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Abstract

To date, mutations within the coding region and translocations around the SOX9 gene both

constitute the majority of genetic lesions underpinning human campomelic dysplasia (CD).

While pathological coding-region mutations typically result in a non-functional SOX9 protein,

little is known about what mechanism(s) controls normal SOX9 expression, and subse-

quently, which signaling pathways may be interrupted by alterations occurring around the

SOX9 gene. Here, we report the identification of Stat3 as a key modulator of Sox9 expres-

sion in nascent cartilage and developing chondrocytes. Stat3 expression is predominant in

tissues of mesodermal origin, and its conditional ablation using mesoderm-specific TCre, in

vivo, causes dwarfism and skeletal defects characteristic of CD. Specifically, Stat3 loss

results in the expansion of growth plate hypertrophic chondrocytes and deregulation of nor-

mal endochondral ossification in all bones examined. Conditional deletion of Stat3 with a

Sox9Cre driver produces palate and tracheal irregularities similar to those described in

Sox9+/- mice. Furthermore, mesodermal deletion of Stat3 causes global embryonic down

regulation of Sox9 expression and function in vivo. Mechanistic experiments ex vivo suggest

Stat3 can directly activate the expression of Sox9 by binding to its proximal promoter follow-

ing activation. These findings illuminate a novel role for Stat3 in chondrocytes during skeletal

development through modulation of a critical factor, Sox9. Importantly, they further provide

the first evidence for the modulation of a gene product other than Sox9 itself which is capa-

ble of modeling pathological aspects of CD and underscore a potentially valuable therapeu-

tic target for patients with the disorder.

Author summary

Campomelic (Greek: “bent limb”) dysplasia is an often-lethal, autosomal-dominant

genetic disorder. Typical clinical features include angular long bones, hypoplastic scapu-

lae, cleft palate, clubbed feet, labored breathing and ambiguous external genitalia. To date,

the only gene implicated in this disease is SOX9, a critical factor in chondrocyte develop-

ment. Deleterious mutations within the coding region of SOX9 account for a majority of
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cases; however, chromosomal breakages or translocations mark a subset of cases, presum-

ably by altering expression of SOX9. We have found that Stat3 loss-of-function mutant

mice exhibit features consistent with campomelic dysplasia including dwarfism, bent

limbs, cleft palate, laryngotracheomalacia and abnormal growth plate hypertrophic chon-

drocytes. Importantly, we also demonstrate that ablation of Stat3 from chondroprogeni-

tors reduces the functional level of Sox9 in vivo. Finally, we show that Stat3 may directly

regulate Sox9 expression by physically interacting with the promoter in response to stimu-

lation. Taken in total, our findings demonstrate that non-coding region mutations in

SOX9, which modulate the accessibility or functionality of Stat-binding elements, may

result in decreased physiological levels of SOX9. Our model suggests for the first time, the

modulation of a gene other than Sox9 that is capable of recapitulating a large subset of

pathologies associated with campomelic dysplasia, which may be exploited for future ther-

apeutic intervention.

Introduction

Campomelic dysplasia (CD) is a rare, autosomal-dominant and often lethal genetic disorder,

whose Greek etymology captures the characteristic “bent limbs” observed in affected pediatric

patients [1]. Clinical features of CD can include laryngotracheomalacia, Pierre Robin sequence

with cleft palate, loss of one pair of ribs, scoliosis/kyphosis, clubbed feet, ambiguous external

genitalia and a high infant mortality rate [2]. While the radiographic appearance of bent bones

is manifest in several skeletal disorders, to date, the genetic lesions associated with nearly 95%

of CD patients affect either the expression or function of the SRY-box 9 (SOX9) transcription

factor [2–5]. SOX9 is a critical factor in the regulation of chondrogenesis and subsequently

endochondral ossification, the process by which the majority of the bones in the skeleton are

mineralized in response to a cartilage template precursor (reviewed in [6]). Mice genetically

engineered with a deletion of a single Sox9 allele exhibit nearly all clinical features of CD, thus

reinforcing the importance of this gene in normal development and in the pathology of CD

[7]. Importantly, CD can arise in a subset of cases absent a deleterious mutation within the

open reading frame (ORF), where chromosomal rearrangements occur in breakpoints 50Kb to

1Mb upstream of SOX9 [3, 8–10]. Multiple in vivo analyses of the 1Mb upstream region dem-

onstrate that alterations along a continuum distal to the SOX9 ORF modulates its normal

expression, suggesting that CD can arise as a function of SOX9 gene dosage [11–14]. Despite

our understanding of the genetics associated with CD, we know strikingly little about normal

signaling events and their integration with the regulatory region of SOX9 to achieve proper

skeletogenesis. Interestingly, genetic lesions that occur in the presumptive regulatory regions

or within the coding region and result in diminished but not abolished transactivation, seem

to correlate with milder forms of CD, often allowing for survival through the neonatal period

[5, 8]. These clinical data further highlight the need to elucidate normal modulators of SOX9
expression, as their characterization could introduce avenues for therapy.

Signal Transducer and Activator of Transcription (STAT) proteins are latent cytoplasmic

transcription factors activated in response to myriad cytokine and growth factor signal

events [15]. The most well studied members of this family include Stat1, Stat3, and Stats 5a

and 5b. While largely investigated in the context of inflammation and immune biology, our

lab has become interested in their roles during embryonic development, specifically with

regard to the mesodermal germ layer and kidney morphogenesis. With the exception of

Stat3, knockout mouse models targeting the individual Stat genes produce viable adult mice.

Stat3 regulates Sox9
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For Stats 1, 2, 4 and 6, the characterized defects are almost exclusively found in suppression

of the animal’s immune response [16–22]. In the case of Stat5, individual gene targeting

results in defects in either mammary gland lactogenesis (Stat5a) or as a sexually dimorphic

response to growth hormone (Stat5b) [23, 24]. Due to the high degree of homology between

Stats 5a and b (96%), a dual knockout mouse was developed and characterized only to reveal

a modest change in adult body weight and female infertility [25]. As alluded to earlier, a sig-

nificant challenge to directly studying Stat3 in development is the failure of Stat3-/- embryos

to undergo gastrulation, highlighting the importance of Stat3 in germ layer formation and

embryonic viability [26]. Furthermore, when a co-receptor for Stat3 activation, gp130, is

knocked out in vivo the resulting mice also suffer embryonic lethality due to multiple defects

including heart development and hematopoiesis beginning around 12.5 days post-concep-

tion [27].

To date there has been no broad loss-of-function developmental study of Stat3, directly, in

post-gastrulation mouse models, despite evidence supporting a critical role for the pathway

after germ layer specification. Here we report that conditional deletion of Stat3 from newly

formed mesoderm leads to mutant mice that survive to birth but die early in the post-natal

period and exhibit severe skeletal dysmorphologies reminiscent of Sox9 haploinsufficiency. By

targeting Stat3 prior to the formation of mesenchymal condensations, which give rise to the

skeletal elements, we demonstrate the importance of Stat3 in regulating the hypertrophic

chondrocyte zone. Additionally, we show the importance of Stat3 in palate closure and the

maturation of tracheal cartilage, features consistent with CD pathology. Stat3 is required for

normal levels of functional Sox9 in vivo, and further, directly regulates the expression of Sox9
in cultured cell models. This study provides the first comprehensive evidence for a novel mod-

ulator of SOX9 inducing haploinsufficiency-associated or CD-like pathology in vivo, and may

begin to explain the etiology of acampomelic or mild campomelic CD where mutations out-

side of the coding region of SOX9 are at the root of the disease.

Results

Stat3 mRNA is enriched in mesodermal tissues

Very little is known about the wider developmental role of Stat3 in mammals following gastru-

lation as Stat3 null animals fail to progress beyond this critical stage [26]. To establish which

tissues potentially require Stat3 functionality post-gastrulation, and more specifically if Stat3 is

relevant to early bone development, we performed in situ hybridization analysis of Stat3
mRNA localization at various early stages following germ layer specification. Similar to a pub-

lished report in zebrafish [28], at E8.5, Stat3 mRNA is manifest within the anterior mesen-

chyme as well as within the somites and posterior presomitic mesoderm (Fig 1A and 1B and

S1A and S1B Fig). At the more developed stage of E10.5, Stat3 expression is observed clearly in

all somites (Fig 1C and 1E and S1C and S1E Fig). Further, Stat3 expression is especially promi-

nent within the limb bud mesoderm but is absent or greatly diminished within the apical ecto-

dermal ridge (AER) adjacent to this zone of expression (Fig 1C and 1F and S1C and S1F Fig).

Upon transverse sectioning at the level of the hindlimb, Stat3 expression at E10.5 is generally

weak, though specific compared to control, throughout the limb bud, sclerotome and espe-

cially myotome (Fig 1D and S1D Fig). Interestingly, a modestly heightened level of Stat3
expression is evident within the ventral-lateral neural tube, suggesting this to be the area of

dominant antero-posterior staining within the whole mount analysis (Fig 1C–1E and S1C–

S1E Fig). Overall, these findings suggest a potential post-gastrulation role for Stat3, specifically

in the development of mesoderm-derived tissues.

Stat3 regulates Sox9
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Mesodermal Stat3 facilitates post-natal skeletogenesis

Since germline deletion of Stat3 results in early embryonic lethality [26], we generated mice

conditionally lacking Stat3 expression in essentially all mesodermal tissues by crossing mice

carrying the Stat3 floxed allele (Stat3flox/flox) with a homozygous T-Cre driver strain, heterozy-

gous for Stat3 (TCre;Stat3Δ/+) [29, 30]. TCre;Stat3flox/Δ (mutant) animals were generated at the

expected Mendelian ratio of 50% and were compared to TCre;Stat3flox/+ (control) littermates

in all subsequent analyses (S1 Table). Importantly, Stat3 protein levels are ablated in all mutant

mesoderm-derived neonatal tissues (protein extract from P0 humeri shown), confirming effec-

tive deletion of the functional gene product (S2A Fig). TCre;Stat3flox/Δ mutants were virtually

Fig 1. Characterization of mid-gestation Stat3 expression in mouse. (A) Lateral view of wild-type mouse

embryo at E8.5 analyzed for the expression of Stat3 by whole mount in situ hybridization (WISH). Asterisk

indicates somite and arrowhead indicates presomitic mesoderm. (B) Dorsal view of posterior region from A,

arrowhead indicates presomitic mesoderm. (C) Lateral view of wild-type mouse embryo at E10.5 analyzed for

the expression of Stat3 by WISH. (D) Transverse section denoted in C by a dashed white line, NT—neural tube,

Som—somites. (E) Higher magnification of box denoted in C, arrows indicate somites, fl—forelimb. (F)

Magnification of box shown in C. Dotted line demarcates the apical ectodermal ridge (AER), fl—forelimb.

doi:10.1371/journal.pgen.1006610.g001

Stat3 regulates Sox9

PLOS Genetics | DOI:10.1371/journal.pgen.1006610 February 6, 2017 4 / 30



indistinguishable from controls late in gestation (E16.5) and, at birth (P0) displayed only a

modest but significant reduction in bodyweight (Fig 2A and 2C). At P4, TCre;Stat3flox/Δ

mutants became easily identifiable, exhibiting antero-posterior shortening of the body axis

and reduction in body weight (Fig 2C). By P7, both the body axis defect and body weight dis-

parity of the TCre;Stat3flox/Δ animals was more pronounced (Fig 2B and 2C). Further, between

P4 and P7, TCre;Stat3flox/Δ animals developed progressive respiratory distress and likely suc-

cumbed to a multiplicity of defects including a lack of mobility, labored breathing and failure

to thrive during this period, though the specific cause of death was not investigated. Interest-

ingly, at P4 and P7, TCre;Stat3flox/Δmutants had difficulty ambulating and displayed an obvi-

ous abnormal curvature of both the forelimbs and hindlimbs, a defect which was exacerbated

in the few animals surviving past P7 (S2B Fig).

To address the most obvious gross defect of the TCre;Stat3flox/Δ animals, i.e., the dramatic

antero-posterior body axis reduction (Fig 2B), we performed whole mount in situ mRNA

hybridizations in TCre;Stat3flox/Δ and littermate control embryos to determine whether somi-

togenesis and/or segmentation are directly affected by Stat3 deletion. TCre;Stat3flox/Δmutant

embryos formed a full complement of normal, polarized somites based on the expression pat-

tern at E12.5 for myogenin (MyoG), a marker of skeletal muscle differentiation, and scleraxis

(Scx), which labels the emergent tendon precursors, being no different in TCre;Stat3flox/Δ

mutants relative to control embryos (S3A and S3B Fig). Further, analysis of multiple aged

TCre;Stat3flox/Δ mutant animals (n>24) demonstrated a complete set of vertebrae including

the typical 7 cervical, 13 thoracic, 6 lumbar, 4 sacral and a variable but normal range of caudal

vertebrae. Together, these data suggest that the antero-posterior axis defect is not a result of

disrupted axis extension or specification.

We then analyzed whole skeletal preparations to determine if the phenotype is a result of a

more generalized bone defect. We observed a range of skeletal flaws, which in some cases were

evident as early as P0 and became progressively more pronounced over time. Appendicular

defects contributing to the limb phenotype included bent elements of the limbs, most notably

in the radii, and spontaneous fractures (Fig 3A and 3A’ and S3A and S3B Fig).

