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Abstract

Porphyromonas gingivalis is a primary causative agent of chronic periodontitis. Moreover, it

leads to several systemic diseases, including rheumatoid arthritis, cardiovascular, neurode-

generative, and Alzheimer’s diseases. It seems that the development of a vaccine against

this bacterium is necessary. Thus, this study decided to identify novel immunogenic targets

and developed multiple epitope-based vaccines against P. gingivalis. For this purpose, the

pan/core-proteome of this bacterium was studied, and the suitable vaccine targets were

selected based on different properties, including exposed localization of proteins, antigenic-

ity, non-allergenicity, non-similarity to host proteome, stability, B-cell epitopes and MHC II

binding sites, sequence conservation, molecular docking, and immune simulation. Through

the quartile scoring method, 12 proteins with� 20 scores were considered as suitable

immunogenic targets. The results of the protein domain and functional class search showed

that most of the immunogenic proteins were involved in the transport and metabolism of

inorganic ions and lipids. In addition, two unknown function proteins, including

WP_004584259.1 and WP_099780539.1 were detected as immunogenic targets. Three

constructions carrying multi-epitopes were generated including Naked, LCL, and as chime-

ric structures. Among them, FliC chimeric protein had the strongest affinity to the human

TLR2, 4, and 6, while the LCL platform represented the highest level of immune stimulation

response. The obtained results from this study revealed new insights into prophylactic

routes against P. gingivalis by introducing novel immunogenic targets. However, further

investigations, including site-directed mutation and immunoassay are needed to confirm the

pathogenic role and protectivity of these novel proteins.
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1. Introduction

Periodontitis is an inflammatory polymicrobial disease and one of the humans’ most common

bacterial infections affecting nearly 50% of the global population [1]. The pathological process in

periodontitis includes persistent bacterial colonization coupled with a self-damaging host

immune response that leads to hard/soft tissue destruction of structures supporting the tooth and

is the leading cause of tooth loss in adults [2]. The development of periodontitis is a multifactorial

process involving interactions between the host and the microorganisms, especially Porphyromo-
nas gingivalis, Treponema denticola, and Tannerella forsythia that colonize the oral cavity [3]. P.

gingivalis is a nonmotile, Gram-negative, obligately anaerobic, and rod-shaped bacterium that col-

onizes dental plaque biofilms in the human oral cavity, and is considered the primary causative

agent responsible for the development of chronic periodontitis [1]. This organism is the focus of

research studies due to its capacity to evade immune system responses and is the most active peri-

odontal pathogen [4]. It is closely associated with the occurrence and development of numerous

diseases, including atherosclerosis, cancer, and Alzheimer’s disease.

P. gingivalis has several virulence factors, including cysteine proteases (gingipains), heat

shock proteins, lipopolysaccharide, major fimbriae, and capsule. The gingipains can degrade

several host proteins, such as complement proteins, immunoglobulins, cytokines/chemokines,

and host cell receptors [5].

Several classes of antibiotics have been proposed to treat infections associated with P. gingi-
valis. However, in recent years, concerns have been raised about the efficacy of antimicrobials

in treating infections associated with oral biofilm. Several studies have demonstrated P. gingi-
valis can survive antibiotic treatment and leads to the recurrence of chronic periodontitis [6,

7]. The potential ability of bacteria to invade host cells is considered to be a mechanism that

helps bacteria survive during antibiotics treatment. For these reasons, the development of an

effective vaccine against periodontitis is highly desirable [4]. Vaccination can be a powerful

strategy to combat severe infections as well as antimicrobial resistance.

With the advent of genome sequencing technology, a considerable revolution in immuniza-

tion has occurred. Genomic databases have greatly facilitated the investigation of immuno-

genic candidates to develop new potential vaccine targets against pathogenic microorganisms

[8]. Reverse vaccinology is a novel computational approach that exploits all the available data

about the pathogen sequentially to identify the most suitable targets for vaccine design and

development. This approach reduces the period of vaccine candidate detection and evaluation

[9]. The strategy aims to combine bioinformatics with immunogenetics and immunogenomics

for the development of novel vaccine targets [10]. Computationally, designed vaccines are

proven their effectiveness, safety, specificity, and thermodynamically stability compared to

conventional approaches to vaccine development [11]. This research was performed to design

prophylactic vaccine targets in P. gingivalis by employing in silico approaches.

