RESEARCH LETTER

Critical Illness Among Patients Hospitalized With Acute COVID-19 With and Without Congenital Heart Defects

Karrie F. Downing[®], MPH; Regina M. Simeone, PhD; Matthew E. Oster[®], MD, MPH; Sherry L. Farr, PhD

G iven the increased risk for severe COVID-19 illness in individuals with cardiac disease, individuals with congenital heart defects (CHDs) might have increased risk of severe illness from COVID-19 as well.¹ Most publications on CHD and COVID-19 illness have been restricted to patients at congenital cardiology centers, limiting generalizability, because many individuals with CHD do not receive specialized cardiology care.²⁻⁴ Furthermore, the studies did not include comparison groups without CHD or adjust for differences in established risk factors for critical COVID-19,⁴ and comparisons to general population estimates may be confounded.

We compared the period prevalence of critical COVID-19 illness (intensive care unit [ICU] admission, invasive mechanical ventilation [IMV], or death) among hospitalized patients with COVID-19 with and without CHD. Among patients with CHD, we examined characteristics associated with critical COVID-19 illness.

We used data on inpatient encounters from March 2020 through January 2021 from the Premier Healthcare Database Special COVID-19 Release, an all-payor database representing \approx 20% of US hospital admissions. Data and study materials will not be provided because of licensing restrictions. All 1- to 64-year-old patients with COVID-19 (identified by \geq 1 inpatient *ICD-10-CM* [International Classification of Diseases, 10th revision, Clinical Modification] code of U07.1 or, from March to April 2020, B97.29 [the recommended code before U07.1]) were included. Patients missing classification of sex were excluded (<0.1%). CHD was identified by \geq 1 inpatient ICD-10-CM code between Q20.x and Q26.x (excluding nonspecific codes) at any time in the study period and categorized by anatomic complexity using a published algorithm.⁵ ICU admission, IMV, and death were defined as ≥ 1 inpatient code for the outcome in the same encounter as COVID-19 diagnosis. Other characteristics included other known comorbidities (ie, ≥ 1 inpatient diagnosis of pulmonary hypertension, heart failure, Down syndrome, type 1 or 2 diabetes, or obesity), age group, sex, race/ethnicity, payor type, and hospital urbanicity.

Among hospitalized patients with COVID-19, characteristics and critical COVID-19 outcomes were assessed by CHD status. Using modified Poisson regression accounting for within-hospital correlation, adjusted prevalence ratios (aPRs) and 95% CIs were calculated for each outcome comparing patients with versus those without CHD, adjusting for age group, sex, race/ethnicity, and payor type. Among patients with COVID-19 with CHD, critical COVID-19 outcomes were assessed by characteristics using crude prevalence ratios (cPRs; accounting for within-hospital correlation). Deemed public health surveillance by the US Centers for Disease Control and Prevention as defined in 45 CFR 46.102(I) (2), this activity was exempt from institutional review board review and written informed consent.

Of 235 638 hospitalized patients with COVID-19 who were 1 to 64 years of age, 421 (0.2%) had CHD (consistent with CHD prevalence in non-COVID-19-related health care data sets⁵). Overall, 68.4% with and 58.8% without CHD had \geq 1 comorbidity and 12.8% with CHD were 1 to 17 years of age compared with 1.4% without CHD (Table). More than half of the patients with COVID-19 with CHD were admitted to the ICU, 24.0% required IMV, and 11.2% died during hospitalization. After

Key Words: COVID-19
heart defects, congenital risk factors

Correspondence to: Karrie F. Downing, MPH, 4770 Buford Highway, S106-3, Atlanta, GA 30341. Email eocevent397@cdc.gov

For Sources of Funding and Disclosures, see page 1184.

^{© 2022} American Heart Association, Inc.

