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Abstract

Background

Although obesity and cardiometabolic traits commonly overlap, underlying pathways remain

incompletely defined. The association of metabolite profiles across multiple cardiometabolic

traits may lend insights into the interaction of obesity and metabolic health. We sought to

investigate metabolic signatures of obesity and related cardiometabolic traits in the commu-

nity using broad-based metabolomic profiling.

Methods and Results

We evaluated the association of 217 assayed metabolites and cross-sectional as well as

longitudinal changes in cardiometabolic traits among 2,383 Framingham Offspring cohort

participants. Body mass index (BMI) was associated with 69 of 217 metabolites (P<0.00023

for all), including aromatic (tyrosine, phenylalanine) and branched chain amino acids

(valine, isoleucine, leucine). Additional metabolic pathways associated with BMI included

the citric acid cycle (isocitrate, alpha-ketoglutarate, aconitate), the tryptophan pathway

(kynurenine, kynurenic acid), and the urea cycle. There was considerable overlap in metab-

olite profiles between BMI, abdominal adiposity, insulin resistance [IR] and dyslipidemia,

modest overlap of metabolite profiles between BMI and hyperglycemia, and little overlap
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with fasting glucose or elevated blood pressure. Metabolite profiles were associated with

longitudinal changes in fasting glucose, but the involved metabolites (ornithine, 5-HIAA,

aminoadipic acid, isoleucine, cotinine) were distinct from those associated with baseline

glucose or other traits. Obesity status appeared to “modify” the association of 9 metabolites

with IR. For example, bile acid metabolites were strongly associated with IR among obese

but not lean individuals, whereas isoleucine had a stronger association with IR in lean

individuals.

Conclusions

In this large-scale metabolite profiling study, body mass index was associated with a broad

range of metabolic alterations. Metabolite profiling highlighted considerable overlap with

abdominal adiposity, insulin resistance, and dyslipidemia, but not with fasting glucose or

blood pressure traits.

Introduction
Currently one quarter of adults in the United States are obese, and it is predicted that more
than half of the population will be obese by 2030 [1]. With the growing obesity epidemic, the
incidence of diabetes mellitus has doubled over the last 30 years [2]. The increased risk of dia-
betes is most pronounced in those with a high body mass index (BMI) [2], underscoring the
close link between obesity and metabolic disease. Recent advances in high-throughput technol-
ogy have allowed for the systematic assessment of metabolic profiles, and have provided
insights into metabolic pathways that appear dysregulated in cardiometabolic disease [3–5].
Prior studies have focused on cross-sectional associations of metabolite profiles and metabolic
traits [3–5], with some recent studies relating selected metabolites to the development of future
clinical disease [6–8].

Although obesity and metabolic disease traits commonly occur together, it has been increas-
ingly recognized that a subset of obese individuals can be classified as 'metabolically healthy,’
and, in turn, lean individuals can be 'metabolically unhealthy'. This observation motivates the
use of tools such as metabolomic profiling to provide a better understanding of the heterogene-
ity in metabolic risk among obese and lean individuals. Furthermore, we hypothesized that
metabolite profiles could presage changes in metabolic traits over time.

The Framingham Heart study provides a unique community-based setting in which cardio-
metabolic traits have been systematically and longitudinally assessed in individuals across the
spectrum of cardiometabolic risk. We investigated the comprehensive profile of non-lipid and
lipid metabolites in a sample of over 2,300 community-based adults, in order to elucidate meta-
bolic signatures of obesity and related cardiometabolic traits. We sought to determine metabo-
lite signatures associated with cross-sectional cardiometabolic traits, as well as with their
longitudinal trajectories. Using genetic markers, we explored the directionality of association
between metabolites and BMI.