2. Materials and methods

2.1. Retrieval of primary data and pan/core-genome analysis

In this study, 17 P. gingivalis strains with completely annotated genome sequences were

retrieved from the GenBank database (https://www.ncbi.nlm.nih.gov/genbank/) and trans-

lated by CLC Genomics Workbench software (Qiagen, Hilden, Germany). Pan/core-genome

analysis was performed by the Bacterial Pan Genome Analysis tool (BPGA) [12] the core-pro-

teome was determined with a cut-off > 0.5. The core, accessory, and unique proteins distribu-

tion among metabolic pathways were compared using the Kyoto Encyclopedia of Genes and

Genomes (KEGG) database.
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2.2. Subcellular localization of putative proteins

The subcellular localization of the proteins was identified using PSORTb version 3.0.3 (https://

www.psort.org/psortb/). Only outer membranes, extracellular, and secreted proteins were

selected in this step [13].

2.3. Determination of antigenicity and allergenicity of putative

immunogenic targets

The antigenicity of the putative immunogenic targets was predicted using the VaxiJen tool

(http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html) with a cut-off value� 0.5 [14].

Subsequently, the allergenicity of the antigenic proteins was determined using the AlgPred 2.0

web tool (http://crdd.osdd.net/raghava/algpred/) with a cut-off� 0.5 [15].

2.4. Sequence similarity of proteins with the human proteome

All selected proteins were analyzed to determine sequence similarity to the human proteome

(Humo sapiens, taxid: 9606) using the PSI-BLAST tool in the BLASTp database (https://blast.

ncbi.nlm.nih.gov/Blast.cgi?PAGE=Protein) [16]. Sequence similarity detection with PSI--

BLAST is more sensitive than the regular BLAST if they are distantly related to the query

sequence. Proteins that showed similarity with coverage of� 30% and identity of� 25% were

excluded from the analysis.

2.5. Detection of linear B-cell epitopes and human MHC-II binding sites

Linear B-cell epitopes of all selected putative immunogenic proteins from the previous steps

were identified with a threshold� 0.6 using the BepiPred v2.0 tool (https://services.healthtech.

dtu.dk/service.php?BepiPred-2.0) [17]. The ratio of B-cell epitopes to the total number of

amino acids was calculated for each protein. On the other hand, human MHC-II binding sites

were predicted using the IEDB resource TepiTool (http://tools.iedb.org/tepitool/) with a cut-

off of the top 5% of peptides [18]. The ratio of MHC-II binding sites to the total number of

amino acids was calculated for all proteins.

2.6. Physicochemical properties of putative immunogenic proteins

Physicochemical properties of proteins were analyzed using different databases. The functional

class of the proteins was determined by the VICMpred database (https://webs.iiitd.edu.in/

raghava/vicmpred/submission.html). The number of amino acids, molecular weight, theoreti-

cal pI value, estimated half-life, aliphatic index, and instability index were determined using

the Expasy ProtParam server (https://web.expasy.org/protparam/) [19]. The instability index

provides an estimate of the stability of the protein in a test tube. There are particular dipeptides

with different occurrences in the stable and unstable proteins. To compute the instability

index, a weight value of instability is assigned to each of the 400 different dipeptides [20]. In

addition, the adhesion probability was determined using the Vaxign database (http://www.

Violinet.org/vaxign2). Adhesins are potential vaccine candidates due to their role in adher-

ence, colonization, and bacterial survival [21].