TCre;Stat3flox/Δmutant scapulae became misshapen with advancing postnatal age, and

humeri were often observed with mild to severe fractures (Fig 3A and S3A and S3B Fig). Fur-

ther, TCre;Stat3flox/Δmutant hip girdles became progressively dysplastic, having laterally flared

ilia and ischia, abnormal ventral curvatures of the pubis region, and frequent spontaneous

fractures (Fig 3B and S3C and S3D Fig). We also observed apparent changes in the cartilagi-

nous regions of the hip girdle, most pronounced at P7, where mutant animals exhibited an

antero-posterior extension of cartilage around the acetabulum and a poorly fused pubic sym-

physis (Fig 3B, arrow and Fig 3B’). An overall consistent and significant shortening of mutant

long bones from both the forelimb and hindlimb suggests a post-natal defect in cartilage tem-

plate development during element maturation (Fig 3E and 3F and S4G Fig). To examine this

further, we looked at the elements of the axial skeleton, which are also formed via a cartilage

template-driven process. From P0 through P7, the individual vertebral elements of TCre;Stat3-
flox/Δmutant mice maintain a fairly normal lateral dimension but fail to elongate along the

antero-posterior growth axis (Fig 3C and S3E and S3F Fig). This growth defect is accompanied

by an expansion of the intervertebral space and reduced or absent intervertebral discs (Fig 3C

and S3E and S3F Fig). Finally, we observed a progressive kyphosis of the mid-thoracic spine,

which is evident as early as P4 and striking in P14 animals (Fig 3D). This curvature resulted in

an abnormal posterior rib arrangement and likely led to the observed fractures of multiple cau-

dal rib elements (Fig 3D). In total, TCre;Stat3flox/Δ mutant animals suffer from a failure to

properly form endochondral bones, leading to a premature cessation of elongation in both the

appendicular and axial skeleton and subsequent dwarfism and skeletal distortion.

Stat3 regulates Sox9
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Fig 2. Abnormal postnatal growth of Stat3-deficient mice. (A and B) Representative images of littermate

matched control and TCre;Stat3flox/Δ mutant mice at E16.5 and P7, respectively. Bar = 1cm. (C) Chart

depicting average weights of indicated genotypes in aging mice. Error bars denote the standard error of the

mean (SEM), n/s—not significant, *p<0.05, **p<0.01.

doi:10.1371/journal.pgen.1006610.g002

Stat3 regulates Sox9

PLOS Genetics | DOI:10.1371/journal.pgen.1006610 February 6, 2017 6 / 30



Stat3 regulates chondrocyte hypertrophy in the growth plate

As many of the Stat3 mutant long bones appear misshapen but seem to fracture early, we more

specifically addressed frank bowing of the long bones in control and mutant tibial elements.

These bones withstood the incidence of fracture for a longer period postnatally in our mutant

Fig 3. Abnormal skeletogenesis in TCre;Stat3flox/Δ mice. (A and A’) Alizarin Red/Alcian Blue-stained

skeletal preparations demonstrating bending and spontaneous fracture of forelimbs in TCre;Stat3flox/Δ mice.

Asterisk indicates humerus, arrows indicate fractures of radius/ulna, dt—deltoid tuberosity. (B and B’) Alizarin

Red/Alcian Blue-stained skeletal preparations depicting dysplastic hip girdles in TCre;Stat3flox/Δ mice.

Brackets denote acetabular cartilage; arrow indicates pubic symphysis; arrowhead indicates ischium; asterisk

denotes spontaneous fracture of pubis bone. (C) Alizarin Red/Alcian Blue-stained skeletal preparations

demonstrating antero-posterior compression of vertebral elements in TCre;Stat3flox/Δ mice. Double arrows

indicate length of mutant vertebral body, asterisk indicates intervertebral space, L1—1st lumbar vertebrae. (D)

Alizarin Red/Alcian Blue-stained skeletal preparations demonstrating spinal kyphosis in TCre;Stat3flox/Δ mice.

Arrow indicates abnormally curved spine, asterisk indicates caudal rib element fracture. (E and F) Box-and-

whisker plots for ulnar (E) and tibial (F) lengths (mm). Error bars represent SEM, *p<0.05, **p<0.01.

doi:10.1371/journal.pgen.1006610.g003
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animals. Measurements were made as shown in S5 Fig. At birth, we observed a slight increase

in angulation of TCre;Stat3flox/Δ mutants at the tibial crest (Fig 4A and 4D) though this was not

significant. However, at P4 (Fig 4B and 4E) and dramatically at P7 (Fig 4C and 4F and S5A

and S5B Fig), there was a distinct and highly significant bowing of TCre;Stat3flox/Δmutant tib-

iae prior to the onset of incident fractures that were more prevalent by P7.

Fig 4. Tibial bowing and disruption of endochondral ossification in TCre;Stat3flox/Δ mice. (A-C) Alizarin

Red/Alcian Blue-stained skeletal preparations demonstrating progressive angulation of tibiae inTCre;Stat3flox/Δ

mice. (D-F) Box-and-whisker plots quantifying angle of tibiae for control and mutant animals in A-C. Error bars

represent SEM, n/s—not significant, **p<0.01. (G) Whole mount brightfield image of distal humeri. Brackets

indicate width of hypertrophic chondrocyte zone. (H) Alcian Blue-stained longitudinal sections of the distal ulnae

of control and mutant TCre;Stat3flox/Δ mice at indicated ages. Brackets denote the length of the hypertrophic

chondrocyte region.

doi:10.1371/journal.pgen.1006610.g004
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It has been reported that Stat3 functions in the regulation of both osteoclast and osteoblast

activities to modulate bone resorption and mineralization respectively [31–33]; however, our

TCre;Stat3flox/Δ mutant mice exhibit an earlier and more severe bone phenotype than previ-

ously described, suggesting a possible role for Stat3 upstream of osteoblast lineage commit-

ment. It has further been established that Stat3 is present in growth plate chondrocytes and

plays a pro-proliferative role [34]. We here confirmed the presence of Stat3 in order to make

potential inferences about its loss in our mutant mouse model. In normal E14.5 humeri, we

observe Stat3 expression in the preponderance of chondrocytes within the epiphysis (S6A Fig).

This observation is supported by immunoblot analysis of lysates created from dissected

epiphyseal regions of control P0 and P4 humeri, and fortified by the absence of Stat3 in TCre;
Stat3flox/Δmutant littermate epiphyseal lysates (S6B, S6C and S6D Fig). These data support

established literature and suggest that a disruption of Stat3 within the earliest bone-forming

cells could reasonably have a biological impact.

To determine if the observed skeletal phenotype could be attributed to a combinatorial

effect of targeting both the osteochondro progenitor pool and monocyte/osteoclast lineage, we

created conditional Stat3 loss-of-function animals by crossing mice carrying the Stat3 floxed

allele with the Prx1Cre driver mouse strain [35], which would only target the osteochondro

progenitor lineage, and most completely in the forelimb. Prx1Cre;Stat3flox/Δ mutant animals

were born at the expected Mendelian ratio and were phenotypically indistinguishable from lit-

termate controls at birth (S1 Table and S7A and S7C Fig). At P4, however, Prx1Cre;Stat3flox/Δ

animals exhibited a modest reduction in body weight relative to controls and appeared to phe-

nocopy the curvature of forelimbs observed in the TCre;Stat3flox/Δmutants (S7B and S7C Fig).

Additionally, Prx1Cre;Stat3flox/Δmutant skeletal preparations revealed a similar bent morphol-

ogy of their radii and ulnae likely the result of co-incident fractures, and more strikingly, a

fully penetrant incidence of bi-lateral mid-shaft fractures of the humeri (S7D and S7E Fig).

These findings suggest that the limb defects in Stat3 loss-of-function mutants are independent

of direct effects within the osteoclast pool, as recombination mediated by Prx1Cre should not

affect the monocyte lineage, the source of osteoclast precursors [36].

We next evaluated the histological features of the forelimb long bones in our two Stat3 loss-

of-function mutant lines. Initially, whole mount analysis of fixed humeri from TCre;Stat3flox/Δ

animals at P4 revealed a region of opacity at the edge of the presumptive growth plate that

appeared markedly wider in the long bones of the TCre;Stat3flox/Δmutant animals (Fig 4G). We

analyzed this region in ulnae by alcian blue (aggrecan) staining at various ages and found that

the zone of chondrocyte hypertrophy was extended in the TCre;Stat3flox/Δmutants as early as

E18.5 and that this imbalance was even more dramatic at P4 (Fig 4H). Strikingly, though unsur-

prisingly as Stat3 is known to regulate osteoblast maturation and function, TCre;Stat3flox/Δmutant

long bones also demonstrated a reduction in trabecular bone (Fig 4H)[31, 33]. As confirmation

of these phenotypes, we saw a similar extension of the hypertrophic zone in Prx1Cre;Stat3
flox/Δ

mutant long bones (humeri) of the forelimb (S7F and S7G Fig), again indicating the phenotype

is specific and independent of Stat3’s function within the osteoclast population. Further,

Prx1Cre;Stat3flox/Δmutants also exhibit a similar decrease in trabecular bone associated with the

loss of Stat3 (S7F and S7G Fig).

Stat3 loss-of-function mimics features of Sox9 haploinsufficiency

Our observations to this point are strongly reminiscent of many elements of the phenotype

reported for the Sox9+/- haploinsufficient mouse model, including bent limbs, dwarfism, hip

dysplasia, spinal curvature, extension of the hypertrophic chondrocyte zone and perinatal

lethality [7]. To investigate additional features in vivo associated with Sox9 haploinsufficiency

Stat3 regulates Sox9
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in tissues where TCre is not known to be active, we employed a Sox9Cre driver strain strategy

[37]. Sox9Cre;Stat3flox/Δmutants suffer from a heightened incidence of perinatal lethality, as

neonates were produced at an observed rate of 8.3% (n = 4/48) versus an expected rate of 25%

(n = 12/48) based on the genetic cross used (S1 Table). Furthermore, pups surviving the gesta-

tional period had severely labored breathing and died within 48 hours of birth. We analyzed

specific regions of the Sox9Cre;Stat3flox/Δ animals for further evidence of phenotype reminis-

cent of Sox9 hapoinsufficiency and found that the thyroid, cricoid and tracheal ring cartilages

associated with the developing larynx and trachea were markedly reduced compared to litter-

mate controls (Fig 5A). Within the developing palates of the Sox9Cre;Stat3flox/Δmutants at P2,

we observed a failure of the secondary palate to extend caudally and laterally, resulting in a

lack of proper fusion (Fig 5B). This open palate persists caudally around the basisphenoid

bone, pterygoid processes and the basioccipital bone, coupled with obvious osteosclerosis

(arrowheads) adjacent to the presumptive growth plates of these developing bones (Fig 5C and

5D). The composite phenotypes observed across our series of mutant animals offer corroborat-

ing evidence in support of a role for Stat3 in the pathology of Sox9 haploinsufficiency-like

defects, including palate closure defects and laryngotracheomalacia. A comparison of the simi-

lar, and distinct, features of our series of loss-of-function mutant mice with the Sox9+/- model

and human CD is summarized in Table 1.

Loss of Stat3 deregulates Sox9 in vivo

To date, mutations or deletions of the SOX9 locus are the only known genetic lesions responsi-

ble for development of CD in humans. As previously noted, the composite phenotypes of our

Stat3 loss-of-function models mimic the defects reported in the Sox9+/- mouse model [7]. In

order to determine whether Stat3 could potentially act through the regulation of Sox9, we

investigated Sox9 expression and function in our TCre;Stat3flox/Δmodel. At mid-gestation,

TCre;Stat3flox/Δ mutant embryos display a spatially normal, but global reduction in Sox9
expression compared to littermate controls as determined by in situ hybridization (Fig 6A).

Importantly, as the characterization of our Cre driver had not been evaluated as late as embry-

onic day 12.5, we undertook a TCre lineage trace by crossing male drivers to female RosaLacZ/+

animals and evaluated β-galactosidase activity on similarly staged embryos [38]. Brief exposure

to substrate indicated anterior areas where TCre demonstrates weak recombination activity

(S8A Fig). However, longer exposure to substrate revealed extensive and specific patterns of

recombination in areas consistent with cranial neural crest migratory routes when compared

to controls (S8B–S8E Fig). We observed on a macroscopic level, recombination in the dorsal

anterior neural tube, the source for cranial neural crest cells, indicating a high likelihood that

anterior areas of Sox9 reduction could indeed be a cell autonomous response to the loss of

Stat3 (S8D Fig). We cannot, however, completely rule out a non-cell autonomous phenome-

non in the anterior portions of our TCre mutants, leaving open the possibility that some effects

are indirectly linked to the loss of Stat3.