Materials and Methods

Study Sample
Participants of the Framingham Heart Study Offspring Study—a prospective, observational,
community-based cohort—were examined [9]. Of 3,799 participants who attended the baseline
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examination cycle (1991–1995), profiling of polar positive-charge metabolites was performed
on 2,526 participants with available blood samples, of whom 2,383 attended at least one subse-
quent examination among exam 6 (1995–1998), 7 (1998–2001), and 8 (2005–2008). Of these
participants, 1,969 also underwent profiling of polar negative-charge metabolites, and 1,962
underwent lipid profiling.

Blood pressure was defined as the average of two seated resting measurements performed
by a physician. BMI was calculated as weight divided by height2 (kg/m2), and waist circumfer-
ence was measured at the level of the umbilicus at mid-respiration. Diabetes mellitus was
defined as a fasting glucose�126 mg/dL, non-fasting blood glucose�200 mg/dL, or the use of
antidiabetic medications. The homeostatic model assessment of insulin resistance was calcu-
lated as HOMA-IR [= fasting insulin (ulU/ml) x fasting glucose (mmol/ml) / 22.5] [10], and
log-transformed due to a skewed distribution. Insulin resistance was estimated as outlined pre-
viously [11], using the top quartile of HOMA-IR from the whole FHS Offspring sample free of
diabetes at baseline. Current smoking was defined as smoking regularly during the year prior
to the examination. Total cholesterol, high-density lipoprotein (HDL) cholesterol, and triglyc-
erides were measured after an overnight fast. All participants provided written informed con-
sent and the study protocol was approved by the Boston University Medical Center
Institutional Review Board.

Metabolite profiling
Baseline plasma samples were collected in EDTA after an overnight fast, immediately pro-
cessed, and stored at -80°C until assayed. Targeted metabolite profiling was performed using
liquid chromatography with tandem mass spectrometry. Positively charged polar metabolites
(including amino acids and derivatives, urea cycle intermediates, and nucleotides), lipid metab-
olites (lysophosphatidylcholines, LPCs; lysophosphatidylethanolamines, LPEs; phosphatidyl-
cholines, PCs; sphingomyelins, SMs; cholesterol esters, CEs; diacylglycerols, DAGs; and
triacylglycerols, TAGs), and negatively charged polar metabolites (organic acids, sugars, and
bile acids) were profiled as previously described [12,13]. Nomenclature for lipid analytes
entailed an initial number, denoting the total number of carbons in the lipid acyl chain, and a
second number following the colon, denoting the total number of double bonds. Details are
provided in S1 File and a list of 217 metabolites measured using this platform, and descriptions
are detailed in Table A in S1 File.

Statistical Analysis
Baseline characteristics were summarized for the sample, and correlations of metabolic traits
(BMI, waist circumference, HOMA-IR, HDL cholesterol, log-triglycerides, fasting glucose, sys-
tolic and diastolic blood pressure, pulse pressure) at baseline and 3 subsequent examinations
were evaluated. Metabolite concentrations were log-transformed for analysis due to right-
skewed distributions.

Our primary analysis focused on metabolite associations with BMI; secondary analyses
examined related metabolic traits (waist circumference, HOMA-IR, HDL, log-triglycerides,
fasting glucose, systolic and diastolic blood pressure). For analyses examining HOMA-IR and
fasting glucose, participants taking antidiabetic medications were excluded. Cross-sectional
data for metabolic traits (response variables) and metabolites (predictors) were assessed using
linear regression, adjusted for age, sex, BMI, log-triglycerides, and a multi-level indicator vari-
able for batch number. Associations between baseline metabolites and longitudinal changes in
metabolic traits were assessed using PROC GLIMMIX to account for repeated measures in a
random effects model, with a class variable to indicate subsequent exam cycles. Models were
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adjusted for baseline metabolic trait, age, sex, BMI, log-triglycerides, and batch. In order to
account for multiple testing, a P-value threshold of 0.05 / (number of metabolites tested) = 0.05
/ 217 = 0.00023 was deemed statistically significant.