2.7. Quartile scoring method

The selected proteins were analyzed using the quartile method scoring using eight indicators,

including functional class (virulence, cellular process, metabolic molecule, and unknown),

antigenicity, hydropathy index, instability index, MHC-II binding site ratio, linear B-cell epi-

tope ratio, conformational B-cell epitope, and adhesion probability value. The sum of all scores
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for each protein was considered the final score. Proteins with� 20 points were considered

suitable immunogenic targets [22].

2.8. Prediction of tertiary structure and characterization of conformational

B-cell epitopes

The tertiary structure (3D) of the putative immunogenic proteins was characterized using the

Robetta tool (https://robetta.bakerlab.org/) [23]. The quality of the 3D model was checked

using the ProSA-web server (https://prosa.services.came.sbg.ac.at/prosa.ph). This server dis-

plays the potential errors in the 3D model [24]. In addition, ElliPro (http://tools.iedb.org/

ellipro/) was used to identify the conformational B-cell epitopes with a threshold value

of� 0.8. The predicted conformational B-cell epitopes were displayed on the surface of each

protein in different colors using Jmol software (It should be noted that only surface-exposed

epitopes, detected by PRED-TMBB, were displayed).

2.9. Protein domain search

Conserved Domain Database, CDD (https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml),

and EggNOG (http://eggnog5.embl.de/#/app/home) were used to find the major protein

domains. CDD is part of NCBI’s Entrez query and provides an annotation of protein sequences

with the location of the conserved domain [25]. EggNOG is a hierarchical, functionally and phy-

logenetically annotated orthology resource based on 5090 organisms and 2502 viruses [26].

2.10. Protein-protein interaction networks

In this part, we used the STRING database (https://string-db.org/) to understand the interac-

tions of putative vaccine candidates with unknown functions with other proteins of P. gingiva-
lis to estimate their function. The connection scores> 0.5 were considered.

2.11. Determining conservation of B-cell epitopes

Linear B-cell epitopes were predicted using the BepiPred database (Threshold� 0.6). The confor-

mational epitopes are obtained using the ElliPro database (Threshold� 0.8). The Conservancy of

linear and conformational B-cell epitopes was determined among 17 P. gingivalis strains with

complete annotation at GenBank (https://www.ncbi.nlm.nih.gov/genbank) [27]. Finally, epitopes

with conservation less than 80% and antigenicity less than 1 were excluded from this study.

2.12. Construction of multiple epitope-based vaccines

Three multiple epitope-based vaccines were generated using three different platforms includ-

ing Naked, FliC, and LCL. Different arrangements of the selected epitopes with rigid

(EAAAK) and flexible (GPGPG) linkers were developed, and the most antigenic models were

chosen. The tertiary structures (3D) of the Naked, FliC, and LCL chimeras were modeled

using the Robetta web-tool. The 3D structures were validated by the ProSA-web server and

Ramachandran diagrams.

2.13. Molecular docking and immune simulation

Molecular docking and the binding affinity of multi-epitope-based vaccines to human TLR-1

(PDB: 2Z7X), TLR-2 (PDB: 2Z7X), TLR-4 (PDB: 3FXI), and TLR-6 (PDB: 379A) was investi-

gated using pyDockWEB (https://life.bsc.es/pid/pydockweb/default/index) [28]. In addition,

C-ImmSim (https://kraken.iac.rm.cnr.it/C-IMMSIM/index.php) was used to predict immune

simulations of multi-epitope-based vaccines.
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3. Results

3.1. Pan/core-genome analysis

The workflow to identify novel immunogenic targets against P. gingivalis is presented in Fig 1.

The core-pan plot showed that the pan-proteome and core-proteome of P. gingivalis consist

of 1985 and 1418 proteins, respectively. Based on the KEGG mapping of core, accessory, and

unique genes among different P. gingivalis strains, six different categories were introduced.

The majority of core proteins were involved in metabolism, followed by genetic information

processing and environmental information processing. See Fig 2.