To quantitatively measure the observed change in Sox9 mRNA, we performed quantitative

RT-PCR (RT-qPCR) for Sox9 from total RNA isolated from the humeri of individual P0 TCre;
Stat3flox/Δmutant and littermate controls and found a significant reduction in Sox9 expression,

confirming our in situ results (Fig 6B). We next examined if this reduction in mRNA translates

to a decrease in Sox9 protein, using immunofluorescent analysis for Sox9 on neonatal sections

of radii, and found that in TCre;Stat3flox/Δmutants, there is an overall decrease in the amount

of Sox9 staining throughout the epiphysis and growth plate chondrocytes (Fig 6C). Finally,

we assessed the physiological relevance of the observed reduction in Sox9 by evaluating the

expression of an early Sox9 direct target, type II collagen (Col2α1), by RT-qPCR. As expected,
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Fig 5. Tracheal and palatal malformations in Sox9Cre;Stat3flox/Δ mice. (A) Whole mount Alcian Blue-

stained larynx and trachea from P2 control and Sox9Cre;Stat3flox/Δ mice. Arrows correspond to indicated

cartilage regions, tc—thyroid cartilage, cc—cricoid cartilage, tr—tracheal ring cartilage. (B—D) Ventral aspect

of Alizarin Red/Alcian Blue stained palates in control and Sox9Cre;Stat3flox/Δ mice. Arrows indicate caudal

extension of secondary palate, asterisks indicate absence of palatal bone fusions, white arrowheads indicate

Stat3 regulates Sox9
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mutant mice exhibited a predictable decrease in Stat3 as well as Sox9 mRNA at P4, when the

observed phenotype becomes quite evident (Fig 6D and 6E). Importantly, a concomitant

reduction in the expression of Col2α1 in our TCre;Stat3flox/Δ mutants was also observed, sug-

gesting that Sox9 levels had fallen beneath a threshold required for adequate chondrocyte

function (Fig 6F). These findings indicate that the loss of Stat3 in osteochondro progenitors

deregulates the functional complement of Sox9, implying a potential mechanism whereby our

observed skeletal defects may arise.

In an effort to validate our in vivo observations in an ex vivo setting, we used a primary limb

bud cell culture model derived from E13.5 F344 rat embryos, a stage analogous to E11.5 in the

mouse (S9A and S9B Fig). Here, we tested transient (72h) siRNA-induced knockdown of indi-

vidual Stat family members in these cells to address the early effect of Stat loss-of-function on

Sox9 levels. We found that knockdown of Stat3, by two independent siRNA constructs, signifi-

cantly reduces Sox9 protein levels compared to control siRNA, whereas this effect is not

observed when either Stat1 or Stat5A are knocked down, suggesting a Stat3-specific phenome-

non (Fig 6G and 6H). Evidence using cell culture models suggests that fibroblast growth factor

(Fgf) signaling through extracellular regulated kinase 1/2 (ERK1/2) may regulate the expres-

sion of Sox9 [39]. Importantly, knockdown of Stat3 does not negatively affect MAPK signaling

as measured by pERK1/2 levels, suggesting that endogenous levels of Stat3, specifically, are

required to maintain normal Sox9 levels (Fig 6G and 6H and S9D and S9E Fig). Interestingly,

osteosclerotic regions. pl—secondary palate, pt—pterygoid bone, bs—basisphenoid bone, bo—basioccipital

bone.

doi:10.1371/journal.pgen.1006610.g005

Table 1. Comparison of phenotypic abnormalities in Stat3 loss-of-function mice relative to Sox9 haploinsufficient mice and patients with campo-

melic dysplasia. Presence or absence of phenoypte denoted as + or -, respectively. Phenotype not investigated denoted as “N.I.”. Phenotypic information

not available denoted as “unreported”.

Feature Patients with CD Sox9+/- Mouse TCre Mutant Prx1Cre Mutant Sox9Cre Mutant

Early Death + + + N.I. +

Dwarfism + Unreported + + N.I.

Respiratory distress + + + - +

Cleft Palate + + + N.I. +

Laryngotracheomalacia + + + N.I. +

Small thoracic cage + + N.I. N.I. N.I.

Micrognathia + + N.I. N.I. N.I.

Bowing of long bones + + + + N.I.

Bowed tibiae + + + N.I. N.I.

Bowed femora + - - N.I. N.I.

Bowed ulnae or radii + + *+ *+ N.I.

Fracture of long bones - - + + N.I.

Trabecular reduction - - + + N.I.

Pelvic deformity + + + N.I. N.I.

Spinal deformity + + + N.I. N.I.

Missing pair of ribs + - - - -

XY sex reversal + - ** ** N.I.

Hypertrophic zone elongation Unreported + + + N.I.

*Analysis obscured by co-incident fracture.

**Indicated Cre inactive in tissue of origin.

doi:10.1371/journal.pgen.1006610.t001
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Fig 6. Sox9 is deregulated in vivo in TCre;Stat3flox/Δ mice. (A) WISH for Sox9 expression in E12.5 embryos of indicated

genotype. (B) Total RNA isolated from humeri of control and mutant TCre;Stat3flox/Δ mice at birth analyzed for Sox9

expression by quantitative RT-PCR. Error bars represent SEM, *p<0.05. (C) Sox9 protein levels analyzed by

immunofluorescence in longitudinal sections of the distal ulnae of control and mutant TCre;Stat3flox/Δ mice at birth. Arrowhead

marks resting chondrocytes, small bracket highlights prehypertrophic chondrocytes, large bracket denotes hypertrophic zone.

(D-F) Total RNA isolated from humeri of control and mutant TCre;Stat3flox/Δ mice at birth analyzed for (D) Stat3, (E) Sox9 and
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knockdown of Stat1, but not Stat5, negatively affects activated MAPK levels; however, in either

case there is no significant change in Sox9, further supporting a regulatory phenomenon likely

specific to Stat3 (Fig 6G and 6H and S9D and S9E Fig).

Stat3 likely regulates Sox9 expression directly ex vivo

Very little is known about signals that potentiate the expression of Sox9 in vivo leading us to

inquire about the mechanism by which loss of Stat3 achieves the observed changes in Sox9.

We addressed this question by first examining the 2.1 Kb immediate upstream promoter

region of Sox9 in silico to identify potential Stat-specific DNA response elements (SRE) corre-

sponding to the consensus sequence, 5’-TTC(N3-4)GAA-3’, and found three clustered SREs at

1665 (5’-TTCGTTTGAA), 1648 (5’-TTCGACTGAA-3’) bases and 1582 (5’-TTCGGAAGAA-

3’) bases upstream of the transcriptional start site, the first of which was of lower confidence

than the other two (Fig 7A). Additionally, we observed a single, low-confidence SRE at 674 (5’-

TTCGTTGAA-3’) bases upstream of the start site (not depicted). It is reasonably well estab-

lished that the promoter region of Sox9 is only modestly conserved. To determine if our obser-

vation was limited to the mouse, we extended our promoter evaluation into Drosophila, rat,

and human. We found that, while the specific sequence and precise position(s) of identified

Stat consensus sites were variable, all species evaluated contained at least one putative

Stat-binding site at approximately 1.6Kb upstream of the Sox9 ortholog transcriptional start

site (S10A Fig). Taking a conservative view of the probability of any 10-mer DNA sequence

appearing at random over a region of 2.1Kb, the appearance of these Stat-binding sites any-

where in the upstream promoter is highly improbable (0.04%), suggesting their specific

upstream location is unlikely to be a random event and has potential biological significance.

Since in vivo deletion of either LIF or LIFR does not result in alteration of the hypertrophic

chondrocyte zone [40, 41], we next asked if other potentially relevant initiators of Stat3 activa-

tion in the IL-6 family of cytokines to which LIF belongs, e.g., IL-6 or Oncostatin-M (OSM),

could regulate Sox9 expression in cell culture. We first addressed this question using a

NIH3T3 mouse fibroblast culture model. These cells mimic many features of early mesenchy-

mal cells and have been shown to undergo BMP4-induced chondrogenic lineage commitment

in culture and contribute to robust collagen formation in vivo [42]. These cells express nuclear

Sox9 and rapidly facilitate translocation of Stat3 to the nucleus in response to ligand stimula-

tion (S11A Fig). By RT-qPCR analysis, we determined that both OSM and IL-6 rapidly (30

minutes) induce a modest but significant upregulation of Sox9 mRNA in these cells (Fig 7B

and S11B Fig). Additionally, we demonstrated that a previously described mouse 2.4kb Sox9
promoter-driven luciferase reporter construct [43], which contains the putative SRE sites, is

induced in a dose-dependent fashion by OSM in culture (Fig 7C).

In addition to activating Stat3 and other Stat family members, IL-6 and OSM can also

induce phosphorylation of ERK1/2 to regulate downstream transcriptional targets. As previ-

ously mentioned, ERK1/2 is a suspected modulator of Sox9 in cell culture. To assess the ability

of these ligands to initiate both signaling pathways, we analyzed 3T3 cells challenged for 20

minutes with increasing doses of either IL-6 or OSM by immunoblotting. IL-6 induced phos-

phorylation and activation of Stat3 in a dose-dependent manner, but did not activate ERK1/2,

Stat1, or Stat5, suggesting the modest increases in Sox9 expression and promoter activity are

mediated primarily by Stat3 (S11C and S11D Fig). However, OSM robustly activated Stat3 as

(F) Col2a1 expression by quantitative RT-PCR. Error bars represent SEM, *p<0.05, **p<0.01. (G) Representative

immunoblot analysis of indicated proteins in response to Stat family member siRNA constructs after 72h. (H) Quantitative

analysis of Sox9 levels from immunoblot in G, error bars are SEM, #p = 0.054, *p<0.05.

doi:10.1371/journal.pgen.1006610.g006
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Fig 7. Sox9 expression is regulated by Stat3. (A) Schematic of immediate upstream mouse Sox9 locus. Red blocks

indicate putative Stat DNA binding elements. (B) Total RNA isolated from control or OSM-treated 3T3 cells analyzed for

Sox9 expression by quantitative RT-PCR after 30 minutes. Error bars represent SEM, *p<0.05. (C) Analysis in 3T3

cells of a Sox9 promoter-driven luciferase construct in response to control or OSM treatment for 24h at specified doses.

Error bars are SEM, *p<0.05, **p<0.01. (D) Immunoblot analysis depicting activation of indicated proteins in response

to increasing OSM levels in 3T3 cells. Arrowheads indicate doublet isoforms of ERK. (E) Immunoblot analysis depicting

activation of indicated proteins in response to OSM treatment in the presence of a Stat3 inhibitor (Stat3i) in 3T3 cells.
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well as Stat1, Stat5, and ERK1/2, suggesting that OSM-induced Sox9 promoter activity may

not be solely attributable to Stat3 signaling (Fig 7D and S11D Fig). To test this directly, we ana-

lyzed 3T3 cells transfected with the Sox9 luciferase reporter and co-treated with a specific pep-

tide-inhibitor for Stat3 (Stat3i), which targets transcriptional activation [44]. As expected Stat3

was still phosphorylated in response to OSM (Fig 7E); however, we found that the specific inhi-

bition by Stat3i dramatically abrogated the ability of OSM to induce Sox9 promoter-driven

luciferase activity above baseline levels (Fig 7F). Importantly, the addition of Stat3i to our cul-

ture system did not affect the phosphorylation of ERK1/2 in response to OSM stimulation (Fig

7E), suggesting that the inhibition of Stat3 was both specific and responsible for the decrease

in OSM-induced Sox9 promoter-driven luciferase activity.

To confirm that our observations were not due to a cell-specific phenomenon, we again uti-

lized our rat primary limb bud cell culture ex vivo model. Importantly, these cells respond simi-

larly to either OSM or LIF as measured by the rapid (20 minutes) phosphorylation of Stat3

(S9C Fig), suggesting the availability of multiple receptors capable of transducing the JAK/Stat

signal. We investigated how different growth conditions, including Tgf-α and ROCK inhibitor,

Y27632 (TY), with the addition of Fgf-2 (FTY) or Fgf-2 and LIF (FTLY), affect the basal activity

of our pE2.4Sox9-luciferase reporter and found that the addition of LIF facilitates a significant

increase in luciferase activity (Fig 7G). Further, we found that cells cultured in FTY conditions,

but not in TY or FTLY conditions, are amenable to stimulation by either OSM or LIF, in turn

significantly upregulating the activity of the Sox9 driven luciferase reporter (Fig 7H and S11E

and S11F Fig) and confirming the requirement for Fgf signaling to maintain Sox9 inducibility

as previously reported [45]. In total, these data validate our findings in NIH3T3 cells, provide

additional evidence in a second species of the requirement for Stat3 in maintaining normal lev-

els of Sox9, and demonstrate that minimally three upstream ligands (IL-6, OSM and LIF) can

mediate these effects in cell culture and are potentially relevant in vivo.

Our findings to this point strongly suggested a bona fide function for Stat3 in modulating

the expression of Sox9 in a cell culture setting, though the question of whether Stat3 achieves

this directly remained open. To address this question, we first created a Sox9 promoter-driven

luciferase construct wherein the upstream 1630 base pairs were deleted, removing all four of

the identified SREs (pE770Sox9-Luc) and tested it in 3T3 cells. Kanai et al., previously demon-

strated that deletion of the longer-range elements more than 200bp upstream of the Sox9-luci-

ferase reporter does not affect reporter activity after growth in serum in multiple cell culture

models [43]. We found that the activity of this deletion construct was not significantly

enhanced by stimulation with OSM following serum starvation and that the modest increase

in activity was not significantly altered by the addition of the Stat3i peptide (S11G Fig). This

finding suggests that the removal of the SREs abrogates the ability of OSM to induce Sox9 pro-

moter activity; however, it does not preclude the notion that other elements within the large

deleted region may be responsive to factors other than Stat proteins.