In exploratory analyses, we examined the association of metabolites with HOMA-IR in
non-diabetic individuals stratified by obesity status. Analyses were performed using SAS, ver-
sion 9.2 (SAS Institute, Cary, NC).

Results
A total of 2,383 participants (mean age 55 ± 10 years, 53% women) underwent profiling of 217
metabolites. The mean BMI was 27.5 ± 4.9 kg/m2, with median BMI of 26.9 kg/m2 (25th, 75th

percentile 24.0, 30.0), and 25% were obese. The range of BMI is presented in S1 Fig Baseline
median HOMA-IR was 2.7 mg�microU/dL�mL (25th, 75th percentile 0.9, 2.9), and 28% were
insulin resistant, defined as the upper quartile among non-diabetic individuals (Table 1).

Body mass index (BMI) is associated with broad alterations in multiple
biochemical pathways
BMI was significantly associated with 69 of 217 metabolites using a conservative Bonferroni-
corrected threshold (P<0.00023, Tables 2 and 3). An additional 11 metabolites displayed “sug-
gestive” associations (P<0.001, full results in S1 Table. The top metabolite groups associated
with BMI included aromatic amino acids (tyrosine, P = 3.2x10-34; phenylalanine P = 5.7x10-
25), branched chain amino acids (valine, P = 2.6x10-32; isoleucine, P = 2.9x10-25; leucine,
P = 2.8x10-22), and other amino acids (alanine, P = 1.3x10-11; glycine, P = 4.2x10-10; proline,
P = 1.7x10-4), all of which were positively associated with BMI.

Table 1. Baseline characteristics of sample.

Total sample (n = 2383)

Clinical characteristics

Age, years 55 (10)

Women, n (%) 1264 (53)

Body-mass index, kg/m2 27.5 (4.9)

Systolic blood pressure, mmHg 126 (19)

Diastolic blood pressure, mmHg 75 (10)

Heart rate, bpm 65 (11)

Hypertension treatment, n (%) 453 (19)

Diabetes mellitus, n (%) 154 (6)

Diabetes treatment, n (%) 69 (3)

Smoking, n (%) 435 (18)

Laboratory values, median (25th, 75th percentile)

Total cholesterol, mg/dl 204 (180, 228)

High density lipoprotein cholesterol, mg/dl 47 (39, 58)

Triglycerides, mg/dl 120 (85, 178)

Fasting glucose, mg/dl 95 (89, 103)

HOMA-IR, mg*microU/dL*mL 1.7 (0.9, 2.9)

Estimated glomerular filtration rate, mL/min/1.73m2 90 (76, 101)

Data are presented as mean (SD), number (%), or median (25th, 75th percentile)

HOMA-IR, homeostatic model assessment of insulin resistance

doi:10.1371/journal.pone.0148361.t001
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In addition, BMI was positively associated with multiple metabolites in the citric acid cycle
(isocitrate, P = 8.8x10-20; alpha-ketoglutarate, P = 6.3x10-11; aconitate, P = 5.2x10-6) and the
tryptophan pathway (kynurenine, P = 3.3x10-19; kynurenic acid, P = 2.9x10-11). Other path-
ways associated with BMI included the urea cycle (citrulline, P = 8.6x10-5; ornithine,
P = 7.2x10-5), nucleic acid metabolism (xanthosine, P = 3.8x10-7; uric acid, P = 3.3x10-6), and
multiple creatine-related metabolites (carnitine, P = 1.6x10-7; choline, P = 1.4x10-8; glycero-
phosphocholine, P = 3.6x10-7).

Lipid subspecies reveal a distinct pattern in obesity
Of 104 lipid subspecies profiled, 38 were significantly associated with BMI, including glycerol,
an integral component of TAGs (P = 2.1x10-11), choline, and glycero-phosphocholine, both
important components of PCs and SMs (P = 1.4x10-8; P = 3.6x10-7, respectively). In addition,

Table 2. Associations of non-lipid metabolite profiles with BMI and other metabolic traits.

