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Abstract

Dysregulated microRNA (miRNA) expression is a well-established feature of human cancer. However, the role of specific
miRNAs in determining cancer outcomes remains unclear. Using Level 3 expression data from the Cancer Genome Atlas
(TCGA), we identified 61 miRNAs that are associated with overall survival in 469 ovarian cancers profiled by microarray
(p,0.01). We also identified 12 miRNAs that are associated with survival when miRNAs were profiled in the same specimens
using Next Generation Sequencing (miRNA-Seq) (p,0.01). Surprisingly, only 1 miRNA transcript is associated with ovarian
cancer survival in both datasets. Our analyses indicate that this discrepancy is due to the fact that miRNA levels reported by
the two platforms correlate poorly, even after correcting for potential issues inherent to signal detection algorithms.
Corrections for false discovery and microRNA abundance had minimal impact on this discrepancy. Further investigation is
warranted.

Citation: Wan Y-W, Mach CM, Allen GI, Anderson ML, Liu Z (2014) On the Reproducibility of TCGA Ovarian Cancer MicroRNA Profiles. PLoS ONE 9(1): e87782.
doi:10.1371/journal.pone.0087782

Editor: Amanda Ewart Toland, Ohio State University Medical Center, United States of America

Received November 6, 2013; Accepted January 1, 2014; Published January 29, 2014

Copyright: � 2014 Wan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported in part through the Collaborative Advances in Biomedical Computing Seed Funding Program at the Ken Kennedy Institute for
Information Technology at Rice University supported by the John and Ann Doerr Fund for Computational Biomedicine and through the Center for Computational
and Integrative Biomedical Research Seed Funding Program at Baylor College of Medicine. GA is also partially supported by NSF DMS-1209017. ZD is supported
by the Houston Bioinformatics Endowment and NSF DMS-1263932. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Zhandonl@bcm.edu (ZL); matthew@bcm.edu (MLA)

Introduction

MicroRNAs (miRNAs) are endogenous RNA transcripts that

regulate diverse patterns of gene expression [1]. Most human

miRNAs are transcribed as long precursors known as pri-miRNAs.

Starting in the nucleus, pri-miRNAs undergo a series of processing

events that ultimately result in the cytoplasmic release of mature

transcripts ,22 nucleotides in length. Mature miRNAs catalyze

translational inhibition by directly binding to messenger RNAs

(mRNAs) and promoting their degradation [2]. Recent data

indicate that miRNAs can inhibit translation independent of their

ability to induce mRNA degradation.

Patterns of miRNA expression have been extensively profiled in

human tissues. It is now clear that dysregulated miRNA expression

is a feature of many different cancers, including carcinomas of the

breast, ovary and lung [3–5]. However, determining the mech-

anisms by which individual miRNAs contribute to cancer

outcomes remains a key challenge for biologists hoping to exploit

their power. Recently, the Cancer Genome Atlas Consortium

(TCGA) reported that ovarian cancers cluster into distinct

molecular subtypes based on their patterns of gene and microRNA

expression [6]. However, we have discovered an alarming lack of

consistency between the microRNA (miRNA) expression profiles

initially used by the TCGA and a subsequent profile of miRNA

expression generated by this group for the same ovarian cancer

specimens using miRNA-Seq. As these observations challenge the

validity of the underlying data, they also suggest that scientific

discoveries based solely on this data should be interpreted with

caution.

Results

To delineate miRNAs associated with ovarian cancer patient

survival, we performed a univariate Cox regression analysis using

Level 3 TCGA miRNA data for 469 ovarian cancers profiled

using Agilent microarray technology. Initial regression analysis

was further refined by use of the Benjamini–Hochberg (BH)

procedure to adjust for multiple hypothesis testing [7]. We found

that 16 mature miRNAs are significantly associated with ovarian

cancer survival (FDR,0.01) (Figure 1A). Of these, miR-505, miR-

652 and miR-551b* demonstrate the most robust associations.