To address the possibility that Stat3 is directly responsible for driving Sox9 expression in

cell culture, we performed chromatin immunoprecipitation (ChIP) analysis on the putative

Arrowheads indicate doublet isoforms of ERK. (F) Fold change analysis of a Sox9 promoter-driven luciferase construct

in response to OSM treatment in the presence of a Stat3i for 24h in 3T3 cells. Error bars are SEM, *p<0.05. (G)

Analysis of a Sox9 promoter-driven luciferase construct in response to indicated treatment for 48h in rat limb bud cells.

Error bars are SEM, *p<0.05. (H) Analysis of a Sox9 promoter-driven luciferase construct in response to indicated

treatment for 24h in growth conditionsFgf2 (50ng/ml)/TGFα (10ng/ml)/Y27632 (10μM) (FTY) media. Error bars are

SEM, *p<0.05. (I) Chromatin immunoprecipitation analysis of DNA associated with Stat3 protein in response to OSM

treatment in 3T3 cells by PCR for specified regions. (J) Fold change analysis of indicated Sox9 promoter-driven

luciferase constructs mutated in the Stat binding regions in response to OSM treatment in 3T3 cells for 24h. Error bars

are SEM, *p<0.05.

doi:10.1371/journal.pgen.1006610.g007
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regions of Sox9 promoter DNA specifically associated with Stat3 in OSM-treated NIH3T3

cells. As expected, OSM treatment induced recruitment of Stat3 to the Socs3 gene when com-

pared to untreated cells [46]. This served as a positive control for our analyses (Fig 7I). We also

detected a robust recruitment of Stat3 specifically to the region around the upstream cluster of

SREs within the Sox9 promoter following OSM treatment, though assessment of Stat3 occu-

pancy of specific individual SRE sites was precluded due to their close proximity to one

another and the average DNA fragmentation size (~500bp) used in our experimental condi-

tions (Fig 7I). Importantly, analysis of the fourth SRE site, roughly 950bp downstream of the

SRE cluster, demonstrated that Stat3 was not recruited to a quite proximal area under the

same conditions and therefore served as a negative control in establishing the specificity of the

upstream Stat3/DNA association (Fig 7I). These results indicate a likely physical interaction

between Stat3 and the Sox9 promoter in response to Stat3 activation, at least in cell culture.

Further, ChIP analyses would suggest that Stat3 is directly activating the expression of Sox9,

but do not precisely define the binding site(s) within the promoter.

To investigate which of the upstream SRE elements Stat3 binds to, we generated a series of

mutant pE2.4Sox9-luciferase constructs where the 5’ palindromic sequence of each individual

SRE was altered from “TTC” to “CCG” to abrogate the ability of Stat3 to effectively bind the

DNA (pΔSRE1Sox9-Luc, pΔSRE2Sox9-Luc and pΔSRE3Sox9-Luc). When tested in our 3T3

cell culture model, the individual mutants do not significantly alter reporter activity (Fig 7J).

As oligomerization of Stats often enhances their transcriptional activity, we also made and

investigated tandem SRE site pE2.4Sox9-luciferase mutants in 3T3 cells (pΔSRE1/ΔSRE2-

Sox9-Luc, pΔSRE1/ΔSRE3Sox9-Luc and pΔ2SRE/ΔSRE3Sox9-Luc). When SRE2 or SRE3 were

mutated in tandem with SRE1, we again observed no significant alteration of luciferase activity

in response to stimulation by OSM (Fig 7J). However, when SRE2 and SRE3 were mutated in

tandem we observed a significant decrease in the amount of reporter activity as compared to

the wild-type pE2.4Sox9-luciferase in response to OSM stimulation (Fig 7J). These findings

validate our ChIP analysis, effectively placing Stat3 directly on SRE2 and/or SRE3, and suggest

these sites are required for the regulation of Sox9 by JAK/Stat signaling through Stat3 in cell

culture, a mechanism we suggest is likely operant for proper skeletogenesis in vivo, though this

remains an open question.

Discussion

The current study defines an as yet unappreciated function for Stat3 in mammalian embryonic

development following germ-layer formation at gastrulation. Specifically, mesodermal loss of

Stat3 causes early neonatal lethality and a dramatic skeletal dysplasia accompanied by an

abnormal growth plate morphology. We reveal that loss of Stat3, at least in part, downregulates

Sox9 levels in vivo and results in a suite of phenotypic aberrations that appear to closely resem-

ble many of those apparent in the Sox9+/- haploinsufficient model [7]. Extensive ex vivo evalua-

tion suggested that a measurable portion of the regulation of Sox9 can likely be mediated

directly by Stat3 binding to the Sox9 promoter, at least in cell culture models. In total, our

data suggest that the likely mechanism for the pathology involves disrupted Sox9 levels in the

mutant mice and constitute, to our understanding, the first evidence of a non Sox9-associated

genetic lesion resulting in a campomelic-like phenotype.

As Stat3 is thought to be a ubiquitous latent cytoplasmic protein, activated in a post-transla-

tional manner by phosphorylation, we initially hypothesized a rather broad domain of expres-

sion in developing embryos. However, our investigation into the developmental function of

Stat3 following germ layer specification revealed a somewhat surprising likelihood of more

pointed importance in tissues of mesodermal origin. Indeed, our mesodermal Stat3 loss-of-
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function mutant animals developed dramatic perinatal skeletal abnormalities and quickly per-

ished. Conditional loss-of-function analyses done prior to this study have suggested that Stat3

is required for the proper commitment and subsequent function of both osteoblasts and osteo-

clasts; however, these studies indicate a much less severe suite of skeletal issues due to defects

in mineralization balance [31–33]. To our knowledge, the mice described in these studies do

not exhibit a dwarf-like phenotype and generally survive into maturity with one minor excep-

tion being a reported incidence of small size accompanying a curvature of the spine and ~8

week survival in approximately 10 percent of mutant mice where Stat3 was deleted from early

osteoblasts and osteocytes [33]. The authors make no further analyses of these animals, and we

suggest that this low-penetrant phenotype may arise from the reported sporadic Col3.6Cre
activity within the chondrocyte pool [47]. Deletion of Stat3 specifically from the chondrocyte

population has not been reported; however, the growth plate architecture in mouse models

where signaling, putatively through Stat3, is disrupted have failed to identify dramatic changes

in chondrocyte biology [40, 41, 48]. Here, we suggest that early deletion of Stat3 from the

osteochondro progenitor pool by either TCre or Prx1Cre disrupts the dynamics of growth

plate chondrocytes, indicating signaling independent of, or in concert with LIF is likely facili-

tating Stat3 function in these cells. Though we cannot rule out a distinct, Sox9-independent

role for Stat3 within this growth plate defect, our interpretation leads us to believe this to be a

major causative mechanism at work in our mutants.

With regard to how faithfully deletion of Stat3 recapitulates the Sox9 haploinsufficient

model of CD, a majority of the pathologies described in the Sox9+/- models are, to some extent,

found in our array of Cre-driven mutant mice (Table 1) [7, 49]. Our panel of mutant mice suffer

premature lethality, bending of bones, hip girdle dysplasia, hypoplastic tracheal cartilage, cleft

palate and hypertrophic chondrocyte perdurance. We also demonstrate an additional feature,

unreported in the Sox9+/- model, i.e., spinal column curvature defects, which faithfully mirror

the human clinical pathology of CD. Interestingly, the observation of spinal curvature and loss

of intervertebral tissues was more recently described in an adult mouse model where Sox9 was

conditionally deleted at sexual maturity, bearing a striking similarity to our TCre;Stat3flox/Δ

mutant mice and lending support to our model [49]. Though we report a reduction in the phys-

ical and functional level of Sox9 in our mutant mice, there is a delay in the onset of many of

these features when compared to mice that are haploinsufficient for Sox9, suggesting that Stat3

may be necessary for fine-tuning Sox9 expression within the developing growth plate. There, it

may help maintain a critical threshold level for proper endochondral growth, with perhaps a

greater requirement postnatally. In support of this idea, loss-of-function Stat3 mutants have

prominent deltoid tuberosities associated with their humeri (see Fig 3A and S3A and S3B Fig),

a feature which is absent in the Sox9+/- model, and may be explained either by Sox9-sensitive

genetic background modifiers or potentially by lower over all levels of Sox9 in the haploinsuffi-

cient model [7]. One additional striking difference that our Stat3 loss-of-function mutants dis-

play is the high incidence of spontaneous fractures. Besides endochondral ossification per se,

loading forces experienced in utero by the surrounding skeletal muscle are known to exert

mechanical stress on developing bones to properly shape them [50]. Sox9+/- animals exhibit an

osteosclerotic mineralization defect, which potentially resists this force; whereas, loss of Stat3
results in brittle bones due to defects in osteoblast/osteoclast function, which cannot withstand

these forces and may thus result in fractures [7]. Furthermore, while our TCre;Stat3flox/Δmutant

mice deregulate Sox9 expression only in the mesoderm and do not develop immediate respira-

tory dysfunction associated with CD, the high rate of perinatal lethality exhibited by our

Sox9Cre;Stat3flox/Δmutant mice may be attributed to this additional insult.

The consequences of Sox9 depletion are well known, but the mechanistic regulation of Sox9
in vivo is poorly understood. Recently, epigenetic control of the proximal Sox9 promoter in a
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chondrogenesis culture model has been reported as a consequence of the balance between

Wnt and fibroblast growth factor (Fgf) signaling, though physical activation of Sox9 expression

was not addressed [45]. It has also been reported that hypoxia inducible factor 1-α (HIF1α)

can directly activate Sox9 in culture and is required for appropriate development of skeletal

elements of the autopod in vivo [51]. Additionally, Fgf signaling plays a well-established role in

bone development and has been linked, in culture, with activation of Sox9 expression mediated

by ERK1/2 signaling [39]. As with our deletion of Stat3, chondrogenesis and bone develop-

ment progress, albeit abnormally, in the aforementioned studies arguing for the involvement

of multiple, cooperative signaling modalities in the regulation of Sox9. Of note, a recent study

by Kondo et al., suggests that chondrogenic differentiation of human mesenchymal stem cells

(MSCs) is mediated in part and subsequently enhanced by IL-6 signaling through STAT3, sug-

gesting a likely conservation of the signaling events described in our present study [52]. Inter-

estingly, several studies have previously indicated cooperative target gene activation by Stat3

and HIF1α, as well as the activation of Stat3 through direct phosphorylation by the Fgf recep-

tor in response to Fgf signaling, suggesting that these pathways may converge and synergize

on Sox9 in the regulation of chondrogenesis [53–55].

The physical association of Stat3 with the Sox9 proximal promoter is not entirely without

precedent as other members of the Sox family, e.g., Sox2 and Sox6, are activated directly by

Stat3, implicating Stat3 signaling in multiple early developmental paradigms [56, 57]. While

our cell culture experiments suggest Stat3’s association with the Sox9 promoter, it is important

to note that these data are merely suggestive of the mechanism in vivo. Further, it is possible

that additional or more important binding elements exist within the much larger ~1Mb

upstream regulatory regions of Sox9, and these questions warrant future investigation. Addi-

tionally, Stat-binding elements are heterogeneous and can be bound by multiple members of

the Stat family [58]. In fact, Stat signaling in general is quite complex as multiple ligand and

receptor interactions can stimulate the phosphorylation of multiple Stat family members either

independently or coordinately (for review see [15]). It may be that redundancy within the Stat

family can partially compensate for the loss of Stat3 to allow sufficient activation of Sox9 early

in the bone formation process. This compensation may also account for the seemingly normal

skeletal development in utero, which is overcome early in the post-natal period and manifests

as Sox9 haploinsufficient-associated CD. Additionally, it is quite possible that the regulation of

the Sox9 locus by Stat3 may occur in tissues other than the skeletal system, and may therefore

merit further attention in these contexts. Indeed, Sox9 has been shown to be involved in both

the normal development and subsequent pathological calcification of cardiac valves and septa

[59, 60]. Further, Sox9 is implicated in the proper morphogenesis of mammalian kidney and,

in humans, is critical for proper gonad formation [2, 61]. Outside of normal development, and

of wide potential impact, it has become a target of interest for its emerging role as an oncogene,

suggesting that elucidation of key modulators, e.g., Stat3, could prove to be therapeutically

important [62, 63].

From a clinical perspective, it is clear that the dominant genetic insult in CD is the mutation

or deletion of the SOX9 coding region. These lesions account for the preponderance of text-

book CD with bowed limb elements [3–5]. CD can arise as milder phenotypes, to the point

where no bending of the bones is evident, suggesting a heterogeneous pathology. To date, this

phenomenon has largely been associated with chromosomal rearrangements outside of the

SOX9 coding region [8, 9, 64, 65]. We suggest that potential modifiers of Sox9 expression, like

Stat3 shown here, rather than frank mutations within the coding region may impart a portion

of this milder heterogeneity. Additionally, there appears to be a minority subset of the disease

where no detectable SOX9 mutations or rearrangements of known significance are described

[5]. While Stat3 involvement is almost certainly not the sole explanation, it may be that in
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many cases of mild CD or ACD, the ability of Stat3 to access the promoter is limited or ablated.

This could in turn cause the loss of sufficient levels of SOX9 and a muted version of CD and

such a scenario warrants further investigation.

