestingly, growing
evidence indicates that the fatty acid (FA) metabolism confers
a selective advantage for tumor metastatic process (Nath and
Chan, 2016; Pascual et al., 2016). Previous reports have identified
that the metabolism of tumor cells could affect the metastasis to
improve patient survival (Shang et al., 2018). Moreover, tumor
cells and immune cells experience metabolically completion,
modulating antitumor immune responses (Li et al., 2019).
Lipid droplets (LDs) are regarded as cytoplasmic organelles
within tumor cells and immune cells to store lipids, which
play an important role in modulating cancer metasatsis (Shang
et al., 2020). Thus, Targeting metabolic pathways in terms of
anticancer immunotherapy are important directions for the
treatment of tumors.

In this study, a novel independent prognostic model based
on metabolic-related gene (MRG) signature was identified and
constructed by microarray analysis and The Cancer Genome
Atlas (TCGA) database to reflect the tumor immune status
in CC. Additionally, nomograms associated with MRGs were
established. This prognostic model could delineate the metabolic
features of CC and further monitor the status of immune
infiltration. Surprisingly, P4HA2 which was included in this
prognostic risk model, could promote the LDs accumulation in
CC cells and exhibited a close relationship with the abundance of
different cell types in the TME and immune checkpoint blockade.
Our findings manifested that these prognositic MRGs system play
crucial roles in patient management and provide potential drug
targets to develop effective immunotherapies for CC.

MATERIALS AND METHODS

Patients and Sample Collection
This study was conducted in accordance with the Declaration
of Helsinki. Each participant signed an informed consent form,
and the Ethical Committee of the Peking University Third
Hospital approved this study. Five CC tissues and six normal
cervical tissues were collected for mRNA microarray. Another
15 normal or 15 CC tissues were selected for validation.
All freshly frozen CC tissues were collected from the Peking
University Third Hospital (Beijing, China). All of the cases were
histologically confirmed by pathologists and no patients had
received chemotherapy or radiotherapy prior to surgery. The
normal controls were collected from women who underwent
hysterectomy for non-malignant conditions. All tissue specimens
were immediately frozen at−80◦C.

Cell Culture
The human CC cell line SiHa and HeLa was purchased from the
American Type Culture Collection (Manassas, VA, United States)
and cultured in Dulbecco’s Modified Eagle’s medium (Gibco;
Thermo Fisher Scientific, Inc.) in a humid atmosphere with 5%

CO2 at 37◦C. Authenticity of SiHa and HeLa cell lines was
verified by using short tandem repeat (STR) genotyping.

Data Analysis of Metabolic-Related
mRNA Expression Profiles
The differentially mRNA expression profiles were analyzed
by Agilent Feature Extraction software (version 11.0.1.1).
A comprehensive MRGs set was extracted from the Metabolic
Atlas in the Human Protein Atlas (HPA) database. Differentially
expressed metabolic-related mRNAs were screened with p < 0.05
and |fold change| > 1.5.

RNA Extraction and Quantitative
Real-Time PCR
Total RNA was extracted using TRIzol reagent (TaKaRa,
Japan). Quantitative real-time PCR (qRT-PCR) was
performed with SYBR Premix Ex Taq (TaKaRa, Dalian,
China) using the 7500 Fast Real-Time PCR system (Applied
Biosystems, United States). GAPDH was utilized as an
internal standard control. The gene-specific primers were
as follows: P4HA2, forward 5′-AGTACCAGGCAATGCTGAGT-
3′, reverse 5′-CCTCTTCTGTCTACGGGGTG-3′; PD-L1
forward, 5′-TGGCATTTGCTGAACGCATTT-3′, reverse,
5′-TGCAGCCAGGTCTAATTGTTTT-3′; GAPDH, forward
5′-CCTGTTCGACAGTCAGCCGCAT-3′, reverse 5′-GACTCC
GACCTTCACCTTCCCC-3′. Relative RNA expression
levels were calculated by the relative quantification method
(2−11CT).

Cell Transfection
SiRNAs targeting P4HA2 and a negative control were
provided by GeneCreate (Wuhan, China). The following
oligonucleotide against genes were used: siRNA against
P4HA2 (5′-CGAGATACTTTCAAGCATTTA-3′). Transfection
was conducted using Lipofectamine RNAiMAX Reagent
(Invitrogen, United States) according the manufacturer’s
recommended protocol.