Circulation is available at www.ahajournals.org/journal/circ

Table. Period Prevalence of Intensive Care Unit Admission, Invasive Mechanical Ventilation, and Death Among Patients Hospitalized With COVID-19 With and Without CHDs, Overall and by Patient Characteristics

	Total				Inten	sive care u	ınit admissi	ion		Invas	ive mecha	anical venti	lation		Death				
Character-	CHD No CHD				CHD No CHD					CHD N		No CHD	No CHD		СНД)	No CHD		
		Col-		Col-															
istics	N	umn %	N	umn %	N	Row %	N	Row %	aPR (CI)	N	Row %	N	Row %	aPR (CI)	N	Row %	N	Row %	aPR (CI)
Total	421	100	235217	100	227	53.9	100270	42.6	1.4 (1.2–1.6)	101	24.0	34111	14.5	1.8 (1.3–2.6)	47	11.2	16237	6.9	2.0 (1.3–3.2
CHD severity	/*		1				1		1			1						1	1
Complex	80	19.0	NA		43	53.8	NA		1.4 (1.1–1.8)	15	18.8	NA		1.9 (1.1–3.3)	NR 43 12.6			NA	1.5 (0.4–6.1
Not com- plex	341	81.0			184	54.0			1.3 (1.1–1.6)	86	25.2			1.8 (1.2–2.7)					2.1 (1.3–3.4
Other known	comorb	oidities†																	
Heart failure	132	31.4	22126	9.4	83	62.9	13085	59.1	1.0 (0.9–1.2)	38	28.8	5922	26.8	1.0 (0.7–1.5)	18	13.6	3390	15.3	1.0 (0.6-1.7
Pulmonary hyperten- sion	67	15.9	5405	2.3	33	49.3	3474	64.3	0.8 (0.6-1.0)	20	29.9	1745	32.3	0.9 (0.6–1.5)	13	19.4	1015	18.8	1.2 (0.7–2.2
Down syn- drome‡	47	11.2	923	0.4	29	61.7	497	53.8	1.1 (0.9–1.4)	17	36.2	236	25.6	1.4 (0.9–2.1)	10	21.3	124	13.4	1.7 (0.9–3.0
Diabe- tes§	127	30.2	87 272	37.1	79	62.2	44679	51.2	1.2 (1.0-1.5)	41	32.3	17450	20.0	1.6 (1.0-2.6)	21	16.5	8974	10.3	1.7 (0.8–3.7
Obesity	134	31.8	86646	36.8	68	50.7	42195	48.7	1.2 (0.9–1.5)	37	27.6	16122	18.6	1.5 (0.9–2.5)	18	13.4	7502	8.7	1.7 (0.9–3.3
Any of the above	288	68.4	138192	58.8	166	57.6	67886	49.1	1.2 (1.1–1.4)	83	28.8	25558	18.5	1.6 (1.1-2.3)	41	14.2	12625	9.1	1.8 (1.1–3.3
None of the above	133	31.6	138192	41.2	61	45.9	32384	33.4	1.5 (1.2-1.7)	18	13.5	8553	8.8	1.7 (1.0-2.7)	NR	1	3612	3.7	1.8 (0.8–3.8