For frank CD, treatment is still largely based on ventilation at birth to circumvent breathing

issues or on surgical interventions, as warranted for disambiguation of genitalia, hip disloca-

tions, clubbed feet and spinal stabilization outside of the neonatal period. Though likely a

complicated biological issue, it would be interesting to determine if amplification of Stat3 acti-

vation during gestation could rescue the effects of Sox9 haploinsufficiency by upregulating the

wild-type Sox9 allele. Precedent for this type of treatment exists, in theory, as in utero adminis-

tration of BMP2/7 rescues the skeletal defects associated with a mouse model of Rubinstein-

Taybi syndrome [66]. Determination of the upstream ligands and receptors responsible for

normal Stat3 activation within the early Sox9-expressing cells is necessary. As LIF-/- and

LIFR-/- animals have normal growth plate architecture, it is likely that alternate cytokines and

receptors for Stat3 activation, either alone or in conjunction with multiple components, are at

work in vivo and as such, determination of these upstream events is currently part of our ongo-

ing effort.

Materials and methods

Cell culture

NIH3T3 mouse fibroblasts (ATCC) were maintained in DMEM (Quality Biological) contain-

ing 10% FBS, 2 mM L-glutamine and 1% penicillin/streptomycin. For primary rat limb bud

cell culture, fore and hind limb buds were carefully dissected from the body wall of F344 rat

embryos at 13.5dpc and pooled. The buds were washed with PBS, briefly digested in 0.05%

trypsin/0.53mM EDTA (Corning), gently washed with three exchanges of PBS and resus-

pended by trituration in basal media consisting of DMEM:F12 (Corning) supplemented as

described with the addition of TGF-α (Peprotech), ROCK inhibitor Y27632 (Tocris), FGF2

(Peprotech) and LIF (Millipore) as indicated [67]. Where indicated, cells were treated with

bovine serum albumin or dimethyl sulfoxide (both from Sigma) as controls for parallel treat-

ment by IL-6, OSM (Cell Signaling Technology), LIF (EMD Millipore), or Stat3i (a gift from

Nadya Tarasova, National Cancer Institute, Frederick, Maryland, USA).

Plasmids and antibodies

Control luciferase plasmids, pGL3-basic and pRL-TK-renilla were from Promega. Sox9 lucifer-

ase reporter (pE2.4-Sox9Luc) was a gift from Peter Koopman (University of Queensland, Bris-

bane, Queensland, Australia). The pE770Sox9-Luc reporter was generated by KpnI digestion

of pE2.4-Sox9Luc and vector re-ligation. Individual ΔSRE luciferase mutants were generated

using the Quick Change II site-directed mutagenesis kit (Agilent Technologies) and the wild-

type pE2.4-Sox9Luc template according to manufacturer’s protocol. The subsequent tandem

ΔSRE constructs were generated by sequential rounds of site-directed mutagenesis using the

appropriate single-site template constructs and all materials were sequence verified before use.

The mutagenic primers were as follows: ΔSRE1 Fwd—GACATGCAATGCTAGGAACACC

GGTTTGAAAAGAAACTTCGACTG, Rev—CAGTCGAAGTTTCTTTTCAAACCGGTG

TTCCTAGCATTGCATGTC; ΔSRE2 Fwd—GTTTGAAAAGAAACCCGGACTGAACAGA

GTTGTAGCTTGCTGC, Rev—GCAGCAAGCTACAACTCTGTTCAGTCCGGGTTTCTT

TTCAAAC; ΔSRE3 Fwd—CCAAATAACAAATGCCCACCCGGGAAGAAAACGAGAG

GAAAACG, Rev—CGTTTTCCTCTCGTTTTCTTCCCGGGTGGGCATTTGTTATTTGG.

The following antibodies were used: anti-Sox9 (Millipore); anti-β-actin (Sigma); anti-Stat1,

anti-Stat3, anti-phospho-Stat3 (Y705), anti-phospho-Stat1 (Y701), anti-phospho-Stat5 (Y694),
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and anti-phospho-ERK1/2 (all from Cell Signaling Technology); anti-Stat5A (Santa Cruz);

alkaline phosphatase-conjugated anti-digoxigenin Fab (Roche); alexa-488-conjugated anti-

rabbit IgG (Invitrogen); IR-680-conjugated anti-rabbit IgG and IR-800CW-conjugated anti-

mouse IgG (both from Licor).

Breeding of mice

Stat3flox/flox mice (a gift from Shizuo Akira, Osaka University, Osaka, Japan) were intercrossed

with a β-actinCre deleter strain (a gift from Mark Lewandoski, National Cancer Institute,

Frederick, Maryland, USA) to generate germline deletion of a single allele of Stat3 [68]. The

resultant heterozygous (Stat3Δ/+) mice were then intercrossed with TCre (a gift from Mark

Lewandoski), Prx1Cre or Sox9Cre (both gifts from Susan Mackem, National Cancer Institute,

Frederick, Maryland, USA) to generate specific driver strains. These strains were then re-

crossed with Stat3flox/flox mice to generate tissue-specific deletion of Stat3. Female R26RLacZ

reporter mice (a gift from Mark Lewandoski) were crossed with male TCre drivers to perfom

the indicated lineage trace. All mice were maintained on a C57BL/6 background and routinely

genotyped by PCR (primer sequences available upon request).

In situ hybridization (ISH)

Whole mount ISH was performed, essentially, as previously described [69] except BM purple

(Roche) was used as the chromogenic substrate. Briefly, plasmids encoding cDNA for mouse

Stat3, Scx, MyoG, or Sox9 were linearized and DIG-labeled complimentary probes were gener-

ated using a DIG-labeling kit (Roche). As indicated, probes were hybridized overnight and

detected using alkaline phosphatase-labeled anti-DIG antibody with subsequent chromogenic

substrate development. For sectioning, embryos stained as above were embedded into paraffin

wax after clearing in CitriSolv (Fisher Scientific) and sectioned serially at 16μM by microtome.

Skeletal preparations

For gross skeletal analysis, skeletons were prepared essentially as described by McLeod [70].

Briefly, mice were euthanized according to institutional ACUC protocols, skinned, eviscerated,

debulked of subcutaneous fat deposits and fixed in 95% ethanol. Skeletons were then treated in

100% acetone for 24-48hours (depending on age) and subsequently stained with Alcian Blue

and Alizarin Red S. Finally, soft tissue digestion and specimen clearing was done in 1% potas-

sium hydroxide. Preparations were stored and photographed in a 1:1 glycerol:ethanol solution

using an Olympus SZX16 stereoscope and measurements were made by CellSens Dimension

software.

Histology and IHF

For histological analyses, paraffin sections of bones were produced from E18.5, P0 and

P4-aged mice from the indicated genetic crosses. Limbs were dissected, skinned and fixed in

4% paraformaldehyde in PBS. Tissues were dehydrated through a graded series of ethanol,

cleared in xylene, and embedded into paraffin for sectioning. To visualize the growth plates,

sections were stained with Alcian Blue.

For immunolocalization by fluorescence, sections were dewaxed and rehydrated, and heat-

mediated antigen retrieval was performed in citrate buffer (pH 6.0). Sections were blocked in

3% normal goat serum (NGS) containing 0.1% Triton X-100 for 1 hour at room temperature

and subsequently incubated with antibody specific for the indicated target in 3% NGS over-

night at 4˚C. Sections were then washed in 1X Tris-buffered saline (TBS) and incubated with
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Alexafluor-488 conjugated secondary antibody in 3% NGS for 1 hour at room temperature.

Sections were washed in TBS and countersained/mounted in vectashield containing DAPI

(Vector Labs).

Quantitative RT-PCR (qPCR)

Humeri from control and mutant animals were dissected, combined, and dounce-homoge-

nized in 1ml Trizol reagent (Invitrogen) at the indicated age. For NIH3T3 cells, cells were

grown to 50% confluence in 12-well plates and serum starved overnight. Cells then were

treated as indicated and lysed in 500μl of Trizol reagent. Total RNA was recovered using an

RNeasy Kit (Qiagen) and quantified by spectrophotometric analysis (NanoDrop). cDNA was

reverse-transcribed from equal amounts of total RNA using random hexamer priming and the

Verso cDNA Synthesis Kit (Thermo Scientific). qPCR was then performed on equal volumes

of cDNA using a SsoFAST EvaGreen 2X PCR master mix (Biorad) in a CFX96 Real-Time Sys-

tem (BioRad). Data were normalized to GAPDH levels. Primers used were as follows: Sox9

Fwd, GAGGAAGTCGGTGAAGAACG, Sox9 Rev, CTGAGATTGCCCAGAGTGCT; Col2a1

Fwd, AAAGGGGCAGAAAGGAGAA, Col2a1 Rev, AGGATTTCCAGGGGTACCAG;

GAPDH Fwd, AATGTGTCCGTCGTGGATCTG GAPDH Rev,

CTGCTTCACCACCTTCTTGATGT.

Transient Stat knockdown

Reverse transfection of indicated siRNAs was performed with RNAiMax (Invitrogen) accord-

ing to manufacturer’s protocol in indicated media without antibiotics. Briefly, 60pmols of

siRNA was incubated with 1μl RNAiMax for 20 minutes at room temperature. Rat limb bud

cells were plated in 12-well human fibronectin-coated plates (BD Biosciences) at a density of

1.5x105 cells/well after siRNA complex formation such that final total siRNA concentration

was 50nM. The following siRNA constructs were used (Ambion/Thermo Fisher Scientific):

Control #1 (catalog 4390843), Stat1 (ID s129044), Stat3-1 (ID s129046), Stat3-2 (ID s129047),

Stat5A (s128672) and Stat5B (ID s129049).

Immunoblotting

NIH3T3 or primary rat limb bud cells were treated as indicated and harvested for protein anal-

ysis by cell-lysis in SDS sample buffer (2% SDS, 10% glycerol and 60mM Tris-HCl, pH 7.5) fol-

lowed by DNA hydrolysis at 100˚C for 10 minutes. Total protein was quantified using the

BioRad DC Protein Assay kit and equivalent amounts were subjected to SDS-PAGE on 4–12%

Bis-Tris gels (Invitrogen). Gels were then transferred to nitrocellulose membranes, which were

subsequently blocked in Odyssey diluent (Licor) and probed for indicated proteins with spe-

cific antibodies. Detection of protein-antibody complexes was carried out by IR dye-labeled

secondary antibody and fluorescent capture using an Odyssey scanner (Licor). Color images

were subsequently converted to greyscale for publication using Odyssey software (Licor).

Where indicated, pixel intensities were captured using Odyssey software for quantitative

analyses.

Luciferase reporter assay

NIH3T3 cells were plated into 24-well plates and grown to 50% confluency. The indicated con-

trol or Sox9 (0.5μg) and Renilla (0.05μg) reporter constructs were co-transfected using Fugene

6 (Roche) in serum-free conditions. 1x106 rat limb bud cells were nucleofected by Amaxa

(Lonza) protocol DN-100 in P3 primary cell solution with control or Sox9 (2μg) and Renilla
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(0.2μg) reporter constructs and plated in indiciated media. 24 hours post-transfection, cells

were treated as indicated in the absence of serum, for a further 24 hours and harvested by pas-

sive lysis. Luciferase activities were measured using the Dual-Luciferase Assay Kit (Promega)

and a MicroLumatPlus luminometer (Berthold Technologies).

Chromatin immunoprecipitation (ChIP)

ChIP was carried out essentially as described previously[71]. Briefly, NIH3T3 cells were grown

to 75% confluence in 100-mm dishes and subsequently serum-starved overnight (16h). As

indicated, cells were treated in the absence of serum and fixed in formaldehyde (1% in

medium) for 15 minutes at room temperature. Nuclear extracts were prepared, and DNA was

sheared by sonication in a Bioruptor (Diagenode) at 4˚C to an average fragment size of 500bp

as visualized by agarose gel. Equivalent volumes of nuclear extract were immunoprecipitated

overnight with anti-Stat3 bound to protein G-sepharose beads (Sigma) at 4˚C and eluted the

following day by boiling in SDS elution buffer (50mM Tris-HCl, pH 8.0, 10mM EDTA, 1%

SDS, 50mM NaHCO3). Crosslinking of “input” and immunoprecipitated samples was reversed

in proteinase-K at 65˚C overnight, and DNA was precipitated with phenol/chloroform by

standard methods. DNA was analyzed by PCR using previously reported specific primers for

Socs3 [72] or the following regions of the Sox9 promoter: SRE-Fwd, AGAAACTTCGACTGA

ACAGAGTTGT, SRE-Rev, AAGTGGGCATTTGTTATTTGG; Control-Fwd, TCGGCTTT

GGTTTTCATTG, Control-Rev, AAATGTTTGGGTGACTCAACG.

Immunofluorescence

NIH3T3 cells were grown on poly-L lysine (Sigma) coated coverglass until 50% confluence and

subsequently serum starved overnight. Cells were treated, as indicated, for 30 minutes and

immediately fixed in 2% paraformaldehyde at room temperature for 10 minutes. Coverslips

were then blocked in 3% normal goat serum (NGS) containing 0.1% Triton X-100 for 1h at

room temperature and incubated overnight in indicated primary antibodies. Samples were

then washed in 1X Tris-buffered saline (TBS) and incubated with Alexafluor-488 and Alexa-

fluor-568 conjugated secondary antibodies for 1 hour at room temperature. Coverglasses were

washed in TBS and mounted in vectashield containing DAPI (Vector Labs).