Body mass
index

Waist
circumference

Fasting glucose HOMA-IR HDL
cholesterol

Triglycerides Systolic BP Diastolic BP

Metabolites beta P-value beta P-value beta P-value beta P-value beta P-value beta P-value beta P-value beta P-value

tyrosine 1.22 3.2E-34 3.09 5.2E-32 0.21 0.64 0.07 1.0E-04 0.75 4.3E-03 0.08 3.3E-12 1.50 1.0E-04 0.60 6.0E-03

valine 1.25 2.6E-32 3.14 1.3E-29 1.52 1.6E-03 0.10 2.0E-08 -1.65 2.3E-09 0.14 2.5E-30 -0.40 0.33 -0.39 0.09

isoleucine 1.19 2.9E-25 3.06 1.6E-24 1.06 0.04 0.10 1.1E-06 -2.23 4.2E-14 0.18 4.0E-45 0.55 0.21 -0.02 0.95

phenylalanine 1.05 5.7E-25 2.76 2.4E-25 -1.07 0.02 0.05 3.7E-03 -0.98 1.9E-04 0.03 0.01 0.03 0.94 0.03 0.89

leucine 1.13 2.8E-22 3.07 9.1E-24 1.43 6.3E-03 0.08 1.2E-04 -2.01 2.4E-11 0.16 8.8E-35 -0.25 0.58 -0.25 0.32

isocitrate 1.04 8.8E-20 3.04 1.8E-24 1.97 1.0E-04 0.14 2.1E-12 0.62 0.03 0.11 3.8E-16 1.56 3.3E-04 1.03 2.5E-05

kynurenine 0.98 3.3E-19 2.64 2.4E-20 -1.62 7.8E-04 0.07 2.9E-04 -0.68 0.02 0.06 7.5E-06 0.14 0.73 0.58 0.01

2-aminoadipic acid 1.03 2.0E-18 2.53 2.4E-16 0.55 0.28 0.16 1.3E-15 -1.76 4.6E-09 0.13 7.1E-22 -0.12 0.78 0.26 0.30

fructose; glucose; galactose 0.96 5.5E-18 2.60 2.6E-19 13.27 1.3E-167 0.20 3.7E-23 -0.59 0.04 0.08 9.0E-10 1.11 8.21E-03 0.03 0.89

quinolinic acid 0.90 2.1E-16 2.14 5.3E-14 -1.77 1.8E-04 0.09 1.6E-06 -1.18 1.9E-05 0.06 1.3E-06 -0.51 0.22 -0.07 0.76

lactate 0.86 4.7E-14 2.13 5.8E-13 2.62 9.6E-08 0.17 4.6E-20 0.68 0.02 0.18 1.2E-45 2.24 1.3E-07 1.06 9.9E-06

phosphocreatine -0.80 6.3E-13 -1.99 7.1E-12 -1.49 1.7E-03 -0.06 1.2E-03 0.28 0.32 -0.02 0.07 -0.50 0.23 0.26 0.27

alanine 0.69 1.3E-11 1.87 2.5E-12 1.17 8.7E-03 0.09 8.6E-08 0.15 0.57 0.17 4.8E-54 1.27 9.0E-04 0.75 5.8E-04

glycerol 0.79 2.1E-11 1.93 3.9E-10 0.97 0.03 0.03 0.08 2.64 1.4E-18 0.14 3.3E-25 1.88 1.5E-05 0.69 5.2E-03

kynurenic acid 0.65 2.9E-11 1.62 2.4E-10 -0.15 0.72 0.04 0.03 0.08 0.73 -0.02 0.04 0.68 0.06 0.35 0.09

alpha-ketoglutarate 0.75 6.3E-11 1.94 6.9E-11 1.26 9.8E-03 0.09 9.9E-07 0.47 0.10 0.08 5.3E-10 0.51 0.23 0.47 0.05