Quantification of Lipid Droplets
Accumulation
For cell LD quantification, the lipophilic fluorescence dye
BODIPY 493/503 (Invitrogen) was employed to monitor LD
accumulation in SiHa cells. Cells grown on coverslips were fixed
with 4% paraformaldehyde and stained with BODIPY 493/503
(1 µg/ml) for 45 min. Nuclear recognition was based on DAPI
staining (1 µg/mL). Fluorescence was analyzed by Olympus
FV-1000 confocal microscope (Olympus, Tokyo, Japan).

Transwell Assays
2 × 105 cells in 100 µl serum-free medium were loaded
in the upper chamber pre-coated with 50 µl Matrigel (BD
Biosciences). Medium containing 10% bovine serum albumin
were added to the lower chambers. After incubation, cells
which adhered to the lower surface were fixed and stained.
Invasiveness was determined by counting cells in five randomly
selected visual fields.
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Data Collection
After excluding patients with missing expression information,
the RNA expression data containing corresponding clinical
information of CC, were downloaded from the TCGA database,
including 303 CC tissues (Supplementary Table 1)1.

Identification and Construction of the
Metabolic Gene Signature
Genes with P values less than 0.0001 in maximally separated
Kaplan–Meier analysis were defined as prognostic genes. Then,
a least absolute shrinkage and selection operator (LASSO)
regression was performed to picks the optimal number of
potential metabolic genes to build a prognostic MRGs model.
Finally, the Risk Score of each sample was calculated based on
the LASSO-Cox regression co-efficiency through the following
formula: Risk score =

∑n
i=1 Coef i

∗Xi,Coefi is the risk coefficient
of prognostic MRGs and Xi is the expression value. Then
the optimal cutoff value was determined by the “sur_cutpoint”
function of the “survminer” R package. It automatically
calculated the segmentation point with the minimum P value.
Patients were divided into Low- and High-risk groups according
to the best cutoff values or median values.

Development and Evaluation of the
Nomogram
Plotted nomogram calibration curves based on the proper MRGs
determined by univariate and multivariate cox regression analysis
through “rms” R package. The forest was used to show the P
value, HR and 95% confidence interval (CI) of each variable
through “forestplot” R package.

Correlation Analysis Between MRGs
Model and Tumor
Microenvironment Scores
The ESTIMATE algorithm was employed to calculate the
microenvironment scores of tumors (including stromal, immune,
and TME scores) based on expression data from TCGA database2

in the CC tissues. ESTIMATE algorithm is based on single-sample
gene set enrichment analysis. For each sample from TCGA
database, the gene expression values were normalized and sorted
by rank. The empirical cumulative distribution functions of each
gene and the other genes in the signature were calculated based
on absolute expression rather than differential expression. Then,
the microenvironment score is automatically output (Yoshihara
et al., 2013). We compared the differences between the three
kinds of scores in the high- and low-MRG risk model groups, and
explore their impact on the prognosis of CC considering the best
cutoff values possessed by three kinds of scores.

Analysis of the Relationship Between
Immune Infiltration and MRGs
CIBERSORT is a versatile computational method for quantifying
cell fractions from bulk tissue gene expression profiles

1https://portal.gdc.cancer.gov/
2https://bioinformatics.mdanderson.org/estimate/index.html

(Newman et al., 2015). We estimated the fraction of the 22
subtype immune cells in CC patients from TCGA database
through the CIBERSORT algorithm to extend the utility of this
MRGs signature3. The differences in immune cell infiltration
were also evaluated by Tumor Immune Estimation Resource
(TIMER4) including CD4+T cells, B cells, CD8+T cells,
neutrophils, macrophages, and dendritic cells. The correlations
between hub MRGs expression and the abundances of immune
infiltrates, immune checkpoint molecules were confirmed
by TIMER database.

Bioinformatic Analysis
A part of bioinformatic analysis including heatmap, volcano plot,
gene set enrichment analysis (GSEA) and correlation coefficient
matrix was performed using the OmicStudio tools at https://
www.omicstudio.cn/tool. The pan-cancer analysis of immune
infiltrates by xCell (Aran et al., 2017) and the different expression
of hub MRGs in CC tissues and normal tissues was drawn at
www.aclbi.com. All data of normal tissue samples were obtained
from GTEx V8 release version5. Genetic alterations analysis,
mainly mutations and copy number alterations, were performed
on the cBioportal platform6. The protein expression of MRGs,
as reflected by antibody staining, was investigated using the
Pathology Atlas portal in the HPA database (Uhlen et al., 2015,
2017; Thul et al., 2017).