Statistics and probability analysis

Data were analyzed by Student’s t-test to ascertain the statistical significance of observations.

Statistical differences were considered significant if p�0.05� or p�0.01��. All animal compari-

sons are made based on a minimum of three (n = 3) control and mutant littermates. All other

experiments were performed a minimum of three independent times, and graphical data rep-

resents mean ± SEM (standard error of the mean). The probability of Stat consensus sequence

presence was calculated using the following formula:

Probability of site ¼ ð1 � ½ð1 � pÞN�bp
� � 100Þ

where;

p = 1/(#nucleotidesk-mer) = 1/(410)

N = number of strands of DNA available for interrogation = 2

bp = length in bases of DNA interrogated = 2100
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Study approval

All animal procedures were performed following the guidelines from the NCI-Frederick Ani-

mal Care and Use Committee under an approved animal study proposal. NCI-Frederick is

accredited by AAALAC International and follows the Public Health Service Policy for the Care

and Use of Laboratory Animals. Animal care was provided in accordance with the procedures

outlined in the "Guide for Care and Use of Laboratory Animals" (National Research Council;

1996; National Academy Press; Washington, D.C.).

Supporting information

S1 Fig. Characterization of background levels of WISH staining using a Stat3 sense control

probe in the mid-gestation mouse. (A) Lateral view of wild-type mouse embryo at E8.5

hybridized with sense probe. (B) Dorsal view of posterior region from A. (C) Lateral view of

wild-type mouse embryo at E10.5 hybridized with sense probe. (D) Transverse section denoted

in C (dashed line), NT—neural tube, Som—somites. (E) Higher magnification of box denoted

in C, fl—forelimb. (F) Magnification of box shown in C. Outline demarcates apical ectodermal

ridge (AER), fl—forelimb.

(TIF)

S2 Fig. Late postnatal phenotype of Stat3-deficient mice. (A) Representative immunoblot of

protein isolates from neonatal littermates demonstrating ablation of Stat3 in humeri. (B) Rep-

resentative control (TCre;Stat3flox/+, left) and mutant (TCre;Stat3flox/Δ, right) ventral images of

littermates at P14. Arrows indicate abnormal limb curvatures. Bar = 1cm.

(TIF)

S3 Fig. Loss of Stat3 does not alter normal segmentation. (A and B) Expression analysis for

Myogenin (MyoG) or Scleraxis (Scx) by whole mount in situ hybridization in control and TCre;
Stat3flox/Δ littermates at E12.5.

(TIF)

S4 Fig. Abnormal skeletogenesis in TCre;Stat3flox/Δ mice is progressive. (A and B) Alizarin

Red/Alcian Blue-stained skeletal preps demonstrating bending and spontaneous fracture of

forelimbs in TCre;Stat3flox/Δmice at indicated ages. Arrows indicate fractures of radius/ulna,

dt—deltoid tuberosity. (C, C’, D and D’) Alizarin Red/Alcian Blue-stained skeletal preps

depicting dysplastic hip girdles in TCre;Stat3flox/Δmice at specified ages. Arrows indicate sites

of spontaneous fracture, brackets denote width of acetabular cartilage. (E and F) Alizarin Red/

Alcian Blue-stained skeletal preps demonstrating antero-posterior compression of vertebral

elements in TCre;Stat3flox/Δmice at indicated ages. Double-headed arrows indicate length of

mutant vertebral body, L1—1st lumbar vertebrae. (G) Box-and-whisker plots for radii, humeri,

fibulae and femoral lengths (mm). Error bars represent SEM, n/s—not significant, �p<0.05,
��p<0.01.

(TIF)

S5 Fig. Analysis of tibial bowing. (A) Representative images and captured angular measure-

ments of Alizarin Red/Alcian Blue-stained hindlimbs from P7 littermates. (B) Magnification

of insets marked in A demonstrating representative points of measurement.

(TIF)

S6 Fig. Stat3 is normally expressed in epiphyses. (A) Immunofluorescent analysis of Stat3 in

serial sections from E14.5 control proximal humeri. (B and C) Representative depiction of dis-

tal humerus before and after epiphyseal dissection. (D) Representative immunoblot analysis of

lysates generated from epiphyseal dissections from TCre;Stat3flox/+ TCre;Stat3flox/Δ noted in C,
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at indicated ages.

(TIF)

S7 Fig. Skeletal abnormalities manifested by Prx1Cre-mediated ablation of Stat3. (A and B)

Representative images of littermate matched control and Prx1Cre;Stat3flox/Δmutant mice at P0

and P4. Arrows demonstrate bowing of forelimbs, bar = 1cm. (C) Chart depicting average

weights of indicated genotypes in aging mice. Error bars are SEM, n/s—not significant,
��p<0.01. (D and E) Alizarin Red/Alcian Blue-stained skeletal preps demonstrating bending

and spontaneous fracture of forelimbs in Prx1Cre;Stat3flox/Δmice at indicated ages. Arrows

indicate fractures of radius/ulna, asterisk denotes humerus, dt—deltoid tuberosity. (F and G)

Alcian Blue-stained longitudinal sections of the proximal humeri of control and mutant

Prx1Cre;Stat3flox/Δmice at indicated ages. Brackets denote the length of the hypertrophic chon-

drocyte region.

(TIF)

S8 Fig. TCre effects recombination in anterior regions at E12.5. (A-C) Representative whole

mount β-galactosidase staining of E12.5 embryo from TCre driver crossed with RosaLacZ carri-

ers at indicated assay lengths. (D) Caudal aspect of transverse section from region denoted in

panel B. (E) Representative negative control embryo demonstrating specificity of β-galactosi-

dase protocol. Arrowheads indicate dorsal neural tube (nt) recombination. Arrows indicate

likely cranial neural crest locations where TCre is active and overlap with observed reduction

of Sox9 mRNA in Fig 6A.

(TIF)

S9 Fig. Regulation of Stats do not downregulate ERK signaling in rat limb bud cell cul-

tures. (A) Representative image of E13.5 F344 rat embryo and limb buds. Dotted lines indicate

point of dissection for culture material. (B) Representative image of monolayer generated 8h

post-dissection and culture. (C) Representative immunoblot demonstrating early induction of

Stat3 activation in response to indicated stimuli in rat limb bud cells. F—Fgf2 (50ng/ml), T—

TGFα (10ng/ml), Y—Y27632 (10μM). (D) Representative immunoblot demonstrating pres-

ence of indicated proteins in response to indicated siRNA treatments. (E) Quantitation of

pERK1/2 levels in D. Error bars are SEM, �p<0.05, ��p<0.01.

(TIF)

S10 Fig. Species conservation of Stat binding in the Sox9 promoter. (A) Schematic of imme-

diate upstream Sox9 homolog loci across indicated species. Red blocks indicate putative Stat

DNA binding elements.

(TIF)

S11 Fig. Response of cultured rodent cells to Stat activation. (A) Immunofluorescent analy-

sis of Sox9 and Stat3 protein localization in NIH3T3 cells in response to stimulation by OSM

for 30 minutes. (B) Total RNA isolated from control or IL-6 treated NIH3T3 cells analyzed for

Sox9 expression by quantitative RT-PCR after 30 minutes. Error bars represent SEM, �p<0.05.

(C and D) Immunoblot analysis depicting activation of indicated proteins in response to IL-6

or OSM treatment at specified doses. Arrowheads indicate doublet isoforms of ERK. (E and F)

Analysis of a Sox9 promoter-driven luciferase construct in response to indicated treatment for

24h in rat limb bud cells grown in basal TY media (E) or FTLY media (F). Error bars are SEM.

(G) Fold change analysis of a Sox9 promoter-driven luciferase construct lacking the Stat-bind-

ing regions in response to control or OSM treatment in the presence of a Stat3 inhibitor for

24h. Error bars are SEM, n/s—not significant.

(TIF)
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S1 Table. Breeding scheme and expected genetic representation of offspring. TCre and

Prx1Cre driver males were homozygous for the Cre transgene, where Sox9Cre males were het-

erozygous. Expected and observed offspring ratios at birth are indicated.

(TIF)

Acknowledgments

We are grateful to Shizuo Akira (Osaka University, Osaka, Japan) for providing the Stat3flox/flox

mice; Mark Lewandoski (National Cancer Institute, Frederick, Maryland, USA) for providing

TCre and R26RLacZ mice; Susan Mackem (National Cancer Institute, Frederick, Maryland,

USA) for providing the Prx1Cre and Sox9Cre mice; Nadya Tarasova (National Cancer Insti-

tute, Frederick, Maryland, USA) for the Stat3i peptide inhibitor and Peter Koopman (Univer-

sity of Queensland, Brisbane, Queensland, Australia) for the Sox9-Luciferase reporter. We

further thank Mark Lewandoski and Susan Mackem for their critical evaluation of this manu-

script. We would also like to thank Terry Yamaguchi, Matthew Anderson, Ravi Chalamala-

setty, Irene Hung, Bau-Lin Huang, Naiche Adler, Jennifer Matta and Roberta Smith for their

helpful discussions and technical expertise. The content of this publication does not necessarily

reflect the views or policies of the Department of Health and Human Services, nor does men-

tion of trade names, commercial products, or organizations imply endorsement by the U.S.

Government.

Author contributions

Conceptualization: MDH AOP.

Data curation: MDH.

Formal analysis: MDH AOP.

Funding acquisition: AOP.

Investigation: MDH CAM MJV.

Methodology: MDH AOP.

Project administration: MDH AOP.

Resources: AOP.

Supervision: MDH AOP.

Validation: MDH AOP.

Visualization: MDH AOP.

Writing – original draft: MDH AOP.

Writing – review & editing: MDH AOP.

References

1. Maroteaux P, Spranger J, Opitz JM, Kucera J, Lowry RB, Schimke RN, et al. [The campomelic syn-

drome]. Presse Med. 1971; 79(25):1157–62. Epub 1971/05/22. PMID: 5555980

2. Mansour S, Hall CM, Pembrey ME, Young ID. A clinical and genetic study of campomelic dysplasia. J

Med Genet. 1995; 32(6):415–20. Epub 1995/06/01. PMID: 7666392

Stat3 regulates Sox9

PLOS Genetics | DOI:10.1371/journal.pgen.1006610 February 6, 2017 26 / 30

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006610.s012
http://www.ncbi.nlm.nih.gov/pubmed/5555980
http://www.ncbi.nlm.nih.gov/pubmed/7666392


3. Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanovic M, et al. Campomelic

dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. 1994; 372

(6506):525–30. Epub 1994/12/08. doi: 10.1038/372525a0 PMID: 7990924

4. Kwok C, Weller PA, Guioli S, Foster JW, Mansour S, Zuffardi O, et al. Mutations in SOX9, the gene

responsible for Campomelic dysplasia and autosomal sex reversal. Am J Hum Genet. 1995; 57

(5):1028–36. Epub 1995/11/01. PMID: 7485151

5. Meyer J, Sudbeck P, Held M, Wagner T, Schmitz ML, Bricarelli FD, et al. Mutational analysis of the

SOX9 gene in campomelic dysplasia and autosomal sex reversal: lack of genotype/phenotype correla-

tions. Hum Mol Genet. 1997; 6(1):91–8. Epub 1997/01/01. PMID: 9002675

6. Long F, Ornitz DM. Development of the endochondral skeleton. Cold Spring Harb Perspect Biol. 2013;

5(1):a008334. Epub 2013/01/04. doi: 10.1101/cshperspect.a008334 PMID: 23284041

7. Bi W, Huang W, Whitworth DJ, Deng JM, Zhang Z, Behringer RR, et al. Haploinsufficiency of Sox9

results in defective cartilage primordia and premature skeletal mineralization. Proc Natl Acad Sci U S A.

2001; 98(12):6698–703. Epub 2001/05/24. doi: 10.1073/pnas.111092198 PMID: 11371614

8. Pfeifer D, Kist R, Dewar K, Devon K, Lander ES, Birren B, et al. Campomelic dysplasia translocation

breakpoints are scattered over 1 Mb proximal to SOX9: evidence for an extended control region. Am J

Hum Genet. 1999; 65(1):111–24. Epub 1999/06/12. doi: 10.1086/302455 PMID: 10364523

9. Gordon CT, Tan TY, Benko S, Fitzpatrick D, Lyonnet S, Farlie PG. Long-range regulation at the SOX9

locus in development and disease. J Med Genet. 2009; 46(10):649–56. doi: 10.1136/jmg.2009.068361

PMID: 19473998

10. Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, et al. Autosomal sex reversal and campomelic

dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994; 79(6):1111–

20. PMID: 8001137

11. Bagheri-Fam S, Barrionuevo F, Dohrmann U, Gunther T, Schule R, Kemler R, et al. Long-range

upstream and downstream enhancers control distinct subsets of the complex spatiotemporal Sox9

expression pattern. Dev Biol. 2006; 291(2):382–97. doi: 10.1016/j.ydbio.2005.11.013 PMID: 16458883

12. Mead TJ, Wang Q, Bhattaram P, Dy P, Afelik S, Jensen J, et al. A far-upstream (-70 kb) enhancer medi-

ates Sox9 auto-regulation in somatic tissues during development and adult regeneration. Nucleic Acids

Res. 2013; 41(8):4459–69. doi: 10.1093/nar/gkt140 PMID: 23449223

13. Wunderle VM, Critcher R, Hastie N, Goodfellow PN, Schedl A. Deletion of long-range regulatory ele-

ments upstream of SOX9 causes campomelic dysplasia. Proc Natl Acad Sci U S A. 1998; 95

(18):10649–54. Epub 1998/09/02. PMID: 9724758

14. Yao B, Wang Q, Liu CF, Bhattaram P, Li W, Mead TJ, et al. The SOX9 upstream region prone to chro-

mosomal aberrations causing campomelic dysplasia contains multiple cartilage enhancers. Nucleic

Acids Res. 2015; 43(11):5394–408. doi: 10.1093/nar/gkv426 PMID: 25940622

15. Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem. 2007;

282(28):20059–63. Epub 2007/05/16. doi: 10.1074/jbc.R700016200 PMID: 17502367

16. Meraz MA, White JM, Sheehan KC, Bach EA, Rodig SJ, Dighe AS, et al. Targeted disruption of the

Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell.