glycine -0.62 4.2E-10 -1.52 4.5E-09 -1.66 1.2E-04 -0.07 7.2E-05 -1.08 1.7E-05 -0.09 1.0E-14 -0.95 0.01 -0.44 0.04

alpha-hydroxybutyric acid 0.67 5.1E-10 1.73 7.6E-10 4.10 1.2E-18 0.05 4.0E-03 1.62 2.1E-09 0.09 1.5E-12 1.19 3.2E-03 0.54 0.02

choline 0.58 1.4E-08 1.54 9.9E-09 -0.88 0.05 -0.04 0.01 0.46 0.07 0.06 1.9E-06 0.17 0.66 0.12 0.57

carnitine 0.52 1.6E-07 1.39 1.2E-07 -1.11 0.01 -0.01 0.53 -0.65 0.01 0.05 6.2E-05 -0.85 0.02 -0.61 3.8E-03

glycero-phosphocholine -0.48 3.6E-07 -1.01 4.4E-05 -1.50 2.6E-04 0.02 0.29 0.78 1.1E-03 0.05 9.5E-06 -0.14 0.70 0.17 0.39

xanthosine 0.51 3.8E-07 0.95 2.9E-04 -1.02 0.02 0.04 8.7E-03 -0.47 0.06 0.06 4.2E-08 0.39 0.29 0.15 0.47

carbamoylalanine 0.49 5.2E-07 1.26 9.5E-07 0.64 0.13 0.10 2.5E-09 0.12 0.63 0.04 1.1E-04 0.73 0.05 0.59 4.1E-03

uric acid 0.51 3.3E-06 1.50 1.4E-07 -0.68 0.15 0.03 0.12 0.62 0.02 0.03 7.6E-03 -0.09 0.83 0.16 0.50

creatine 0.49 4.6E-06 1.35 1.1E-06 0.40 0.38 0.03 0.06 0.46 0.09 0.04 1.4E-03 -0.44 0.27 -0.26 0.25

aconitate 0.51 5.2E-06 1.34 4.2E-06 1.33 5.5E-03 0.07 1.1E-04 0.35 0.21 0.06 6.3E-07 1.31 1.5E-03 0.96 4.0E-05

cotinine -0.40 2.1E-05 -0.35 0.15 -0.21 0.61 -0.02 0.13 -1.15 1.6E-06 0.04 1.2E-03 -0.44 0.21 -0.65 1.1E-03

ornithine 0.39 7.2E-05 0.97 1.5E-04 -0.86 0.04 0.03 0.07 -1.23 5.3E-07 0.01 0.27 -0.72 0.05 -0.22 0.29

citrulline -0.39 8.6E-05 -0.87 8.0E-04 -0.92 0.03 -0.04 7.4E-03 -0.03 0.92 -0.04 3.9E-04 -0.80 0.03 -0.28 0.18

dimethylglycine 0.39 1.2E-04 1.04 7.9E-05 -1.33 2.4E-03 0.05 7.0E-03 -1.46 7.9E-09 -0.01 0.43 -0.69 0.07 -0.51 0.02

proline 0.38 1.7E-04 1.00 1.6E-04 0.21 0.64 0.07 1.8E-05 -1.00 7.7E-05 0.09 1.4E-16 1.00 7.5E-03 0.27 0.20

Analyses adjusted for age, sex, batch, body mass index (except for body mass index and waist circumference), and log-triglyceride concentrations

(except for triglyceride analyses). Beta estimates indicate change in metabolic trait per 1-standard deviation increase in log-transformed metabolite.

doi:10.1371/journal.pone.0148361.t002
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BMI was associated with LPCs, LPEs (inversely associated with BMI), SMs, CEs (positively asso-
ciated with BMI), PCs and TAGs (both positive and negative associations, P<0.00023 for all). A
distinct pattern emerged within TAG subspecies; shorter carbon length and a lower number of
double bonds were associated with higher BMI, whereas longer carbon length and higher num-
ber of double bonds were associated with a lower BMI (Fig 1A). The converse was observed
with LPEs, where shorter carbon length and lower number of double bonds were associated
with lower BMI (full results in S1 Table). No such pattern was discernible for PCs or LPCs.