Hazard ratios (HR) calculated for these miRNAs were 21.73,

21.8, and 9.3, respectively. This result indicates that each of these

miRNAs potentially plays an important role in determining

ovarian cancer survival.
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To validate these observations, we next interrogated a second

dataset of miRNA expression generated for the same ovarian

cancer specimens using Next Generation Sequencing (miRNA-

Seq). The TCGA ovarian cancer project is unique in that miRNA

expression has been profiled using both miRNA array and

miRNA-Seq. These technically distinct platforms create a unique

opportunity to validate discoveries made using one dataset against

the other. Ideally, the results obtained should correlate well. Using

Cox Proportional Hazards analysis, we found that 4 miRNA

transcripts are associated with survival when miRNAs were

profiled in ovarian cancers using miRNA-Seq at an identical

FDR level (Figure 1B). There is no overlap between the results

obtained from these two platforms, despite the fact that both

datasets were generated from the same samples.

To determine whether the microarray and Next Gen platforms

will give more consistent results when analyzed using a relaxed

threshold, we reduced the p-value threshold used for our analyses

to 0.01. This resulted in more miRNAs significantly associated

with patient survival in both datasets. For example, we identified

61 miRNAs from data generated using the array platform.

However, the hazard ratios estimated for the 12 miRNAs

identified from miRNA-Seq data are all very close to 1.0. Only

miR-652 is associated with survival in both the miRNA-Seq and

microarray datasets. To correct for multiple hypothesis testing, we

adjusted our Cox model p-values using Benjamini–Hochberg

procedure [7]. After completing these analyses, no miRNAs are

correlated with survival in both datasets when the false discovery

rate was set at 10%.

To determine whether choice of a multiple hypothesis

adjustment procedure contributes to these results, we re-analyzed

the TCGA data using an alternative q-value estimation procedure

[8]. In addition, we computed the percentage of overlapping

miRNAs at different FDR or p-value cut-off. Our results indicate

that the limited number of overlapping miRNAs between the two

platforms is independent of the choice of multiple hypothesis

adjustment procedure or cut-off thresholds (Figure 1C).

To elucidate potential causes for this unexpected discrepancy,

we examined the reproducibility of miRNA expression between

the two TCGA files that describe this data. Pearson correlation

coefficients (r) were calculated for each of the 359 mature human

miRNAs for which Level 3 expression data was available in both

the miRNA-Seq and microarray databases. We found that

correlation coefficients for levels of individual miRNAs reported

by each technique varied widely. For example, miR-505 is the

miRNA most robustly associated with patient outcome in our

analyses of the miRNA array data (HR = 21.7, p,9e-5).

However, when assessed using sequencing data, the hazard ratio

for mir-505 was 0.998 (p = 0.03). Levels of miR-505 measured by

miRNA-array and miRNA-Seq data correlated only modestly

(r = 0.59) (Figure 2B). Discrepancies were also observed in a

number of other miRNAs that have been previously implicated in

ovarian cancer, such as miR-143 [9]. The correlation coefficient

for miR-143 in our analyses was 0.39 (Figure 2C). Another

miRNA well-studied in ovarian cancer is miR-141, which has

been previously reported to target p38a and modulate the

oxidative stress response [10,11]. However, the correlation

between levels of miR-141 in TCGA microarray and miRNA-

Seq expression data is only 0.32 (Figure 2D). Overall, we found

that correlation coefficients for ,72% of miRNAs profiled in both

datasets were #0.5 (Figure 3A, 3C), indicating poor reproducibil-

ity. Only 22% of the mRNAs measured by Agilent microarray and

Illumina HiSeq using the same ovarian cancer specimens correlate

poorly (r#0.5; Figure 3B, 3C). Thus, the discrepancy we report

here appears to be limited to the TCGA miRNA dataset.

One potential cause for poor reproducibility may be the signal

detection algorithm used to report levels of miRNA expression.

Level 3 TCGA miRNA data are reported in two formats. The

first, labeled as a ‘‘Quantification Data,’’ reports levels for

individual human miRNAs. However, one of the advantages of

miRNA-Seq is that transcripts retrieved by this technique can be

precisely mapped. A second file, labeled as ‘‘Isoform Data," has

also been released by the TCGA. This file reports read counts for

transcripts according to their genomic location. As part of this file,

transcripts are identified as either mature miRNA, miRNA* (3p

arms of human miRNAs), stem-loop transcript or precursor. While

working through this data, we learned that miRNA levels reported

in the TCGA quantification file include read counts for miRNA

precursors as well as mature miRNAs. Because miRNA precursors

are currently thought to lack biologic activity, inclusion of

precursors with counts for mature miRNAs could confound

survival analyses. To address this issue, we retrieved read counts

for mature miRNAs only from the isoform data file and repeated

our analyses. However, the proportion of miRNA correlation

coefficients #0.5 remained as high as 71% despite the use of this

more precisely defined data.