1996; 84(3):431–42. Epub 1996/02/09. PMID: 8608597

17. Durbin JE, Hackenmiller R, Simon MC, Levy DE. Targeted disruption of the mouse Stat1 gene results in

compromised innate immunity to viral disease. Cell. 1996; 84(3):443–50. Epub 1996/02/09. PMID:

8608598

18. Park C, Li S, Cha E, Schindler C. Immune response in Stat2 knockout mice. Immunity. 2000; 13

(6):795–804. Epub 2001/02/13. PMID: 11163195

19. Thierfelder WE, van Deursen JM, Yamamoto K, Tripp RA, Sarawar SR, Carson RT, et al. Requirement

for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature. 1996; 382

(6587):171–4. Epub 1996/07/11. doi: 10.1038/382171a0 PMID: 8700208

20. Kaplan MH, Sun YL, Hoey T, Grusby MJ. Impaired IL-12 responses and enhanced development of Th2

cells in Stat4-deficient mice. Nature. 1996; 382(6587):174–7. Epub 1996/07/11. doi: 10.1038/382174a0

PMID: 8700209

21. Takeda K, Tanaka T, Shi W, Matsumoto M, Minami M, Kashiwamura S, et al. Essential role of Stat6 in

IL-4 signalling. Nature. 1996; 380(6575):627–30. Epub 1996/04/18. doi: 10.1038/380627a0 PMID:

8602263

22. Shimoda K, van Deursen J, Sangster MY, Sarawar SR, Carson RT, Tripp RA, et al. Lack of IL-4-induced

Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature. 1996; 380(6575):630–

3. Epub 1996/04/18. doi: 10.1038/380630a0 PMID: 8602264

Stat3 regulates Sox9

PLOS Genetics | DOI:10.1371/journal.pgen.1006610 February 6, 2017 27 / 30

http://dx.doi.org/10.1038/372525a0
http://www.ncbi.nlm.nih.gov/pubmed/7990924
http://www.ncbi.nlm.nih.gov/pubmed/7485151
http://www.ncbi.nlm.nih.gov/pubmed/9002675
http://dx.doi.org/10.1101/cshperspect.a008334
http://www.ncbi.nlm.nih.gov/pubmed/23284041
http://dx.doi.org/10.1073/pnas.111092198
http://www.ncbi.nlm.nih.gov/pubmed/11371614
http://dx.doi.org/10.1086/302455
http://www.ncbi.nlm.nih.gov/pubmed/10364523
http://dx.doi.org/10.1136/jmg.2009.068361
http://www.ncbi.nlm.nih.gov/pubmed/19473998
http://www.ncbi.nlm.nih.gov/pubmed/8001137
http://dx.doi.org/10.1016/j.ydbio.2005.11.013
http://www.ncbi.nlm.nih.gov/pubmed/16458883
http://dx.doi.org/10.1093/nar/gkt140
http://www.ncbi.nlm.nih.gov/pubmed/23449223
http://www.ncbi.nlm.nih.gov/pubmed/9724758
http://dx.doi.org/10.1093/nar/gkv426
http://www.ncbi.nlm.nih.gov/pubmed/25940622
http://dx.doi.org/10.1074/jbc.R700016200
http://www.ncbi.nlm.nih.gov/pubmed/17502367
http://www.ncbi.nlm.nih.gov/pubmed/8608597
http://www.ncbi.nlm.nih.gov/pubmed/8608598
http://www.ncbi.nlm.nih.gov/pubmed/11163195
http://dx.doi.org/10.1038/382171a0
http://www.ncbi.nlm.nih.gov/pubmed/8700208
http://dx.doi.org/10.1038/382174a0
http://www.ncbi.nlm.nih.gov/pubmed/8700209
http://dx.doi.org/10.1038/380627a0
http://www.ncbi.nlm.nih.gov/pubmed/8602263
http://dx.doi.org/10.1038/380630a0
http://www.ncbi.nlm.nih.gov/pubmed/8602264


23. Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L. Stat5a is mandatory

for adult mammary gland development and lactogenesis. Genes Dev. 1997; 11(2):179–86. Epub 1997/

01/15. PMID: 9009201

24. Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, et al. Requirement of STAT5b for sexual

dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci U S A. 1997; 94

(14):7239–44. Epub 1997/07/08. PMID: 9207075

25. Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, et al. Stat5a and Stat5b

proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell. 1998; 93

(5):841–50. Epub 1998/06/18. PMID: 9630227

26. Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N, et al. Targeted disruption of the

mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci U S A. 1997; 94(8):3801–4.

Epub 1997/04/15. PMID: 9108058

27. Yoshida K, Taga T, Saito M, Suematsu S, Kumanogoh A, Tanaka T, et al. Targeted disruption of

gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and

hematological disorders. Proc Natl Acad Sci U S A. 1996; 93(1):407–11. Epub 1996/01/09. PMID:

8552649

28. Oates AC, Wollberg P, Pratt SJ, Paw BH, Johnson SL, Ho RK, et al. Zebrafish stat3 is expressed in

restricted tissues during embryogenesis and stat1 rescues cytokine signaling in a STAT1-deficient

human cell line. Dev Dyn. 1999; 215(4):352–70. doi: 10.1002/(SICI)1097-0177(199908)215:4<352::

AID-AJA7>3.0.CO;2-J PMID: 10417824

29. Takeda K, Kaisho T, Yoshida N, Takeda J, Kishimoto T, Akira S. Stat3 activation is responsible for IL-6-

dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell-

specific Stat3-deficient mice. J Immunol. 1998; 161(9):4652–60. Epub 1998/10/30. PMID: 9794394

30. Perantoni AO, Timofeeva O, Naillat F, Richman C, Pajni-Underwood S, Wilson C, et al. Inactivation of

FGF8 in early mesoderm reveals an essential role in kidney development. Development. 2005; 132

(17):3859–71. Epub 2005/07/29. doi: 10.1242/dev.01945 PMID: 16049111

31. Itoh S, Udagawa N, Takahashi N, Yoshitake F, Narita H, Ebisu S, et al. A critical role for interleukin-6

family-mediated Stat3 activation in osteoblast differentiation and bone formation. Bone. 2006; 39

(3):505–12. Epub 2006/05/09. doi: 10.1016/j.bone.2006.02.074 PMID: 16679075

32. Zhang Z, Welte T, Troiano N, Maher SE, Fu XY, Bothwell AL. Osteoporosis with increased osteoclasto-

genesis in hematopoietic cell-specific STAT3-deficient mice. Biochem Biophys Res Commun. 2005;

328(3):800–7. Epub 2005/02/08. doi: 10.1016/j.bbrc.2005.01.019 PMID: 15694417

33. Zhou H, Newnum AB, Martin JR, Li P, Nelson MT, Moh A, et al. Osteoblast/osteocyte-specific inactiva-

tion of Stat3 decreases load-driven bone formation and accumulates reactive oxygen species. Bone.

2011; 49(3):404–11. Epub 2011/05/11. doi: 10.1016/j.bone.2011.04.020 PMID: 21555004

34. Suemoto H, Muragaki Y, Nishioka K, Sato M, Ooshima A, Itoh S, et al. Trps1 regulates proliferation and

apoptosis of chondrocytes through Stat3 signaling. Dev Biol. 2007; 312(2):572–81. doi: 10.1016/j.

ydbio.2007.10.001 PMID: 17997399

35. Logan M, Martin JF, Nagy A, Lobe C, Olson EN, Tabin CJ. Expression of Cre Recombinase in the

developing mouse limb bud driven by a Prxl enhancer. Genesis. 2002; 33(2):77–80. Epub 2002/07/12.

doi: 10.1002/gene.10092 PMID: 12112875

36. Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, et al. Origin of osteoclasts:

mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable

microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci U S A. 1990; 87

(18):7260–4. Epub 1990/09/01. PMID: 2169622

37. Akiyama H, Kim JE, Nakashima K, Balmes G, Iwai N, Deng JM, et al. Osteo-chondroprogenitor cells

are derived from Sox9 expressing precursors. Proc Natl Acad Sci U S A. 2005; 102(41):14665–70.

Epub 2005/10/06. doi: 10.1073/pnas.0504750102 PMID: 16203988

38. Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999; 21

(1):70–1. doi: 10.1038/5007 PMID: 9916792

39. Murakami S, Kan M, McKeehan WL, de Crombrugghe B. Up-regulation of the chondrogenic Sox9 gene

by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. Proc Natl

Acad Sci U S A. 2000; 97(3):1113–8. Epub 2000/02/03. PMID: 10655493

40. Poulton IJ, McGregor NE, Pompolo S, Walker EC, Sims NA. Contrasting roles of leukemia

inhibitory factor in murine bone development and remodeling involve region-specific changes in vascu-

larization. J Bone Miner Res. 2012; 27(3):586–95. Epub 2011/12/07. doi: 10.1002/jbmr.1485 PMID:

22143976

41. Sims NA, Johnson RW. Leukemia inhibitory factor: a paracrine mediator of bone metabolism. Growth

Factors. 2012; 30(2):76–87. Epub 2012/02/07. doi: 10.3109/08977194.2012.656760 PMID: 22304408

Stat3 regulates Sox9

PLOS Genetics | DOI:10.1371/journal.pgen.1006610 February 6, 2017 28 / 30

http://www.ncbi.nlm.nih.gov/pubmed/9009201
http://www.ncbi.nlm.nih.gov/pubmed/9207075
http://www.ncbi.nlm.nih.gov/pubmed/9630227
http://www.ncbi.nlm.nih.gov/pubmed/9108058
http://www.ncbi.nlm.nih.gov/pubmed/8552649
http://dx.doi.org/10.1002/(SICI)1097-0177(199908)215:4&lt;352::AID-AJA7&gt;3.0.CO;2-J
http://dx.doi.org/10.1002/(SICI)1097-0177(199908)215:4&lt;352::AID-AJA7&gt;3.0.CO;2-J
http://www.ncbi.nlm.nih.gov/pubmed/10417824
http://www.ncbi.nlm.nih.gov/pubmed/9794394
http://dx.doi.org/10.1242/dev.01945
http://www.ncbi.nlm.nih.gov/pubmed/16049111
http://dx.doi.org/10.1016/j.bone.2006.02.074
http://www.ncbi.nlm.nih.gov/pubmed/16679075
http://dx.doi.org/10.1016/j.bbrc.2005.01.019
http://www.ncbi.nlm.nih.gov/pubmed/15694417
http://dx.doi.org/10.1016/j.bone.2011.04.020
http://www.ncbi.nlm.nih.gov/pubmed/21555004
http://dx.doi.org/10.1016/j.ydbio.2007.10.001
http://dx.doi.org/10.1016/j.ydbio.2007.10.001
http://www.ncbi.nlm.nih.gov/pubmed/17997399
http://dx.doi.org/10.1002/gene.10092
http://www.ncbi.nlm.nih.gov/pubmed/12112875
http://www.ncbi.nlm.nih.gov/pubmed/2169622
http://dx.doi.org/10.1073/pnas.0504750102
http://www.ncbi.nlm.nih.gov/pubmed/16203988
http://dx.doi.org/10.1038/5007
http://www.ncbi.nlm.nih.gov/pubmed/9916792
http://www.ncbi.nlm.nih.gov/pubmed/10655493
http://dx.doi.org/10.1002/jbmr.1485
http://www.ncbi.nlm.nih.gov/pubmed/22143976
http://dx.doi.org/10.3109/08977194.2012.656760
http://www.ncbi.nlm.nih.gov/pubmed/22304408


42. Li G, Peng H, Corsi K, Usas A, Olshanski A, Huard J. Differential effect of BMP4 on NIH/3T3 and

C2C12 cells: implications for endochondral bone formation. J Bone Miner Res. 2005; 20(9):1611–23.

doi: 10.1359/JBMR.050513 PMID: 16059633

43. Kanai Y, Koopman P. Structural and functional characterization of the mouse Sox9 promoter: implica-

tions for campomelic dysplasia. Hum Mol Genet. 1999; 8(4):691–6. Epub 1999/03/11. PMID: 10072439

44. Timofeeva OA, Gaponenko V, Lockett SJ, Tarasov SG, Jiang S, Michejda CJ, et al. Rationally designed

inhibitors identify STAT3 N-domain as a promising anticancer drug target. ACS Chem Biol. 2007; 2

(12):799–809. Epub 2007/12/25. doi: 10.1021/cb700186x PMID: 18154267

45. Kumar D, Lassar AB. Fibroblast growth factor maintains chondrogenic potential of limb bud mesenchy-

mal cells by modulating DNMT3A recruitment. Cell Rep. 2014; 8(5):1419–31. Epub 2014/08/28. doi: 10.