3.2. Identification of antigenic, non-allergen, non-homologous to human

and surface-exposed proteins

Surface-exposed and secreted proteins are more easily represented in the immune system and

are capable of inducing a robust immune response. Thus, a total number of 39 surface-exposed

proteins, including 35 Outer membrane Proteins (OMPs) and five extracellular proteins, were

identified through subcellular localization analysis. Of the 39 proteins selected in the previous

step, eight proteins were non-antigen. Moreover, among 31 antigenic proteins, five proteins

were identified as allergens, so they were excluded from this study. Finally, 26 antigenic and

non-allergenic proteins remained. PSI-BLAST analysis revealed no similarity between the

human proteome and the 26 putative immunogenic proteins.

3.3. Characterization of immunogenic epitopes

The number of linear and conformational B-cell epitopes, the ratio of B-cell epitopes, and the

ratio of MHC-II binding sites of the 25 proteins were determined and presented in

Fig 1. Schematic representation of the selection and validation of novel putative immunogenic targets against P. gingivalis using a reverse vaccinology

approach. All criteria and thresholds are shown in the flowchart. MEVs: Multi-epitope vaccines.

https://doi.org/10.1371/journal.pone.0273770.g001
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Fig 2. A) Demonstration of the core-pan plot between 17 P. gingivalis strains with a cut-off> 0.5. The pan and core-

proteome consist of 1985 and 1418 proteins, respectively. The X-axis of this figure shows the number of strains, and the Y-

axis of Fig 2A shows the percentage of core- and pan- genes among strains. Blue triangles: number of total gene families.

Pink triangles: number of core gene families. B) The distribution of the core, accessory and unique proteins among

metabolic pathways was compared using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The X-axis
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Supplementary Data 1. The sequences of linear and conformational B cell epitopes of each pro-

tein are presented in Supplementary Data 2. The number of linear and conformational B-cell

epitopes were as follows: WP_097626800.1 (4 and 6 epitopes), WP_005874477.1 (4 and 10 epi-

topes), WP_004585254.1 (4 and 6 epitopes), WP_004583657.1 (4 and 8 epitopes),

WP_099779133.1 (4 and 8 epitopes), WP_099840460.1 (4 and 8 epitopes), WP_211599956.1

(3 and 7 epitopes), WP_012457596.1 (4 and 10 epitopes), WP_021664214.1 (4 and 8 epitopes),

WP_004584259.1 (2 and 8 epitopes), WP_099780539.1 (3 and 7 epitopes), and

WP_004583425.1 (1 and 9 epitopes). The surface-exposed linear B-cell epitopes of the novel

immunogenic targets are shown in Fig 3.

The linear and conformational B-cell epitopes were characterized, and the conservancy was

determined and demonstrated in S2 Table. WP_005874477.1, WP_012457596.1,

WP_021664214.1, and WP_004583425.1 had the most conserved linear and conformational

B- cell epitopes. Finally, 12 outer membrane proteins, including: (WP_097626800.1,

WP_005874477.1, WP_004585254.1, WP_004583657.1, WP_099779133.1, WP_099840460.1,

shows different categories of proteins, and the Y-axis shows the percentage (proportion) of proteins in each category. The

majority of core proteins were involved in metabolism, followed by genetic information processing, and environmental

information processing.

https://doi.org/10.1371/journal.pone.0273770.g002

Fig 3. Surface-exposed conformational epitopes of prioritized proteins. The tertiary structures of the proteins were predicted by the Robetta web tool, and the

surface-exposed epitopes were characterized on the 3D structure of proteins using Jmol software. The number of surface-exposed conformational epitopes of each

protein is listed in parentheses: WP_099780539.1 (7 epitopes), WP_021664214.1 (6 epitopes), WP_099840460.1 (5 epitopes), WP_012457596.1 (5 epitopes),

WP_005874477.1 (5 epitopes), WP_004583657.1 (5 epitopes), WP_004584259.1 (4 epitopes), WP_004583425.1 (4 epitopes), WP_099779133.1 (3 epitopes),

WP_097626800.1 (2 epitopes), WP_004585254.1 (2 epitopes), and WP_211599956.1 (2 epitopes).

https://doi.org/10.1371/journal.pone.0273770.g003
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WP_211599956.1, WP_012457596.1, WP_021664214.1, WP_004584259.1, WP_099780539.1,

and WP_004583425.1) were characterized as putative immunogenic targets against P.

gingivalis.