Age group, y			1	1		1	1		1				1	L					
1-17	54	12.8	3281	1.4	30	55.6	1048	31.9	1.6 (1.1-2.3)	10	18.5	214	6.5	2.7 (1.5-5.1)	NR 28		28	0.9	#
18-29	59	14.0	22469	9.6	30	50.8	5976	26.6	1.5 (1.2-2.0)	10	16.9	1363	6.1	2.2 (1.2-4.1)	NR 280		280	1.2	4.0 (1.6–10.1
30-49	135	32.1	79014	33.6	68	50.4	31 667	40.1	1.3 (1.1–1.6)	30	22.2	9156	11.6	1.8 (1.1–2.9)	13	9.6	3249	4.1	2.2 (1.1-4.5
50-64	173	41.1	130453	55.5	99	57.2	61 579	47.2	1.3 (1.1–1.5)	51	29.5	23 378	17.9	1.6 (1.1-2.4)	30	17.3	12680	9.7	1.9 (1.1–3.1
Sex						1					1		1			1		1	1
Male	255	60.6	123395	52.5	148	58.0	58245	47.2	1.3 (1.2–1.5)	67	26.3	21 172	17.2	1.7 (1.2–2.4)	31	12.2	10402	8.4	1.9 (1.1–3.2
Female	166	39.4	111822	47.5	79	47.6	42025	37.6	1.4 (1.1–1.7)	34	20.5	12939	11.6	2.0 (1.2-3.2)	16	9.6	5835	5.2	2.2 (1.2–3.8
Race/ethnicit	yll																		
Non- Hispanic White	233	55.3	98894	42.0	124	53.2	42828	43.3	1.3 (1.1–1.5)	54	23.2	13927	14.1	1.7 (1.2–2.4)	27	11.6	6301	6.4	2.0 (1.2–3.2
Non- Hispanic	69	16.4	55900	23.8	43	62.3	23 270	41.6	1.5 (1.2-1.9)	19	27.5	7978	14.3	2.2 (1.5–3.1)	NR		3948	7.1	1.6 (0.7–3.5
Black Hispanic	80	19.5	56464	24.0	40	50.0	24204	42.9	1.3	17	21.3	8117	14.4	1.8	NR		3969	7.0	1.6
Devent									(1.0-1.8)					(0.7-4.4)					(0.5–5.8
Payor type	227	53.9	98914	42.1	126	55.5	42336	42.8	1.4	56	24.7	16163	16.3	1.8	28	12.3	8509	8.6	2.0
Any public									(1.2-1.6)					(1.3–2.4)					(1.3–3.1
Private, no public	164	39.0	104314	44.3	84	51.2	43882	42.1	1.3 (1.1–1.5)	35	21.3	13605	13.0	1.7 (1.0-2.7)	14 ND	8.5	5742	5.5	1.7 (0.8–3.9
Other/ none	30	7.1	31989	13.6	17	56.7	14052	43.9	1.5 (1.1–2.1)	10	33.3	4343	13.6	2.5 (1.2–5.1)	NR		1986	6.2	2.9 (1.3–6.5
Location¶		4.0-																	
Rural‡	44	10.5	25859	11.0	23	52.3	11002	42.5	1.3 (0.9–1.8)	NR		3678	14.2	1.1 (0.5–2.4)	NR	L	1540	6.0	0.9 (0.2–5.1
Urban	377	89.5	209358	89.0	204	54.1	89268	42.6	1.4 (1.2–1.6)	95	25.2	30433	14.5	1.9 (1.3–2.7)	45	11.9	14697	7.0	2.1 (1.3–3.4