1016/j.celrep.2014.07.038 PMID: 25159139

46. Auernhammer CJ, Bousquet C, Melmed S. Autoregulation of pituitary corticotroph SOCS-3 expression:

characterization of the murine SOCS-3 promoter. Proc Natl Acad Sci U S A. 1999; 96(12):6964–9.

Epub 1999/06/09. PMID: 10359822

47. Liu F, Woitge HW, Braut A, Kronenberg MS, Lichtler AC, Mina M, et al. Expression and activity of osteo-

blast-targeted Cre recombinase transgenes in murine skeletal tissues. Int J Dev Biol. 2004; 48(7):645–

53. Epub 2004/10/08. doi: 10.1387/ijdb.041816fl PMID: 15470637

48. Sims NA, Jenkins BJ, Quinn JM, Nakamura A, Glatt M, Gillespie MT, et al. Glycoprotein 130 regulates

bone turnover and bone size by distinct downstream signaling pathways. J Clin Invest. 2004; 113

(3):379–89. Epub 2004/02/03. doi: 10.1172/JCI19872 PMID: 14755335

49. Henry SP, Liang S, Akdemir KC, de Crombrugghe B. The postnatal role of Sox9 in cartilage. J Bone

Miner Res. 2012; 27(12):2511–25. Epub 2012/07/11. doi: 10.1002/jbmr.1696 PMID: 22777888

50. Sharir A, Stern T, Rot C, Shahar R, Zelzer E. Muscle force regulates bone shaping for optimal load-

bearing capacity during embryogenesis. Development. 2011; 138(15):3247–59. Epub 2011/07/14. doi:

10.1242/dev.063768 PMID: 21750035

51. Amarilio R, Viukov SV, Sharir A, Eshkar-Oren I, Johnson RS, Zelzer E. HIF1alpha regulation of Sox9 is

necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis.

Development. 2007; 134(21):3917–28. Epub 2007/10/05. doi: 10.1242/dev.008441 PMID: 17913788

52. Kondo M, Yamaoka K, Sakata K, Sonomoto K, Lin L, Nakano K, et al. Contribution of the Interleukin-6/

STAT-3 Signaling Pathway to Chondrogenic Differentiation of Human Mesenchymal Stem Cells. Arthri-

tis Rheumatol. 2015; 67(5):1250–60. doi: 10.1002/art.39036 PMID: 25604648

53. Pawlus MR, Wang L, Hu CJ. STAT3 and HIF1alpha cooperatively activate HIF1 target genes in MDA-

MB-231 and RCC4 cells. Oncogene. 2014; 33(13):1670–9. Epub 2013/04/23. doi: 10.1038/onc.2013.

115 PMID: 23604114

54. Pawlus MR, Wang L, Murakami A, Dai G, Hu CJ. STAT3 or USF2 contributes to HIF target gene speci-

ficity. PLoS One. 2013; 8(8):e72358. Epub 2013/08/31. doi: 10.1371/journal.pone.0072358 PMID:

23991099

55. Dudka AA, Sweet SM, Heath JK. Signal transducers and activators of transcription-3 binding to the

fibroblast growth factor receptor is activated by receptor amplification. Cancer Res. 2010; 70(8):3391–

401. Epub 2010/04/15. doi: 10.1158/0008-5472.CAN-09-3033 PMID: 20388777

56. Snyder M, Huang XY, Zhang JJ. Stat3 is essential for neuronal differentiation through direct transcrip-

tional regulation of the Sox6 gene. FEBS Lett. 2011; 585(1):148–52. Epub 2010/11/26. doi: 10.1016/j.

febslet.2010.11.030 PMID: 21094641

57. Foshay KM, Gallicano GI. Regulation of Sox2 by STAT3 initiates commitment to the neural precursor

cell fate. Stem Cells Dev. 2008; 17(2):269–78. Epub 2008/05/02. doi: 10.1089/scd.2007.0098 PMID:

18447642

58. Ehret GB, Reichenbach P, Schindler U, Horvath CM, Fritz S, Nabholz M, et al. DNA binding specificity

of different STAT proteins. Comparison of in vitro specificity with natural target sites. J Biol Chem. 2001;

276(9):6675–88. Epub 2000/10/29. doi: 10.1074/jbc.M001748200 PMID: 11053426

59. Peacock JD, Levay AK, Gillaspie DB, Tao G, Lincoln J. Reduced sox9 function promotes heart valve

calcification phenotypes in vivo. Circ Res. 2010; 106(4):712–9. Epub 2010/01/09. doi: 10.1161/

CIRCRESAHA.109.213702 PMID: 20056916

60. Akiyama H, Chaboissier MC, Behringer RR, Rowitch DH, Schedl A, Epstein JA, et al. Essential role of

Sox9 in the pathway that controls formation of cardiac valves and septa. Proc Natl Acad Sci U S A.

2004; 101(17):6502–7. Epub 2004/04/21. doi: 10.1073/pnas.0401711101 PMID: 15096597

61. Reginensi A, Clarkson M, Neirijnck Y, Lu B, Ohyama T, Groves AK, et al. SOX9 controls epithelial

branching by activating RET effector genes during kidney development. Hum Mol Genet. 2011; 20

(6):1143–53. Epub 2011/01/08. doi: 10.1093/hmg/ddq558 PMID: 21212101

Stat3 regulates Sox9

PLOS Genetics | DOI:10.1371/journal.pgen.1006610 February 6, 2017 29 / 30

http://dx.doi.org/10.1359/JBMR.050513
http://www.ncbi.nlm.nih.gov/pubmed/16059633
http://www.ncbi.nlm.nih.gov/pubmed/10072439
http://dx.doi.org/10.1021/cb700186x
http://www.ncbi.nlm.nih.gov/pubmed/18154267
http://dx.doi.org/10.1016/j.celrep.2014.07.038
http://dx.doi.org/10.1016/j.celrep.2014.07.038
http://www.ncbi.nlm.nih.gov/pubmed/25159139
http://www.ncbi.nlm.nih.gov/pubmed/10359822
http://dx.doi.org/10.1387/ijdb.041816fl
http://www.ncbi.nlm.nih.gov/pubmed/15470637
http://dx.doi.org/10.1172/JCI19872
http://www.ncbi.nlm.nih.gov/pubmed/14755335
http://dx.doi.org/10.1002/jbmr.1696
http://www.ncbi.nlm.nih.gov/pubmed/22777888
http://dx.doi.org/10.1242/dev.063768
http://www.ncbi.nlm.nih.gov/pubmed/21750035
http://dx.doi.org/10.1242/dev.008441
http://www.ncbi.nlm.nih.gov/pubmed/17913788
http://dx.doi.org/10.1002/art.39036
http://www.ncbi.nlm.nih.gov/pubmed/25604648
http://dx.doi.org/10.1038/onc.2013.115
http://dx.doi.org/10.1038/onc.2013.115
http://www.ncbi.nlm.nih.gov/pubmed/23604114
http://dx.doi.org/10.1371/journal.pone.0072358
http://www.ncbi.nlm.nih.gov/pubmed/23991099
http://dx.doi.org/10.1158/0008-5472.CAN-09-3033
http://www.ncbi.nlm.nih.gov/pubmed/20388777
http://dx.doi.org/10.1016/j.febslet.2010.11.030
http://dx.doi.org/10.1016/j.febslet.2010.11.030
http://www.ncbi.nlm.nih.gov/pubmed/21094641
http://dx.doi.org/10.1089/scd.2007.0098
http://www.ncbi.nlm.nih.gov/pubmed/18447642
http://dx.doi.org/10.1074/jbc.M001748200
http://www.ncbi.nlm.nih.gov/pubmed/11053426
http://dx.doi.org/10.1161/CIRCRESAHA.109.213702
http://dx.doi.org/10.1161/CIRCRESAHA.109.213702
http://www.ncbi.nlm.nih.gov/pubmed/20056916
http://dx.doi.org/10.1073/pnas.0401711101
http://www.ncbi.nlm.nih.gov/pubmed/15096597
http://dx.doi.org/10.1093/hmg/ddq558
http://www.ncbi.nlm.nih.gov/pubmed/21212101


62. Kopp JL, von Figura G, Mayes E, Liu FF, Dubois CL, Morris JPt, et al. Identification of Sox9-dependent

acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocar-

cinoma. Cancer Cell. 2012; 22(6):737–50. Epub 2012/12/04. doi: 10.1016/j.ccr.2012.10.025 PMID:

23201164

63. Matheu A, Collado M, Wise C, Manterola L, Cekaite L, Tye AJ, et al. Oncogenicity of the developmental

transcription factor Sox9. Cancer Res. 2012; 72(5):1301–15. Epub 2012/01/17. doi: 10.1158/0008-

5472.CAN-11-3660 PMID: 22246670

64. Ninomiya S, Isomura M, Narahara K, Seino Y, Nakamura Y. Isolation of a testis-specific cDNA on chro-

mosome 17q from a region adjacent to the breakpoint of t(12;17) observed in a patient with acampome-

lic campomelic dysplasia and sex reversal. Hum Mol Genet. 1996; 5(1):69–72. Epub 1996/01/01.

PMID: 8789441

65. Leipoldt M, Erdel M, Bien-Willner GA, Smyk M, Theurl M, Yatsenko SA, et al. Two novel translocation

breakpoints upstream of SOX9 define borders of the proximal and distal breakpoint cluster region in

campomelic dysplasia. Clin Genet. 2007; 71(1):67–75. Epub 2007/01/06. doi: 10.1111/j.1399-0004.

2007.00736.x PMID: 17204049

66. Shim JH, Greenblatt MB, Singh A, Brady N, Hu D, Drapp R, et al. Administration of BMP2/7 in utero par-

tially reverses Rubinstein-Taybi syndrome-like skeletal defects induced by Pdk1 or Cbp mutations in

mice. J Clin Invest. 2012; 122(1):91–106. Epub 2011/12/03. doi: 10.1172/JCI59466 PMID: 22133875

67. Tanigawa S, Sharma N, Hall MD, Nishinakamura R, Perantoni AO. Preferential Propagation of Compe-

tent SIX2+ Nephronic Progenitors by LIF/ROCKi Treatment of the Metanephric Mesenchyme. Stem

Cell Reports. 2015; 5(3):435–47. doi: 10.1016/j.stemcr.2015.07.015 PMID: 26321142

68. Lewandoski M, Meyers EN, Martin GR. Analysis of Fgf8 gene function in vertebrate development. Cold

Spring Harb Symp Quant Biol. 1997; 62:159–68. Epub 1997/01/01. PMID: 9598348

69. Wilkinson DG, Green J. In situ hybridization and the three-dimensional reconstruction of serial section.

Copp A.J. CDL, editor: Oxford: IRL Press; 1990.

70. McLeod MJ. Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and aliza-

rin red S. Teratology. 1980; 22(3):299–301. Epub 1980/12/01. doi: 10.1002/tera.1420220306 PMID:

6165088

71. Lee TI, Johnstone SE, Young RA. Chromatin immunoprecipitation and microarray-based analysis of

protein location. Nat Protoc. 2006; 1(2):729–48. Epub 2007/04/05. doi: 10.1038/nprot.2006.98 PMID:

17406303

72. Hutchins AP, Diez D, Takahashi Y, Ahmad S, Jauch R, Tremblay ML, et al. Distinct transcriptional regu-

latory modules underlie STAT3’s cell type-independent and cell type-specific functions. Nucleic Acids

Res. 2013; 41(4):2155–70. Epub 2013/01/09. doi: 10.1093/nar/gks1300 PMID: 23295670

Stat3 regulates Sox9

PLOS Genetics | DOI:10.1371/journal.pgen.1006610 February 6, 2017 30 / 30

http://dx.doi.org/10.1016/j.ccr.2012.10.025
http://www.ncbi.nlm.nih.gov/pubmed/23201164
http://dx.doi.org/10.1158/0008-5472.CAN-11-3660
http://dx.doi.org/10.1158/0008-5472.CAN-11-3660
http://www.ncbi.nlm.nih.gov/pubmed/22246670
http://www.ncbi.nlm.nih.gov/pubmed/8789441
http://dx.doi.org/10.1111/j.1399-0004.2007.00736.x
http://dx.doi.org/10.1111/j.1399-0004.2007.00736.x
http://www.ncbi.nlm.nih.gov/pubmed/17204049
http://dx.doi.org/10.1172/JCI59466
http://www.ncbi.nlm.nih.gov/pubmed/22133875
http://dx.doi.org/10.1016/j.stemcr.2015.07.015
http://www.ncbi.nlm.nih.gov/pubmed/26321142
http://www.ncbi.nlm.nih.gov/pubmed/9598348
http://dx.doi.org/10.1002/tera.1420220306
http://www.ncbi.nlm.nih.gov/pubmed/6165088
http://dx.doi.org/10.1038/nprot.2006.98
http://www.ncbi.nlm.nih.gov/pubmed/17406303
http://dx.doi.org/10.1093/nar/gks1300
http://www.ncbi.nlm.nih.gov/pubmed/23295670

