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Metastasis is the primary cause of death in colorectal cancer (CRC) patients. Emerging
evidence has shown that CRC stem cells (CRCSCs) play a significant role in metastatic
dissemination and tumor recurrence. However, strategies for targeting CRCSCs are
limited because CRCSCs are resistant to therapeutic interventions and because the tumor
microenvironment (TME) provides a supportive niche. Moreover, growing evidence
highlights the critical role of CRCSCs in immune adaptation and modulation of the
TME. CRCSCs escape immune surveillance by avoiding recognition by the innate
immune system and shaping the TME through exosomes, cytokines, and chemokines
to generate an immunosuppressive niche that facilitates cancer progression. In this
review, we summarize studies investigating the immunomodulatory properties of
CRCSCs and their underlying mechanisms in order to improve the efficacy of treatment
strategies against advanced CRC.
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INTRODUCTION

Colorectal cancer (CRC) is one of the most common and deadly cancers worldwide. The global CRC
burden is expected to have increased by 60% by 2030 (1, 2). Improvements in the diagnosis,
screening, and treatment of CRC have significantly increased the long-term survival rates of patients
with early-stage disease. However, outcomes of patients with advanced-stage disease are still
unsatisfactory (3). Although surgical resection is the main strategy for treating primary CRC,
surgery alone is insufficient in patients with advanced-stage disease, and combination treatments
including chemotherapy, targeted therapy, radiation therapy, and immunotherapy are mandatory
for combating disseminated CRC. However, the overall survival (OS) of metastatic (m)CRC patients
is dismal, with a 5-year OS rate of only 13.5% (4). Approximately 20% of CRC patients have
synchronous metastases at initial diagnosis, which most commonly occur in the liver, and up to 60%
of patients develop distant metastases within 5 years (5–7).
November 2020 | Volume 10 | Article 5885421

https://www.frontiersin.org/articles/10.3389/fonc.2020.588542/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.588542/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.588542/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.588542/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:liaotsaitsen@tmu.edu.tw
mailto:mhyang2@vghtpe.gov.tw
https://doi.org/10.3389/fonc.2020.588542
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.588542
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.588542&domain=pdf&date_stamp=2020-11-18


Lin et al. Immunological Profiles of CRCSCs
Cancer stem cells (CSCs) are a minor subpopulation of tumor
cells that have self-renewal, tumor-initiation, therapeutic-
resistance, and clonal long-term repopulation abilities (8–10).
CSCs are considered the driving force behind cancer progression
and metastasis. Therefore, targeting CSCs provides a therapeutic
opportunity for managing metastatic disease. The existence of
CSCs in CRC is supported by lineage-tracing experiments (11–
13). In CRC, CSCs are generally defined by increased expressions
of intestinal SC (ISC) markers, including leucine-rich repeat-
containing G-protein coupled receptor 5 (LGR5), cluster of
differentiation 24 (CD24), CD29, CD44, and CD133 (14–18).
Functional assays examining their self-renewal ability, including
serial replication of tumorspheres in vitro and serial passaging of
bulk tumor cells in vivo, are also important for characterizing
colorectal CSCs (CRCSCs).

Previous studies indicated that CSCs reside in cellular niches
with a favorable tumor microenvironment (TME). These niches
protect CSCs from immune surveillance and apoptosis and help
them maintain their plasticity (19, 20). CSC plasticity is crucial
for enduring environmental stresses and increasing the chance of
successfully metastasizing. Moreover, CSCs can modulate their
immunological profile, such as increasing expressions of human
leukocyte antigen (HLA) class I molecules and programmed
death ligand-1 (PD-L1), to escape immune surveillance, which
enriches the CSC subpopulation in tumors (21, 22). The crosstalk
between CSCs and the TME influences the response to treatment
and metastasis. Therefore, an extensive understanding of the
interplay between CRCSCs and the TME is warranted so that
strategies can be developed to eradicate CRCSCs.
CRCSCS IN CARCINOGENESIS
AND METASTASIS