Statistical Analysis
All statistical analyses were performed using the SPSS software
package (version 13.0) and Prism 5.0 software (GraphPad Prism,
Inc., La Jolla, CA, United States). The Kaplan–Meier (KM)
method was used for disease-free survival (DFS) and OS analysis.
Two-tailed Student’s t-test was used for the comparison of two
independent groups. Multiple statistical packages were used
in R software (version 4.0.2, R Core Team, Foundation for
Statistical Computing, Vienna, Austria) to download TCGA
data and generate forest plots, survival curves and the receiver
operating characteristic (ROC) curve. P-value < 0.05 was
considered significant.

RESULTS

Identification of Differentially
Expressed MRGs
A flowchart was graphed to describe our study more visually
in Figure 1. To identify genes involved in metabolism that
affect the prognosis of CC, the MRGs sets including 3,616
MRGs and 137 metabolic pathways were firstly analyzed using
KM survival analysis. A total of 189 MRGs include in 93
metabolic pathways were defined as prognostic MRGs. Then, we
identified the profiles of differentially expressed MRGs between
CC and normal cervical tissues (Figure 2A). There were 23

3https://gdc.cancer.gov/about-data/publications/panimmune
4https://cistrome.shinyapps.io/timer/
5https://gtexportal.org/home/datasets
6www.cbioportal.org
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FIGURE 1 | Schematic overview of the whole study.

differentially expressed MRGs, containing 17 downregulated and
six upregulated genes, were confirmed by consistency analysis
between gene expression and prognostic value (Figure 2B).
The results of GSEA analysis confirmed that the differential
MRGs were related to carbohydrate derivative metabolic
process, nucleobase containing small molecule metabolic process,
organophosphate metabolic process and lipid metabolic process
(Figures 2C–F).

Identification of the Prognostic
MRGs Model
The differentially expressed prognostic MRGs were analyzed
in a LASSO-Cox regression model (Figures 2G,H). Finally,
five candidate prognostic MRGs signature were identified,
namely, Prolyl 4-Hydroxylase Subunit Alpha 2 (P4HA2),
Prolyl 4-Hydroxylase Subunit Alpha 1 (P4HA1), ABL Proto-
Oncogene 2 (ABL2), Cytochrome P450 Family 4 Subfamily
F Member 12 (CYP4F12), and glycolipid transfer protein
(GLTP) (Figures 2I,J). Through KM survival analysis, we
further identified that high expression of P4HA2, P4HA1
and ABL2 with best cutoff value or median value were
unfavorable in CC; however, CYP4F12 and GLTP were

favorable prognostic factors for survival (Figure 3A and
Supplementary Figure 1A).

Then, we calculated a prognostic risk score with the following
formula: Risk Score = [P4HA2× (0.485)] + [P4HA1× (0.211)] +
[ABL2× (0.179)] + [CYP4F12× (−0.167)] + [GLTP× (−0.347)]
(Table 1). The patients were divided into high-risk and low-
risk groups according to the best cutoff values. The KM
analysis showed that patients (stage I–IV) in the high-risk group
had worse OS and DFS than patients in the low-risk group
(Figures 3B,C and Supplementary Figure 1B). All patients
with advanced-stage (IIB-IV) were further evaluated by the
risk score. Similar significant predictive power of the 5-MRGs
signature was found in both OS (n = 109) and DFS (n = 87)
(Figures 3D,E and Supplementary Figure 1C). At the same
time, OS was also significantly worse in the high-risk group
with the median cutoff value (Figures 3F,G). Significantly, the
overall 5-year survival rate was 47.548% /19.017 in high risk
group vs. 81.400%/78.739% in low risk group in all stage
patients; for advanced-stage (IIB-IV) patients, the overall 5-
year survival rate was 35.997%/7.856% in high risk group vs.
76.977%/67.389% in low risk group (Table 1). Additionally,
the area under the ROC curve (AUC) value of 0.783/0.737
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FIGURE 2 | Acquisition of differentially expressed MRGs and construction of the metabolic prognostic signature. (A) Clustered heatmaps to explain the different
expressions between CC and normal tissues. (B) The volcano plot of the 54 differentially expressed metabolic mRNAs. Red dots represent upregulated mRNAs, and
blue dots represent downregulated mRNAs. (C–F) Gene set enrichment analysis (GSEA) results of significant metabolic-associated biological processes. (G) The
LASSO was utilized to validate the parameter selection adjustment. (H) The distribution of LASSO coefficient profiles for metabolic model as prognostic factors.
Forest plots of hazard ratios of survival-associated MRGs obtained using univariate (I) and multivariate (J) Cox regression analysis.
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FIGURE 3 | The survival analysis for 5-MRGs and the nomograms for the prediction of OS. (A) KM curves for OS (top), and DFS (bottom) in patients from TCGA
database. (B,C) KM curves of OS and DFS for patients with stage I-IV divided by the best cutoff values. (D,E) KM curves of OS and DFS for patients with stage
IIB-IV divided by the best cutoff values. (F,G) KM curves of OS and DFS for stage I-IV or stage IIB-IV patients divided by the median values. (H,I) ROC curve shows
the sensitivity and specificity of MRGs model for predicting OS and DFS. (J) The forest plots of the correlation of clinical features and MRGs model with OS.
(K) Nomogram for predicting the 1-, 3- or 5-year OS.