3.4. Finding the best immunogenic candidates based on quartile scoring

method and physiochemical properties

The selected proteins were classified into three distinct functional classes. The majority of pro-

teins were involved in the cellular process (12/25), followed by virulence factors (10/25), and

metabolism molecules (3/25). The estimated half-life of all proteins was > 10h (E. coli, in vivo).

In this step, nineteen proteins were stable, while six were not. To facilitate the expression and

purification of vaccine candidates in vitro, only proteins with a molecular weight < 110 kDa

were selected for further study. Out of 26 antigenic and non-allergenic proteins, one protein

had a high molecular weight (> 110 kDa) and was excluded from the study. Additional physi-

cochemical properties of the proteins are listed in S1 Table.

According to the quartile scoring method, 12 of 24 proteins with a score� 20 were selected.

The score of each protein was as follows: WP_005874477.1 (26), WP_004583657.1 (25),

WP_021664214.1 (25), WP_099840460.1 (25), WP_004585254.1 (23), WP_012457596.1 (23),

WP_099779133.1 (23), WP_099780539.1 (23), WP_004583425.1 (21), WP_097626800.1 (21),

WP_211599956.1 (21), and WP_004584259.1 (20). See Fig 4. The physicochemical characteris-

tics of 12 selected proteins are presented in Table 1.

3.5. Protein domain search and protein-protein interaction result

The results of CDD and EggNOG showed that the studied proteins are involved in the trans-

port and metabolism of inorganic ions and the transport and metabolism of lipids. However,

Fig 4. The comparative analysis of putative immunogenic targets against P. gingivalis based on quartile scoring method. Twelve proteins with a score� 20 were

selected: WP_005874477.1 (26), WP_004583657.1 (25), WP_021664214.1 (25), WP_099840460.1 (25), WP_004585254.1 (23), WP_012457596.1 (23), WP_099779133.1

(23), WP_099780539.1 (23), WP_004583425.1 (21), WP_097626800.1 (21), WP_211599956.1 (21), and WP_004584259.1 (20).

https://doi.org/10.1371/journal.pone.0273770.g004
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the function of two proteins (WP_004584259.1 and WP_099780539.1) was not detected. See

Table 2. Results from the STRING database showed that the protein with accession number

WP_004584259.1 has neighborhood and co-occurrence interactions with TonB-dependent

receptor (HR09_06515) and lipoproteins (HR09_06520). Unfortunately, no annotation or

information is available about any of the proteins that interact with WP_099780539.1 (Fig 5).

3.6. Multi-epitope-based vaccines

Eight linear B-cell epitopes with conservation > 80% and antigenicity > 1 were considered to

generate multi-epitope vaccines in three platforms, including FliC, LCL, and Naked chimeric

protein. The Naked chimera was designed using eight selected epitopes and flexible and rigid

linkers. Another multi-epitope vaccine was developed using the same epitopes on the FliC

platform. Four epitopes with the greatest conservation and antigenicity were selected to

Table 2. Data on conserved domains of putative immunogenic proteins against P. gingivalis using NCBI Con-

served Domain Database, EggNOG and STRING databases.

Accession

number

EggNOG CDD STRING

WP_097626800.1 Inorganic ion transport and

metabolism

TonB dependent receptor Annotation not

available

(Siderophore transport)

WP_005874477.1 Inorganic ion transport and

metabolism

TonB dependent/Ligand-

Gated channels

Annotation not

available

(Outer membrane protein beta-barrel

family)

WP_004585254.1 Inorganic ion transport and

metabolism

TonB dependent/Ligand-

Gated channels

Annotation not

available

(TonB-dependent receptor)

WP_004583657.1 Inorganic ion transport and

metabolism

TonB dependent/Ligand-

Gated channels

Annotation not

available

(TonB-dependent receptor)