The accumulation of both genetic and epigenetic changes triggers
colorectal carcinogenesis by transforming colon epithelial cells into
heterogeneous adenoma-carcinoma cells (23). Mutations in driver
oncogenes and tumor-suppressor genes, such as adenomatous
polyposis coli, tumor protein 53, Kirsten rat sarcoma (KRAS), and
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit
alpha, are present in 81, 60, 43, and 18% of sporadic CRC cases,
respectively (24). These mutations promote the transformation of
normal intestinal epithelial cells into adenomas, invasive carcinomas,
and eventually metastatic tumors (25, 26). Experimental mouse
models provide a useful tool to investigate how mutations in these
genes affect the regulation of carcinogenesis and metastasis in CRC.
For example, crossingAPC-deficientmicewithmice harboring other
driver mutations enhances adenocarcinoma transformation without
metastasis (27). Interestingly, transplantation of tumor-derived
organoids from these crosses enhances the likelihood of metastasis
(27–29). Those results imply that ex vivo organoid culture provides
selective pressure that subsequently enriches the CSC population to
confer a survival advantage and promote metastasis.

Interestingly, increasing evidence indicates that in mCRC, the
initial location of the primary tumor is correlated with outcomes.
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For primary CRCs, tumors in the cecum to the transverse colon are
defined as right-side colon cancers (RCCs), whereas those in the
splenic flexure to the rectum are known as left-side colon cancers
(LCCs). RCCs have a significantly worse prognosis than do LCCs
(30–32). In a phase III CALGB/SWOG 80405 trial, different
primary origin sites reflected different treatment responses in
patients with mCRC. For example, patients with mCRC from
RCCs had prolonged progression-free survival when treated with
bevacizumab compared to those treatedwith cetuximab asfirst-line
treatment. Conversely, patients with mCRC from LCCs had longer
OS and better overall response rates than those treated with
bevacizumab (33, 34). Zhang et al. (35) indicated that RCCs and
LCCs had different tumor immunological profiles. RCCs are
characterized by increased infiltration of immune cells with
enhanced cytotoxic functions, interferon (INF)-g signatures, and
vascular endothelial growth factor (VEGF)-a (VEGFA) and
decreased levels of activated cluster of differentiation 8+

(CD8+) T-cells, T helper cell type 1 (Th1) cells, and protein
release factor 1 (PRF1) expressions. Therefore, patients with
RCCs respond well to bevacizumab, a humanized anti-VEGF
monoclonal antibody that can neutralize VEGFA. However,
LCCs are associated with CD56bright natural killer (NK) cells.
Cetuximab can bind the Fc receptor, FcgRIII (CD16), on NK
cells, inducing antibody-dependent cell-mediated cytotoxicity.
This releases cytotoxic granzyme-containing granules, and INF-g
secretion subsequently kills tumor cells (36). Intriguingly,
expressions of stemness markers, such as ATP-binding cassette
sub-family G member 2 and the POU family of transcription
factors, class 5, factor 1, are associated with RCCs. As with CSCs,
RCC cells are difficult to eradicate, and relapse and metastasis are
common in RCCs (37). These studies indicate that stemness
properties and tumor immunological profiles may lead to
different treatment responses and outcomes of CRC.

Different studies showed that CSCs in distinct cancer types
harbor unique markers. CRCSCs exhibit characteristics that are
similar to ISCs (38). CRCSCs and ISCs express similar markers,
such as LGR5 (14, 17) and CD44 (16), and share several important
signaling pathways, including the WNT, transforming growth
factor (TGF)-b, hedgehog, and Notch pathways (39–41). The
depletion of Lgr5+ cells in CRC restricts primary tumor growth,
and such tumors are incapable of forming distant metastases.
Therefore, Lgr5+ CSCs are essential for metastasis. de Sousa e
Melo et al.’s group (29) also showed that Lgr5+ CSCs are critical
for the formation and maintenance of liver metastases. However,
Fumagalli et al. (42) recently showed that the majority of CRC
metastases are seeded by Lgr5– cells and reestablish a cellular
hierarchy that gives rise to Lgr5+ cells. That study reinforced the
concept of cancer cell plasticity and also indicated that plasticity is
crucial for both primary and metastatic tumor growth. A hybrid
epithelial-mesenchymal state may offer a more-plastic status for
cancer cells to adapt to the stressful environment they experience
during the metastatic process (43).