TABLE 1 | Clinical significance of the 5-metabolic gene signature-based risk score in predicting prognosis of patients in cervical cancer.

Gene LASSO Coefficient Risk score Stage Index Cutoff High risk cases Low risk cases 5-Year survival rate P-value PPV% NPV%

High risk Low risk

P4HA2 0.0002338408 0.485 I-IV OS Median 152 152 47.548 81.400 <0.0001 34 86

P4HA1 0.0001516853 0.211 I-IV DFS Median 131 132 60.571 75.619 0.0367 23 84

ABL2 0.00009150268 0.179 I-IV OS Best 47 257 19.017 78.739 <0.0001 46 81

CYP4F12 −0.0002584956 −0.167 I-IV DFS Best 47 216 35.117 75.405 <0.0001 23 88

GLTP −0.00001773142 −0.347 IIB-IV OS Best 19 90 7.856 67.389 <0.0001 59 84

Risk score = Gene expression × Coefficient IIB-IV DFS Best 20 67 24.838 89.165 <0.0001 44 88

IIB-IV OS Median 54 55 35.997 76.977 <0.0001 45 86

IIB-IV DFS Median 43 44 61.485 87.767 0.0561 25 86

OS, overall survival; DFS, disease free survival; Coef: coefficient; PPV, positive predictive value; NPV, negative predictive value. The best cutoff of survival analysis was
calculated by R package.
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indicated great specificity and sensitivity of the MRGs signature
in predicting OS for patients with CC (Figures 3H,I and
Supplementary Figure 1D). As shown in Table 1, the negative
predictive values of MRGs model for DFS was 88% and the
negative predictive values for OS was 59%. Taken together,
these data may provide a powerful candidate prognostic MRGs
signature model to serve as a promising biomarker for predicting
outcomes in CC patients.

Independent Prognostic Validation of
MRGs Model and Construction of
Prognostic Nomograms
To explore whether MRGs model as an independent OS
predictor, offers a measurable method to estimate the prognosis
of CC patients, we constructed a nomogram that contained
the MRGs model and other clinical characteristics, including
age, nodal metastasis, grade, and stage. The multivariate Cox
regression showed high MRGs risk score (HR 2.50; 95% CI,
1.49–4.2) and nodal metastasis (HR 3.02; 95% CI, 1.49–6.1)
were independent prognostic factors (Figure 3J). A nomogram
including MRGs model and nodal metastasis could provide
a clinically applicable method for predicting the prognosis of
CC patients. The C-index was 0.71 (95% CI: 0.617–0.803)
for the TCGA cohorts (Figure 3K). Thus, our model had an
approximately moderate accuracy in the prognostic prediction of
CC to some extent.

Association Between the MRGs Model
and TME
To further understand the relationship between metabolic status
and TME in CC, immune score and stromal score were enrolled
into the analysis. Based on the ESTIMATE method, we obtained
stromal scores (range: −2586.99∼778.01) and immune scores
(range:−712.91∼141.82) for all these CC patients. Both immune
score and TME score of CC cases were significantly lower in
high-risk group than those of low-risk cases (P = 0.0003, 0.0174,
respectively), though no significant differences between high- and
low-risk group were found for stromal scores (Figures 4A–C).
The MRGs model were significantly negatively correlated with
the immune scores (Figure 4D).