Figure 1. MicroRNAs associated with ovarian cancer survival. P-value plots of univariate Cox regression for microRNAs associated with
ovarian cancer survival identified by microarray (A) or miRNA-Seq (B) data. P-value,0.01 (Solid line). False discovery rate (FDR),0.1 (Dotted line). In
both A&B, blue dots indicate miRNAs associated with survival by miRNA array, while red dots indicate miRNAs associated with survival by miR-Seq.
Green stars are miRNAs associated with survival in both datasets. (C) percentage of overlapping miRNAs between the array and NGS seq platform at
different cut-off threshold for Cox p-values, BH adjusted FDR, and Storey q-values.
doi:10.1371/journal.pone.0087782.g001
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A second possible explanation for the observed discrepancy

might be that correlations between measures of miRNA expression

depend on the frequency with which individual miRNA transcripts

are expressed. If so, infrequently expressed miRNAs might be

reported by one or both of the platforms used to profile miRNA

expression randomly or inaccurately. To explore this hypothesis,

Figure 2. Scatter-plots of microRNA expression measured by microarray and miRNA-Seq. (A) miR-98, (B) miR-505 (C) miR-143 and (D)
miR-141.
doi:10.1371/journal.pone.0087782.g002

Figure 3. Distribution of correlations between microarray and sequencing profiles for miRNA and gene expression. (A) Histogram of
correlation coefficients for individual miRNAs measured by miRNA-Seq and miRNA array. (B) Histogram of correlation coefficients for mRNAs profiled
by Illumina HiSeq and mRNA array. (C) The empirical cumulative distribution function (ECDF) of the correlation between array and sequencing for
miRNA (black), filtered miRNA (color) and mRNA (gray) measurements. Nearly, 72% of miRNAs demonstrate a correlation coefficient #0.5 whereas
22% of RNAs have a correlation coefficient #0.5. When filtered based on expression level, the percentage of miRNAs with correlation #0.5 saturated
to 56%.
doi:10.1371/journal.pone.0087782.g003
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we re-calculated correlation coefficients for each miRNA identi-

fied by both platforms after excluding any transcript in the

miRNA-Seq dataset with a read count less than 5. This reduced

the number of distinct miRNAs available for analysis in the

miRNA-Seq data file from 705 to 380. However, the proportion of

miRNAs with correlation coefficients #0.5 also decreased from

72% to 56%. Similarly removing poorly expressed transcripts from

the pool of mRNAs profiled by Illumina HiSeq reduces the

proportion of mRNAs whose correlation coefficients #0.5 from

22% to 20%. These observations indicate that problems detecting

infrequently expressed miRNA may impact the ability or one or

both platforms to reliably report miRNA expression. However, the

fact that more than half of miRNA transcripts still had correlation

coefficients #0.5 even after correcting for this issue indicates that

poorly expressed transcripts are not solely responsible for the

discordant patterns of miRNA expression reported by the two

platforms.

To explore this issue more in depth, we calculated the range of

log2 transformed expression levels for all microRNAs in the two

datasets. We also developed an algorithm that allowed us to vary

the threshold of expression acceptable for inclusion for analysis

from a minimum value (0) to the mean log2 transformed

expression level of all transcripts. For each threshold, we only

considered microRNAs expressed above the threshold and

recomputed the correlation between the two platforms. This

analysis reveals that the exclusion of miRNA transcripts expressed

less frequently than the mean only slightly improves the overall

correlation between the two platforms used to profile miRNA

expression (Figure 3C). As shown graphically, we found that 71%

of the miRNA demonstrate correlation less than 0.5 without the

use of any filtering. By utilizing an expression level filter as

described, we found that the proportion of transcripts with

correlation coefficients across the two platforms saturated at 56%.

This is still far higher than the 22% observed with mRNA

expression profiling systems.