WP_099779133.1 Inorganic ion transport and

metabolism

TonB dependent receptor Uncharacterized

protein

(Receptor)

WP_099840460.1 Inorganic ion transport and

metabolism

TonB dependent receptor Annotation not

available

(TonB-dependent receptor)

WP_211599956.1 Inorganic ion transport and

metabolism

TonB dependent/Ligand-

Gated channels

Uncharacterized

protein

(Receptor)

WP_012457596.1 Inorganic ion transport and

metabolism

TonB dependent receptor Annotation not

available

(Receptor)

WP_021664214.1 Lipid transport and metabolism Long-chain fatty acid transport

protein

Uncharacterized

protein(long-chain fatty acid transporting

porin activity)

WP_004584259.1 Function unknown Not Available Uncharacterized

protein(Not Available)

WP_099780539.1 Function unknown Not Available Uncharacterized

protein(Not Available)

WP_004583425.1 Lipid transport and metabolism Type IX secretion system

protein PorQ

Annotation not

available(long-chain fatty acid transporting

porin activity)

https://doi.org/10.1371/journal.pone.0273770.t002
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generate an LCL-based chimeric protein. Epitope shuffling was performed, and finally, 24 dif-

ferent arrangements were developed. The antigenicity of these 24 models was evaluated, and

the most antigenic arrangement was selected. Finally, three multi-epitope vaccines were

achieved. The tertiary structure was validated and shown in Fig 6. The Ramachandran plots

denote that more than 90% of the residues of all proteins were located in the favored region.

Moreover, the ProSA-web analysis represents that the Z-score of all proteins were in the range

of native conformations of the database (S1 Fig).

3.7. Dockings with TLRs and immune simulation results

The molecular docking results showed that all multi-epitope-based vaccines had a reasonable

binding affinity to the TLR-1, 2, 4, and 6. However, FliC chimeric protein had the strongest

affinity to the human TLRs. See Table 3. Based on the results of C-ImmSim, the multi-epitope-

based vaccine developed on the LCL platform was shown to provide the most outstanding

safety with the strongest stimulation of IgM, IgG1, IgG2, and Th1, cytokines IL -2, and IFN-γ.

See Fig 6.

4. Discussion

Chronic periodontitis, a multifactorial chronic inflammatory disease due to dysbacteriosis, is

characterized by the destruction of connective tissue and alveolar bone and has become the

leading cause of tooth loss in adults. It affects almost 50% of the population worldwide and is

one of the most common inflammatory diseases in humans [29].

P. gingivalis is one of the bacteria involved in bacterial plaque biofilm formation and plays a

vital role in the progression of chronic periodontitis. In a systematic review, the authors

reviewed the literature on P. gingivalis and all demonstrated systemic implications. From their

results, it appears that P. gingivalis also plays a role in the development of several systemic dis-

eases, including rheumatoid arthritis, cardiovascular disease, and neurodegenerative diseases

[30]. This bacterium has also been detected in the brains of patients with Alzheimer’s disease.

Dominy and colleagues reported that infection with P. gingivalis contributes to the

Fig 5. Protein-protein interaction networks of two hypothetical proteins (WP_099780539.1 and WP_004584259.1) with

unknown functions with other proteins of P. gingivalis. WP_004584259.1 has neighborhood and co-occurrence interactions with

TonB-dependent receptor (HR09_06515) and lipoproteins (HR09_06520).

https://doi.org/10.1371/journal.pone.0273770.g005
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pathogenesis of Alzheimer’s disease by secreting gingipains to promote neuronal damage [30].

Therefore, it is important to design and develop a vaccine against this bacterium to fight infec-

tions caused by it. To date, several studies have been conducted to develop vaccines against

this bacterium. For example, a study by Hyun-Su and colleagues showed that vaccination by P.

gingivalis proteins could prevent atherosclerosis [31]. In addition, in the study by Huang and

colleagues, recombinantly produced P. gingivalis minor fimbriae proteins (Mfa1), RgpA gingi-

pain hemagglutinin domain 1 (HA1), and RgpA gingipain hemagglutinin domain 2 (HA2)

were elicited protein-specific IgG [32].