The predictive value of stromal/immune score in evaluating
OS and DFS was explored based on TCGA database. As shown
in Figures 4E–G and Supplementary Figure 1E, the OS of
patients with high immune score or TME score was longer than
those in low score group; however, the patients with low stromal
score only showed a trend toward better OS. Consistently,
patients with low immune or TME score and high stromal score
was found to have significantly worse DFS (Figures 4H–J and
Supplementary Figure 1F).

The Immune Landscape in
Clinicopathologic Features, Including
MRGs Model
The tumor infiltrating immune cells were variously distributed
in different clinicopathologic characteristics. We found that
the infiltrating levels of memory activated CD4+T cells were

significantly lower and regulatory Tregs cells were higher in
primary tumor microenvironment (PTME) with metastasis
(Figure 4K). It’s worth noting that the infiltrating levels of resting
mast cells were significantly higher and CD8+T cells, memory
activated CD4+T cells, resting NK cells were lower in PTME
with lymph node metastasis (Figure 4L). The infiltrating levels
of neutrophils cells displayed downward trend and macrophage
(M0) cells, activated mast cells exhibited rising trend in the PTME
with margins involvement (Figure 4M, p > 0.05).

Furthermore, we calculated the relationship between MRGs
model and immune infiltration through CIBERSORT system.
A total of six subtypes of immune cells [memory B cells, follicular
helper T cell, regulatory T cells, macrophage (M0) cells, resting
mast cells and activated mast cells] had an obvious negative
correlation with MRGs model (Figure 5A). Meanwhile, there was
a significant positive correlation between naïve B cells and plasma
cells (Figure 5B).

Validation of MRGs Expression
All of the five hub prognostic MRGs were validated in protein and
mRNA levels using TCGA and The HPA database. We found that
P4HA2, P4HA1, and ABL2 had the higher expression levels in CC
tissues than that in normal cervical tissues, while CYP4F12 and
GLTP had the lower expression levels by immunohistochemistry
(IHC) analysis (Figure 6A). Furthermore, the RNA-seq results
showed that P4HA2, P4HA1, and CYP4F12 had the consistent
expression trend, while the mRNA expression of ABL2 and
GLTP in clinical sample tissues is just the opposite (Figure 6B).
However, we did not observe significant expression differences
of MRGs in patients with pathological staging, grade, and nodal
metastasis status (Supplementary Figure 1G).

Genetic alteration are considered to be a key factor in immune
tolerance breakdown (Small et al., 2018). Thus, the genetic
alteration in the MRGs model was analyzed with cBioPortal
software. Among them, ABL2, CYP4F12, and P4HA2 were
altered in six (2%) and four (1.3%) from the 308 patients,
respectively (Figure 6C). The amplification and deep deletion
were the most common genetic alteration forms (Figure 6C).

Pan-Cancer Analysis of P4HA2
Expression
P4HA2 showed consistent expression patterns at mRNA
and protein levels and was an independent risk factor for
evaluating patient prognosis based on the foregoing results
(Figures 2J, 6B). Thus, we selected P4HA2 to compare its
RNA sequencing data with that in corresponding normal
tissues across cancers in TCGA using TIMER (Figure 6D).
Consistent with the expression trend in CC, P4HA2 expression
was upregulated in BRCA (breast invasive carcinoma), CHOL
(cholangiocarcinoma), ESCA (esophageal carcinoma), HNSC
(head and neck cancer), KIRC (kidney renal clear cell
carcinoma), LIHC (liver hepatocellular carcinoma), PCPG
(pheochromocytoma and paraganglioma), STAD (stomach
adenocarcinoma), and THCA (thyroid carcinoma). The opposite
trend was only observed in PRAD (prostate adenocarcinoma).
Furthermore, the higher expression of P4HA2 was found
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FIGURE 4 | The clinical value of ESTIMATE score. (A–C) The relationship between immune, stromal, TME score and MRGs model. (D) The MRGs model were
significantly negatively correlated with the immune scores. (E–G) The predictive value of stromal, immune and TME score in evaluating OS. (H–J) The predictive
value of stromal, immune and TME score in evaluating DFS. (K–M) The immune landscape in clinicopathologic features: metastasis, lymph node metastasis, and
margins involvement.

in HNSC patients with HPV negative than those with HPV
positive. Collectively, P4HA2 acts as a tumor promoter in most
cancer types.