Discussion

Much to our surprise, our analyses indicate that the microRNAs

associated with survival in ovarian cancer depend highly on

whether specimens were profiled by the TCGA using microarray

or miRNA-Seq. Our analyses indicate that this discrepancy exists

because miRNA-Seq and microarray have generated very

different profiles of miRNA expression, even though the data is

based on the same ovarian cancer specimens. We do not currently

have a clear explanation for why miRNA expression profiles

reported by the TCGA are discordant. However, understanding

this discrepancy will ultimately be important for identifying which

miRNAs if any are important for determining ovarian cancer

outcomes.

A variety of DNA microarray technologies have been previously

validated by investigators examining within platform and cross-

platform reproducibility [12–14]. Spearman correlation coeffi-

cients reported in these studies range from 0.59 to 0.94 with a

mean of 0.82. These results are similar to what we have observed

for correlations between patterns of gene expression profiled using

microarray and Illumina HiSeq platforms by the TCGA. Both

miRNA-Seq and microarray technologies are associated with

multiple technical limitations that might account for the differ-

ences we have observed. For example, cross-hybridization is a

well-recognized issue that can reduce signal specificity when

profiling RNA transcripts by microarray [15]. However, it seems

unlikely that cross-hybridization is a primary cause of the

discrepancy we observed, as the number of transcripts correlated

with survival by array is greater than the number associated with

survival by miRNA-Seq. One alternate explanation might be that

the signal extraction algorithm used to analyze miRNA-Seq data

does not accurately report miRNA levels. In general, miRNA-Seq

allows for precise transcript mapping with much greater

confidence. The signal extraction algorithm currently used by

the TCGA to report miRNA levels includes read counts for both a

mature miRNA and its corresponding precursor. Our analyses

indicate that precursors account for fewer than 1% of the total

miRNA counts in the TCGA isoform file. This likely reflects the

use of size-fractionated RNA to prepare libraries for miRNA-Seq

[5]. Thus, their inclusion or exclusion in analyses of the TCGA

dataset likely has little bearing on which miRNAs are associated

with ovarian cancer survival.

Collectively, these observations underscore the urgent need for

well-defined algorithms for processing signals generated by

miRNA-Seq and transcriptional profiling platforms. Our under-

standing is that the same analyses have been performed by TCGA

for other cancers, including colon, breast and lung [16–18].

Because miRNA expression in these other cancers has not been

profiled by microarray, it is not possible to repeat our analyses to

determine whether the discrepancy we report is observed in other

cancers. Ultimately, consistent and reliable genomic data is critical

for constructing testable hypotheses and achieving the full

potential of the TCGA. Our observations identify an important

hazard of which investigators should be aware as they utilize the

TCGA miRNA data to study ovarian cancer. For the short term,

knowledge of this hazard underscores the need to validate

observations made with one or both of TCGA miRNA datasets.

However, for the long term, resolution of this discrepancy will be

important for determining the most effective platform and signal

extraction algorithms for profiling miRNA expression as part of

large scale genomic profiling efforts.

Materials and Methods

Gene and microRNA Expression Data
Level 3 data documenting patterns of gene expression for 296

ovarian cancer specimens profiled using Agilent G4502A arrays

and Illumina HiSeq were downloaded from the TCGA data

portal. Level 3 microRNA expression data were also retrieved for

469 ovarian cancer specimens profiled using the Agilent 4X15k

array and miRNA-Seq. Level 3 miRNA data profiled by miRNA-

Seq were retrieved from both the miRNA quantification and

isoform files available at the TCGA data portal along with

metafiles annotating each dataset. Permission to access all data was

obtained from the Data Access Committee for the National Center

for Biotechnology Information Genotypes and Phenotypes Data-

base (dbGAP) at the National Institutes of Health.

Survival Analyses
Coded patient survival data was extracted from the TCGA

clinical information file. A Cox Proportional Hazards model was

used to estimate association between levels of individual miRNAs.

Patient survival was calculated as time in months elapsed from

date of diagnosis until date of last contact.

Statistical Analyses
Spearman’s rank correlation coefficients, histograms, and the

empirical cumulative distribution were computed and plotted for

each miRNA and gene using r. Sequencing data were log

transformed for plotting. Both direct read counts and counts

normalized according to millions of miRNAs were examined as

part of our analyses. All analyses were performed using both raw

TCGA miRNA Reproducibility
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and normalized read counts reported as part of the TCGA

miRNA-Seq datasets.
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