Fig 6. The tertiary structure of multi-epitope vaccines and immune simulation. A) 3D structures of the multi-epitope vaccines were predicted by the Robetta

webtool and validated by the ProSA-web server. The linear epitopes are colored using Jmol software. B) The immunoreactivity of multiple epitope-based proteins

was predicted by the C-ImmSim web server. 1. The levels of the B-cell population secreting IgM, IgG1 and IgG2. 2. The levels of Th1 populations. 3. The levels of IL-

2 and IFN-γ cytokines. The LCL chimeric protein showed the greatest immunoreactivity.

https://doi.org/10.1371/journal.pone.0273770.g006

Table 3. Data on molecular dockings of multi-epitope vaccines with human TLR 1, 2, 4, and 6.

TLRs TLR-1 TLR-2 TLR-4 TLR-6

Protein

name

Electrostatics De-

solvation

Van-der

Waals

forces

Total Electrostatics De-

solvation

Van-der

Waals

forces

Total Electrostatics De-

solvation

Van-der

Waals

forces

Total Electrostatics De-

solvation

Van-der

Waals

forces

Total

Naked

chimeric

protein

-15.735 -2.530 -3.582 -18.623 -29.222 7.316 4.712 -21.436 -6.884 -28.433 46.801 -30.637 -23.824 0.043 -7.181 -24.500

FliC

chimeric

protein

-20.450 -1.102 -24.835 -24.035 -17.910 -15.051 8.155 -32.145 -17.326 -12.505 -10.532 -30.884 -24.601 3.077 1.102 -21.414

LCL

chimeric

protein

-20.695 -6.530 31.954 -24.030 -14.057 -7.566 35.007 -18.122 -9.410 -24.725 13.722 -32.762 -11.572 -14.156 44.530 -21.275

https://doi.org/10.1371/journal.pone.0273770.t003
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On the other hand, several in silico studies have been performed to find effective vaccines

against this bacterium. For example, Khan et al. considered three antigenic and essential pro-

teins including histidine kinase, Fe (2+) transporter, and capsular polysaccharide transport

protein for vaccine design [4]. Finding proteins involved in inorganic ion transport in their

and current studies demonstrates the importance of these proteins to potential immunogenic-

ity. Moreover, Santos-Lima et al. identified epitopes from Lys-gingipain (Kgp) and neuramini-

dase virulence factors of the P. gingivalis ATCC 33277 strain as candidate epitopes [33]. The

use of different bioinformatics methods and analyzes can explain this difference in the search

for suitable vaccine candidates. However, since no appropriate vaccine is available, studies are

currently underway to find a new vaccine candidate.

With the advent of genome sequencing technology, the need to culture bacteria has dimin-

ished and been replaced by reverse vaccinology techniques. There are several predictive and

analytical software programs such as Vaxign and VaxiJen that use the reverse vaccinology

approach. These software programs were developed to identify potential vaccine candidates

[34]. This present study is significant in that we considered 17 genomes of different P. gingiva-
lis strains and used a core proteome approach to develop a suitable vaccine candidate. The

core proteome presents the most similar and common proteins between different bacterial

strains. In addition, we used the quartile method of scoring in this study to find suitable tar-

gets. It should be mentioned that quartile analysis is a valuable approach in bioinformatics

studies. This is because different criteria such as antigenicity, allergenicity, adhesion probabil-

ity, etc. can be considered simultaneously in selecting the best vaccine candidates.

This comprehensive study has shown that of the 1418 proteins of P. gingivalis, only 39 pro-

teins are exposed at the surface. Therefore, we analyzed them from different aspects to select

the best putative immunogenic targets. For example, only proteins with a molecular weight

of< 110 kDa were selected because proteins with such molecular weight are desirable for pro-

tein purification and in vitro evaluations [35]. Moreover, the physicochemical properties of

putative immunogenic targets are essential factors for the optimal selection of a protein. This

is because these properties directly determine the biological behavior of the peptide and influ-

ence other vaccine-related processes. Adhesion proteins are considered critical vaccine candi-

dates because they elicit host cell responses and mediate bacterial invasion. Therefore,

adhesion probability is considered an appropriate criterion for prioritizing candidates in the

reverse vaccinology approach [36]. In this study, we also consider only virulence factors as

suitable candidates because virulence is one of the most important properties of the vaccine.