Association Between P4HA2 Expression
and Immune Infiltrates or Immune
Checkpoint Across Cancers
It has long been recognized that immune cells are intimately
associated with tumor cells. We first investigated the correlation
between infiltration of immune cell subtypes and P4HA2
expression is based on the xCell across 33 cancers (Figure 6E).
The results indicated that P4HA2 was notably correlated with
CD8+T cells in 11 cancer types, B cells and memory B cells in
12 cancer types, plasmacytoid dendritic cells and naïve CD4+ T
cells in 13 cancer types, and CD4+Th1 cells in 17 cancer types
(P < 0.0001). Three top cancer types, BRCA, LGG (lower grade

glioma) and THCA, exhibited most strongly correlation between
P4HA2 with immune cells (P < 0.0001). Moreover, P4HA2
expression was significantly correlated with the immune score in
12 cancer types, mircroenvironment score in 14 cancer types, and
stromal score in four cancer types (P < 0.0001). Consistent with
the result in Figures 4B,D, the P4HA2 expression are significantly
negatively correlated with the immune score and other immune
cell subtypes in CC.

To clarify the potential mechanisms underlying the
involvement of P4HA2 in the enhancement of immune cell
infiltration, we calculated the correlations of P4HA2 with
immune checkpoints (CD274, CTLA4, HAVCR2, LAG3,
PDCD1, PDCD1LG2, SIGLEC15, and TIGIT) (Figure 6F). All of
the eight immune checkpoints were significantly correlated with
the P4HA2 expression in BRCA, COAD (colon adenocarcinoma),
LGG, and PRAD. Furthermore, P4HA2 expression was positively
correlated with immune checkpoints in the majority of cancers.
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FIGURE 5 | The correlation between MRGs model and immune cells. (A) The relationships between MRGs model and infiltration levels of 22 subtypes of immune
cells calculated by CIBERSORT system. (B) Correlation heatmap analysis of immune cells.

Therefore, P4HA2 was not only correlated with the extent
of immune infiltration, but potentially played a key role in
regulating immune evasion.

Correlation of P4HA2 Expression With
Immune Infiltration
To further explore the potential value of combined
immunotherapy and targeting P4HA2 for the synergistic
treatment of CC, we obtained the coefficient of P4HA2 and
immune cells using TIMER database. No correlations was
found between P4HA2 and tumor purity (Figure 7A). The
results also revealed that P4HA2 was negatively correlated
with CD8+T cells, naïve CD8+T cells, central memory
CD8+T cells, effector memory CD8+T cells, naïve CD4+T
cells, CD4+Th1 cells, B cells, memory B cells, macrophage
(M0, M1, and M2), (activated) myeloid dendritic cells,

plasmacytoid dendritic cells, activated mast cells, and
follicular helper T cells (Figures 7B–D,F–I). On the contrary,
P4HA2 expression was positively correlated with CD4+T
cells, memory resting CD4+T cells, neutrophil cells, resting
mast cells, MDSC cells, and NK cells (Figures 7C,E,H,J,K).
Further information was available in the Supplementary
Figures 2A–G. Moreover, P4HA2 positively correlated
with endothelia cells (r = 0.299, P = 3.87e-07) and cancer
associated fibroblast (CAF) cells (r = 0.35, P = 2.10e-09)
(Figures 7L,M).

P4HA2 Is Associated With the
Microsatellite Instability and
Immune Checkpoint
Microsatellite instability (MSI), tumor mutational burden
(TMB) and PDL-1 are the most important biomarkers
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FIGURE 6 | Validation of expression and pan-analysis of immune infiltration. (A) The representative protein expression of the 5-MRGs in CC tissues and normal
tissues. (B) The mRNA expression levels of 5-MRGs. (C) Genetic alterations of the 5-MRGs in CC. (D) The differential expression between tumor and normal tissues
for P4HA2 across all TCGA tumors. (E) Correlation heatmap between P4HA2 and immune infiltration across all TCGA tumors. (F) Correlation heatmap between
P4HA2 and immune checkpoint genes across all TCGA tumors. *P < 0.05, **P < 0.01, ***P < 0.001. CNS, central nervous system; ACC, adrenocortical carcinoma;
BLCA, bladder urothelial carcinoma; CESC, cervical and endocervical cancer; DLBC, diffuse large B-cell lymphoma; GBM, glioblastoma multiforme; HNSC-HPVpos,
head and neck cancer-HPV positive; HNSC-HPVneg, head and neck cancer-HPV negative; KICH, kidney chromophobe; KIRP, kidney renal papillary cell carcinoma;
LAML, acute myeloid leukemia; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous
cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; TGCT, testicular
germ cell tumors; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma.
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FIGURE 7 | P4HA2 were noticeably correlated with immune infiltration. (A–K) The relationships between P4HA2 and immune cell infiltration levels calculated by
TIMER database. (L,M) The relationships between endothelial cells, cancer associated fibroblast cells and P4HA2 expression. (N,O) The relationships between
TMB, MSI, and P4HA2. (P) The differential expression between POLE/STK11 wild-type and POLE/STK11 mutation-type group for P4HA2.
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FIGURE 8 | P4HA2 might promote CC metastasis through regulating the LDs accumulation and immune escape. (A–D) The relationships between P4HA2 and
immune checkpoint genes. (E) The qRT-PCR results showed that P4HA2 was more highly expressed at the CC tissues than normal uterine cervical tissues. (F) LDs
were detected by double staining with BODIPY 493/503 dye and Hoechst in the indicated cells. Scale bars, 25 um. (G) P4HA2 inhibited SiHa cells invasion by
transwell assay. (H) The qRT-PCR analysis of PD-L1 expression in SiHa cells transfected with siP4HA2. **P < 0.01, ***P < 0.001.