The consensusmolecular subtype (CMS) classification is widely
used to classify primary CRC into four subtypes based on
transcriptomic profiles. CMS1 (microsatellite instability (MSI)-
immune, 14% of patients) includes tumors with high MSI, CMS2
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(canonical, 37% of patients) consists of chromosomal unstable
tumors, CMS3 (metabolic, 13% of patients) comprises tumors
with KRAS mutations and metabolic dysregulation, and CMS4
(mesenchymal, 23% of patients) includes tumors with a
mesenchymal phenotype and CSC-like subtype. Tumors with
mixed features (13% of patients) possibly represent a transition
phenotype or intratumoral heterogeneity (44). Becht et al. (45)
demonstrated that the CMS subgroups and microenvironmental
signatures are highly correlated. CMS1 exhibits increased
infiltration of activated CD8+ cells, NK cells, and T-cell-attracting
chemokines, which were shown to be correlated with a better
prognosis (45–47). In contrast, CSC-like CMS4 expresses high
levels of the myeloid chemokine, CCL2, complement
components, angiogenic factors, and other immunosuppressive
factors. This leads to a highly vascularized and inflammatory
tumor with a high density of cancer-associated fibroblasts.
Therefore, immune infiltrates of CMS1 and CMS4 display
divergent functional orientations. CMS1 tumors are associated
with favorable outcomes since they express immunologic
constants of rejection genes, whereas CMS4 tumors have an
unfavorable, inflamed immune phenotype and are associated
with worse survival (45). Therefore, patients with CMS1 tumors
may theoretically benefit from immune checkpoint inhibitors
(ICIs), whereas those with the CMS4 subtype would be suitable
for strategies combining inhibitors of immunosuppressive
components, such as transforming growth factor (TGF)-b,
regulatory T cells (Tregs), myeloid-derived suppressor cells
(MDSCs), and immune checkpoint molecules (48).

Notably, treatment decisions for patientswithmetastatic disease
are based on the molecular characteristics of the primary resected
tumor. To effectively treat recurrent/metastatic CRC, the major
question is whether the primary CMS reflects the gene signature of
metastatic sites. Recently, Piskol et al. (49) applied a NanoString-
based CMS classifier and indicated that tumor-intrinsic features,
such as genetic alterations and tumor-specific gene expressions, are
maintained during CRC progression in orthotopic models.
Therefore, transcriptomes of tumor cells do not change during
metastatic evolution. However, changes in extrinsic factors, such as
the environmental composition (e.g., stromal content),may explain
the discordance of CMS subtypes in primary and metastatic
samples (49).
CRCSCS AND THE TME

The TME is composed of mesenchymal cells, tumor-infiltrating
immune cells (TIICs), endothelial cells, extracellular matrix
(ECM), and inflammatory mediators (50).