Data from the US Premier Healthcare Database Special COVID-19 Release (March 2020–January 2021). aPR indicates adjusted prevalence ratio (models included age group, sex, race/ethnicity, and payor type, and accounted for within-hospital correlation); CHD, congenital heart defect; NA, not applicable; and NR, not reported because cell has <10 observations.

*To estimate aPRs for CHD severity, patients with CHD in each stratum of CHD severity were compared with those without CHD overall: 100270 (42.6%) for intensive care unit admission, 34 111 (14.5%) for invasive mechanical ventilation, and 16 237 (6.9%) for death.

†Comorbidity frequencies are not mutually exclusive.

+For convergence of the model for death outcome, age categories were collapsed (<29, 30-49, and 50-64 years) and payor type was not included.

§Type 1 or type 2 diabetes.

|A total of 39 patients with CHD and 23959 patients without CHD were of other or unknown non-Hispanic race.

ILocation refers to the location of the patient's health care provider, not the patient's residence.

#No deaths occurred among 1- to 17-year-old patients with CHD.

Nonstandard Abbreviations and Acronyms

aPR	adjusted prevalence ratio
CHD	congenital heart defect
ICD-10-CM	International Classification of Diseases, 10th revision, Clinical Modification
ICU	intensive care unit
IMV	invasive mechanical ventilation

adjustment, ICU admission (aPR=1.4), IMV (aPR=1.8), and death (aPR=2.0) were more prevalent among patients with COVID-19 with CHD than without CHD. When stratified by high-risk characteristics, prevalence estimates for ICU admissions, IMV, and death remained higher among patients with COVID-19 with CHD than without CHD across nearly all strata, including younger age groups and those without heart failure, pulmonary hypertension, Down syndrome, diabetes, or obesity.

Among the 421 patients with CHD, critical COVID-19 outcomes were associated with having comorbidities (1 comorbidity: IMV, cPR=2.5; \geq 2 comorbidities: ICU, cPR=1.3; IMV, cPR=3.3; death, cPR=4.0), male sex (ICU, cPR=1.3), and age 50 to 64 years compared with 18 to 29 years (IMV, cPR=3.0; data not shown; all *P*<0.05).

The frequency of critical COVID-19 illness among patients with CHD is similar to previous reports, yet most, but not all,⁴ previous publications concluded that outcomes among patients with CHD did not differ from those of the general population.²⁻⁴ However, previous reports did not include a comparison group without CHD or adjust for differences in age, comorbidities, race/ ethnicity, sex, payor type, or location. Instead, authors compared their findings with published reports of older populations with more comorbidities than their patients with CHD or compared crude estimates. The current analyses compared period prevalence of critical COVID-19 between patients with and without CHD at the same hospitals, adjusted for and stratified by established highrisk factors for severe COVID-19 infection, and found up to 2 times higher adjusted prevalence of critical COVID-19 among patients with CHD, although results are specific to hospitalized patients.

ICU admission (aPR=1.4), IMV (aPR=1.8), and death (aPR=2.0) were more prevalent among patients hospitalized with COVID-19 with CHD than without CHD after adjusting for patient characteristics. Results held among younger patients and patients without comorbidities. Among patients hospitalized with COVID-19 with CHD, comorbidities, older age, and male sex were associated with higher adjusted prevalence for critical COVID-19. Targeted strategies to increase awareness of CHD as a risk factor for critical COVID-19 illness and emphasize the critical importance of prevention of COVID-19 illness for people with CHD and their families through vaccination, masking, and physical distancing are needed.

ARTICLE INFORMATION

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the US Centers for Disease Control and Prevention.

Affiliations

Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta, GA (K.F.D., R.M.S.). National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA (K.F.D., M.E.O., S.L.F.). Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA (M.E.O.).

Sources of Funding

None.

Disclosures

None.

REFERENCES

- Alsaied T, Aboulhosn JA, Cotts TB, et al. Coronavirus disease 2019 (COV-ID-19) pandemic implications in pediatric and adult congenital heart disease. *J Am Heart Assoc.* 2020;9:e017224. doi: 10.1161/JAHA.120.017224
- Lewis MJ, Anderson BR, Fremed M, et al. Impact of coronavirus disease 2019 (COVID-19) on patients with congenital heart disease across the lifespan: the experience of an academic congenital heart disease center in New York City. J Am Heart Assoc. 2020;9:e017580. doi: 10.1161/JAHA.120.017580
- Broberg CS, Kovacs AH, Sadeghi S, et al. COVID-19 in adults with congenital heart disease. J Am Coll Cardiol. 2021;77:1644–1655. doi: 10.1016/j.jacc.2021.02.023
- Strah DD, Kowalek KA, Weinberger K, et al. Worse hospital outcomes for children and adults with COVID-19 and congenital heart disease. *Pediatr Cardiol.* 2021;Oct 11:1–6. doi: 10.1007/s00246-021-02751-6
- Glidewell J, Book W, Raskind-Hood C, et al. Population-based surveillance of congenital heart defects among adolescents and adults: surveillance methodology. *Birth Defects Res.* 2018;110:1395–1403. doi: 10.1002/bdr2.1400