for immune therapy in clinical practice (Mazloom et al.,
2020). According to correlation analysis, P4HA2 was
significantly positively correlated with MSI but not associated
with TMB (Figures 7N,O). In addition, patients with
POLE/ STK11 mutations are more sensitive to immune
checkpoint inhibitors (Skoulidis et al., 2018; Wang et al.,
2019). P4HA2 was upregulated in POLE/ STK11 mutation
groups of CC patients (Figure 7P). Next, we analyzed the
correlation between P4HA2 and immune checkpoint genes.
P4HA2 was positively correlated with CD274 (PD-L1) and
negatively correlated with CTLA4, LAG3, and PDCD1
(Figures 8A–D). However, P4HA2 was not significantly
correlated with HAVCR2, PDCD1LG2, TIGIT, and SIGLEC15
(Supplementary Figure 2H).

Knockdown of P4HA2 Might Inhibit
Tumor Metastasis Through Regulating
the Lipid Droplet Accumulation and
Immune Escape
To further confirm the effects of P4HA2 in regulating immune
microenvironment of CC, we firstly detected the expression
levels of P4HA2 in CC tissues and normal tissues. Our data
showed that P4HA2 was significantly higher in CC tissues
compared with normal tissues (Figure 8E). Next, the transfection
efficiencies of interference reagents for P4HA2 were confirmed
by qRT-PCR (Supplementary Figure 2I). Knockdown of P4HA2
strongly decreased the number of LDs in CC cells, suggesting
that P4HA2 modulated LD accumulation in vitro (Figure 8F).
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Transwell assays indicated that P4HA2 knockdown significantly
inhibited the invasion ability of SiHa and HeLa cells (Figure 8G).
Importantly, significant downregulation of PD-L1 was observed
in CC cells after P4HA2 knockdown (Figure 8H). Thus, we
reasoned that P4HA2 might inhibit CC metastasis through
regulating tumor immune escape.

DISCUSSION

The appropriate strategy for treating CC depends on tumor stage
at diagnosis, but the prognosis of patients with locally advanced
or metastatic disease remains dismal (Pfaendler and Tewari,
2016). Immunotherapy as the new frontier of the anticancer
treatment, is being an available option in treating this part of
CC patients (Ventriglia et al., 2017). Here, for the first time, we
identify the metabolic-related prognostic signature to provide an
effective prognostic model of CC patients and potential predictive
biomarkers of benefit from immunotherapy.

There is growing evidence that metabolism reprogramming
has considered as a hallmark of cancer (Ward and Thompson,
2012). It is worth nothing that the Warburg effect may contribute
to the early stages of tumor development. Instead, the lipid
metabolism confers a selective advantage for tumor metastasis
(Nath and Chan, 2016; Pascual et al., 2016). Our previous
studies had been also confirmed that non-coding RNA mediated
FA metabolism reprogramming could promote the process of
lymph node metastasis (Shang et al., 2018). To establish an
effective and simple scheme to explore the metabolic status
and evaluate clinical outcomes of CC patients, we identify a
prognostic MRGs model and patients with high risk scores
exhibit a poor prognosis. Moreover, a nomograph composed
of MRGs model and other clinical factors was constructed to
better predict the OS. Our results illustrated that MRGs model
could be applied as independent prognostic factors and indexes of
immune infiltration status. Other study have found that immune
score can also be used to evaluate the prognosis of CC patients
(Chen et al., 2021). However, a larger sample size is needed to
evaluate whether MRGs scores can substitute immune scores.