CRCSCscanmodulate theTME through the secretionof tumor-
associated exosomes (TAEs). Exosomes are cell-derived vesicles
with a diameter ranging 30~100 nm that serve as important
mediators for intercellular communication under both
physiological and pathological conditions (51). The diverse
molecules carried inside exosomes, such as proteins, enzymes,
and nucleic acids, have different functions and are involved in the
establishment of the pre-metastatic niche (51, 52). For example,
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exosomal integrins determine organotropic metastasis. The
exosomal integrins, a6b4 and a6b1, are associated with lung
metastasis, whereas the exosomal integrin, avb5, is linked to liver
metastasis (53). Rana et al. (54) showed that TAEs target non-
transformed cells in premetastatic organs and modulate
premetastatic organ cells predominantly through transferred
micro (mi)RNAs. We recently showed that CRCSCs secrete
exosomal miR-146 to promote stem-like properties and
tumorigenicity by targeting Numb in recipient colon cells.
Notably, in clinical samples, miR-146aHigh/NumbLow tumors had
an increasednumberof tumor-infiltratingCD66+neutrophils anda
decreased number of tumor-infiltrating CD8+ T cells, indicating an
immunosuppressive TME (55). CRCSC-secreted exosomes also
mediate interleukin (IL)-1b expression in neutrophils, thus
prolonging neutrophil survival and inducing a protumoral
phenotype. Furthermore, CRCSC-secreted C-X-C motif
chemokine (CXCL)-1 and CXCL2 promote migration of
neutrophils as a positive feedback mechanism for their stem-like
function (56). CD44v6-positive CRCSCs also assist in cancer
colonization, invasion, and metastasis. CD44v6 serves as a
binding site for Fas, thus preventing Fas-mediated cell death by
CD8+ T cells (57).

Activated signaling pathways in CRCSCs not only enhance
CSC properties but also shape the TME as a proper niche for
metastasis. For example, activation of the NOTCH1 signaling
pathway plays a role in CRC stemness, creates a TME associated
with worse CRC subtypes, and drives metastasis through TGF-b-
dependent neutrophil recruitment (58). CSCs also secrete
cytokines and chemokines to regulate the immune response
and shape a protumoral TME (59–61). For example, CSC-
secreted CXCL12 interacts with CXCR4 to inhibit CRC
growth, survival, and migration (62). Blocking the CXCL12-
CXCR4 interaction reduces CD44v6 expression in CRCSCs (63).
CRCSCs also activate IL-6/STAT3 signaling, and IL-6 is
associated with advanced CRC. IL-6 is required for the
induction of effector Th17 cells and inhibits the differentiation
of Tregs during chronic inflammation. Blocking the IL-6/STAT3
axis diminishes CRC tumor growth in vivo (64, 65).
IMMUNOMODULATION OF CRCSCS

TIICs in the TME have dual functions in cancer progression:
TIIC-related inflammation facilitates tumorigenesis, and TIICs
also harbor antitumor properties when appropriately activated.
Cancer cell-secreted factors hijack TIIC functions to promote
tumor development and metastasis.

The interplay between cancer cells and host immune cells in the
TME has been an attractive topic for cancer research owing to the
great success of ICIs in treating advanced cancers. These ICIs
include monoclonal antibodies (mAbs) targeting cytotoxic T-
lymphocyte-associated antigen-4, programmed death (PD)-1, and
PD ligand 1 (PD-L1). PD-1 on tumor-infiltrating lymphocytes
interacts with its ligand, PD-L1, on other cells. This interaction
blocks T-cell receptor-mediated signal activation, preventing
November 2020 | Volume 10 | Article 588542
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further antigen-mediated T-cell activation. PD-L1 is expressed by
many types of cells, including tumor cells, immune cells, epithelial
cells, and endothelial cells (66). The US Food and Drug
Administration (FDA) has approved ICIs, including the PD-1-
blocking mAbs, pembrolizumab and nivolumab, and the PD-L1-
targeted mAb, atezolizumab (67), for different types of cancer.
Unfortunately, ICIs only benefit a small subset of mCRC patients,
mainly those withmismatch repair-deficient tumors. These tumors
are associated with a high level of microsatellite instability (MSI)
and a high tumor mutational burden. Interestingly, growing
evidence also showed that PD-L1 expression is dramatically
increased in CSCs (68, 69), which not only contributes to
immune evasion but also promotes stem-like properties (70–72).
Mechanistically, the epithelial-to-mesenchymal transition (EMT)
enriches PD-L1 in CSCs through the EMT/b-catenin/STAT3/PD-
L1 signaling axis (22). In hepatocellular carcinoma, IL-6was shown
to activate phosphorylation of PD-L1 on Tyr112 by Janus kinase 1
(JAK1) and then recruit the endoplasmic reticulum-associated N-
glycosyltransferase STT3A to maintain PD-L1 stability (73). In
CRCSCs, we recently showed that the epigenetic regulation of the
ARID3B/KDM4C axis not only enhances expressions of ISC-
specific stemness genes but also promotes PD-L1 expression (74).