Virulent proteins are more likely to initiate infection pathways compared to non-virulent pro-

teins [37].

This study presented 12 immunogenic targets and three multiple epitope-based vaccines

against P. gingivalis that are non-homologous to human proteins. The results of the protein

domain search showed that most of the selected proteins were involved in the transport and

metabolism of inorganic ions and the transport and metabolism of lipids; the function of two

proteins (WP_004584259.1 and WP_099780539.1) was not detected. However, the STRING

database showed that the protein with accession number WP_004584259.1 has interactions

with TonB-dependent receptors and lipoproteins. Unfortunately, no interaction was detected

for WP_099780539.1, and the role of this protein remained unknown.

It was approved that several scarce nutrients, such as iron and nickel, are essential for bacte-

rial growth. Gram-negative bacteria secrete chelators to competitively bind these nutrients

from the environment. Transport of the resulting complexes into bacterial cells is mediated by

TonB-dependent transporters (TBDTs), which are located on the outer membrane in Gram-

negative bacteria. The properties of TBDTs, such as surface exposure, protective immunoge-

nicity, wide distribution, inducible expression in vivo, and essential role in pathogenicity,

PLOS ONE Immunogenic targets against Porphyromonas gingivalis

PLOS ONE | https://doi.org/10.1371/journal.pone.0273770 August 30, 2022 13 / 17

https://doi.org/10.1371/journal.pone.0273770


make them excellent candidates for vaccine development [38, 39]. However, we should con-

sider that TBDTs are subject to high selection pressure due to their surface position and key

role in virulence, resulting in frequent variations in some TBDTs. Therefore, a single TBDT

antigen is sometimes insufficient for vaccine development [40].

To solve this problem, the development of epitope-based chimeric/subunit vaccines may be

helpful. Epitope-based chimeric/subunit vaccines have many advantages over vaccines pro-

duced by conventional vaccinology. For example, they are inexpensive to develop, do not

require microbial culturing, and can outperform many wet-lab experiments with saving time.

They are a safer option because they do not contain the entire pathogen and are highly specific

and stable [41]. Of the three multiple epitope-based vaccines presented in this study, the vac-

cine developed on the LCL platform emerged as the one with the greatest safety and strongest

stimulation of IgM, IgG1, IgG2, Th1, cytokines IL-2, and IFN-γ based on the results of

C-ImmSim, making it perhaps the most desirable vaccine candidate.

The subtractive proteomics and reverse vaccinology approaches performed by Khan et al.
presented three vaccine candidates, including histidine kinase, Fe transporter, and capsular

polysaccharide transport protein. Fe transporter was the common protein identified in the

present study and its investigation. However, we did not identify histidine kinase and capsular

polysaccharide transport protein. The use of different bioinformatics approaches and pipelines

may justify this difference [4].

5. Conclusion

This study investigated the novel immunogenic targets against P. gingivalis using reverse vacci-

nology, immunoinformatic analyses, and computer-aided approaches. Twelve novel vaccine

candidates are proposed. Moreover, three multi-epitope vaccines were generated using Naked,

LCL, and FliC platforms. Among three multi-epitope vaccines, FliC chimeric protein had the

strongest affinity to the human TLRs while the LCL platform induced the highest level of

immunoglobulins, cytokines, and Th1 response. The results of this study could help find an

effective vaccine against this pathogen. This study might establish the fundamental of vaccine

development against this pathogen to prevent periodontitis. However, experimental validation

through in vitro and in vivo assays are necessary to confirm the safety and immunization of

proposed vaccine candidates and multi-epitope vaccines.
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