Oncogene-driven metabolism reprogramming can
profoundly influence the TME to limit immune responses
and put up more barriers to cancer therapy (Bader et al.,
2020). And that’s why we focus on the potential of targeting
metabolic pathways to improve the TME for favoring cancer
immunotherapy. LDs as cytoplasmic lipid-rich organelles,
have been verified to play an indispensable role in tumor
pre-metastatic microenvironment (Shang et al., 2020). In
our research, the MRGs were mainly enriched on the lipid
metabolism pathway. Based on the MRGs model, the risk scores
were inversely related to the immune score and TME scores.
Meanwhile, memory B cells, follicular helper T cells, regulatory
Tregs cells and resting mast cells were all negatively associated
with the risk scores. Previous studies also showed that inhibition
of glucose metabolism results in a drastic reduction of the
frequency and number of follicular helper T cells (Choi et al.,
2018). Thus, interventions targeting the metabolic pathways
might reshape the immune state of the TME.

Collagen prolyl 4-hydroxylases (P4Hs) are located within
the lumen of the endoplasmic reticulum and catalyzes post-
translational formation of 4-hydroxyproline in -Xaa-Pro-Gly-
sequences in collagens (Kivirikko and Pihlajaniemi, 1998).
P4HA2 as one of the subtypes of collagen prolyl-4-hydroxylases α

isoforms, was activated by HIF-1 to inducing extracellular matrix
remodeling under hypoxic conditions and promoting cancer
metastasis (Gilkes et al., 2013; Xiong et al., 2014). Our research
indicated that P4HA2 was a MRG with independent prognostic
value. Significant missense mutation in P4HA2 was observed,
and different protein or mRNA expression levels were verified
between the CC tissues and normal tissues. Consistent with the
study of Cao et al. (2020), P4HA2 was markedly upregulated
in CC tissues and functions as an oncogene in promoting cell
metastasis by inducing epithelial-mesenchymal transition.

With the help of co-expression analysis, P4HA2 was predicted
to be highly connected with multiple immune infiltration cells,
including CD8+T cells, CD4+ T cells, B cells, macrophage
cells (M0, M1, and M2), dendritic cells, mast cells, neutrophil
cells, and NK cells. Moreover, CD8+T cells, memory activated
CD4+T cells, resting NK cells and resting mast cells exhibited
a significantly difference in evaluating lymph node metastasis.
Our results were in accordance with previous research showing
that infiltration with CD8+T cells was negatively associated
with pelvic lymph node metastasis and predicted poor survival
outcomes in CC patients (Ohno et al., 2020). CD8+T cells are
preferred immune cells for targeting cancer. PD-1 and CTLA-
4 can be targeted for relieving CD8+T cells exhaustion and
thereby eliminating antigen-expressing cancer cells (Farhood
et al., 2019). Approximately 96% patients with locally advanced
CC expressed PD-L1 and tended to have a worse progression-free
survival (Enwere et al., 2017). In this study, P4HA2 was negatively
associated with CD8+T cells and positively correlated with
CD274 (PD-L1) and CAF cells. As previous research illustrate,
CAFs could specifically excluding CD8+ T cells from tumors to
inhibit immune response and promoted immune evasion (Ford
et al., 2020). Thus, P4HA2 might be a highly reliable predictive
biomarkers to facilitate patient selection for immune checkpoint
inhibitor-based therapies.

There were still several limitations to our research. First,
the verification with another independent database was lacked.
Second, although the LDs accumulation modulated by P4HA2
had been validate though BODIPY 493/503 staining, the further
experimental exploration was still needed to confirm the potential
mechanism and clinical utility. At the last, our work only reflect
certain aspects of the immune infiltration from the perspective of
metabolism reprogramming.

CONCLUSION

In conclusion, we identified 5-MRGs model and a prognostic
nomogram to predict survival of CC patients, which could
reflect the immune infiltration status. Our nomogram including
MRGs model may provide a reference tool for clinicians to
guide follow-ups for CC patients. The hub gene-P4HA2 could
modulate the LDs accumulation in CC cells and was closely
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associated with tumor infiltrating cells lymphocytes and immune
checkpoint genes. This study provides a new and feasible method
for evaluating the prognosis of CC and explores the potential
value to navigate metabolic pathways to enhance anti-tumor
immunity and immunotherapy.
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