Some studies showed that CRCSCs also have low expressions
of HLA class I and II molecules and high expressions of
immunomodulatory molecules such as IL-4, which inhibit
antitumor T cell responses. Conversely, another study showed
no difference in HLA class I expressions between CRCSCs and
non-CSCs (75). One possible explanation is that established cell
Frontiers in Oncology | www.frontiersin.org 4
lines might not accurately reflect the properties of primary CSCs
(76). Moreover, CRCSCs were found to express more ligands for
natural killer (NK) cell receptors. Therefore, CRCSCs are more
susceptible to freshly purified allogeneic NK cells than are non-
CSCs. Lower expression levels of MHC class I also benefit NK
recognition and function (77).
CONCLUSIONS

CSCs are critical for the development of metastasis, which makes
them an attractive target for cancer treatment. However, the
direct targeting of CSCs has failed because CSCs can regenerate,
and non-CSCs can be dedifferentiated into CSCs, both of which
are supported by microenvironmental signals that produce
stemness-inducing factors. Additionally, cancer cell plasticity
can be triggered independently of stemness-inducing factors
provided by niches. Because of the complexity of CSCs and the
TME (Figure 1), further studies on immunomodulatory factors,
immunological profiles, and endogenous cellular plasticity are
warranted. There are ongoing clinical trials to therapeutically
target these CRCSCs combined with TME modulation to
improve patient outcomes. For example, the phase I/II study,
NCT02176746, is using a CSC-loaded dendritic cell as a vaccine
as active immunotherapy for CRCSCs. CSCs are more
immunogenic and effective in inducing antitumor immunity.
CSC-vaccinated hosts contained high levels of immunoglobulin
G (IgG) which was bound to CSCs, resulting in CSC lysis by
FIGURE 1 | Immunomodulation of colorectal cancer stem cells (CRCSCs) and the interplay between CRCSCs and the tumor microenvironment. Crosstalk between
CRCSCs and immune cells through signaling pathways, epigenetic modulation, and secretory factors shapes the tumor microenvironment to promote survival.
CRCSCs modulate the expression of antigen presentation molecules (major histocompatibility complex (MHC) I) and surface markers [programmed death ligand 1
(PD-L1) and cluster of differentiation 44v6 (CD44v6)] to inhibit the activities of immune cells. They also secrete factors to modulate the tumor microenvironment. (This
figure was created with BioRender.com.).
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complement activation. In addition, cytotoxic T-lymphocytes
(CTLs) generated from peripheral blood mononuclear cells or
splenocytes harvested from CSC-vaccinated hosts were capable
of killing CSCs in vitro. CSC-primed antibodies and T cells were
capable of selective targeting of CSCs thereby conferring
antitumor immunity (78). There is another phase 3 trial,
NCT02753127, in which adult patients with previously treated
metastatic colorectal cancer are being treated with Napabucasin
(BBI-608) combined with 5-fluorouracil, leucovorin, and
irinotecan (FOLFIRI). BBI-608 is a small-molecule STAT3
inhibitor that can directly inhibit STAT3-driven signaling
activation, a critical regulator of cancer stemness. The standard
CRC regimen, 5-fluorouracil, leucovorin, and oxaliplatin
(FOLFOX), was evaluated and shown that Tregs were
significantly reduced in those with high baseline levels, with no
change in relative proportions of CD4, CD8, or NK cells (79, 80).
This concise review summarizes the updated connection of CRC
from primary andmetastatic sites and highlights the importance of
the TME in cancer progression. This article reviews the interplay
between CRCSCs and the TME. These studies can facilitate
improving current treatment modalities and designing innovative
strategies for immunotherapeutic approaches to target CSCs.
Frontiers in Oncology | www.frontiersin.org 5
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