Metabolite profiles of obesity are linked to insulin resistance and
dyslipidemia
The majority of metabolites associated with BMI were concomitantly associated with abdomi-
nal adiposity, as assessed by waist circumference. There was also overlap in metabolic profiles
associated with BMI and other metabolic traits, including insulin resistance as estimated by
HOMA-IR, HDL cholesterol, log-triglyceride concentrations, and fasting glucose, as displayed
in the heatmap (Figs 2 and 3, Tables 2 and 3). Of 31 non-lipid metabolites associated with
BMI, 27 demonstrated at least suggestive associations (at P<0.001) with at least one other met-
abolic trait other than waist circumference, after adjusting for BMI (HOMA-IR, n = 16; HDL,
n = 13; log-triglycerides, n = 23; fasting glucose, n = 8). Of these, 12 metabolites were associated
with at least 4 metabolic traits: isoleucine, leucine, proline, valine, and aminoadipic acid were
associated with BMI, HOMA-I77R, HDL, and triglycerides; alpha-hydroxybutyric acid was
associated with BMI, fasting glucose, HDL, and triglycerides; fructose/glucose/galactose,
kynurine, isocitrate, and lactate were associated with BMI, fasting glucose, HOMA-IR, and tri-
glycerides; glycine, and quinolinic acid were associated with all 5 metabolic traits. By contrast,
there was limited overlap of metabolites associated with BMI and blood pressure traits, with
only 5 of the 31 non-lipid BMI metabolites found in association with either systolic and/or dia-
stolic blood pressure.

TAG patterns associated with BMI were similar for waist circumference and HOMA-IR,
with shorter carbon length and lower number of double bonds (e.g. more saturation) associated
with worse metabolic profiles. By contrast, there was no distinct association between TAG char-
acteristics and fasting glucose. Lastly, TAG patterns observed in association with HDL and
blood pressure traits appeared J-shaped in distribution—with low carbon length, saturated
TAGs associated with higher HDL and blood pressure on the one hand, and intermediate length
and saturation TAGs associated with lower HDL and lower blood pressure on the other hand
(Fig 1). Full results of metabolic traits and metabolic profile analyses are shown in S1 Table.

Baseline metabolite profiles associated with longitudinal changes in
metabolic traits are distinct from cross-sectional findings
The correlation of baseline and longitudinal metabolic traits over approximately 14 years is pre-
sented in Table B in S1 File. There was a strong correlation of baseline BMI, waist circumfer-
ence, and HDL cholesterol with subsequent measures (Pearson correlation coefficient r> 0.70
for all), but lower correlation of baseline fasting glucose, triglycerides, systolic and diastolic
blood pressure with follow-up measures (r = 0.36–0.56 for baseline versus last exam).

Metabolites associated with longitudinal changes in fasting glucose were distinct frommetab-
olites associated with fasting glucose cross-sectionally. Specifically, isoleucine (P = 1.1x10-4),
ornithine (P = 2.2x10-5), 5-HIAA (P = 1.1x10-4), aminoadipic acid (P = 5.8x10-5), and cotinine
(P = 3.5x10-5), all predicted future changes in fasting glucose, despite not being associated with
baseline fasting glucose values (Table 4). By contrast, there were no metabolites associated with
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Fig 1. Association of metabolic traits and TAG length and saturation. X-axis represents number of double bonds, Y-axis is the beta-coefficient for the
change in metabolic trait per 1 standard deviation increase in metabolite. Darker circles are shorter length TAGs, and lighter circles represent greater carbon
length TAGs. Panel (A) shows body-mass index, (B) waist circumference, (C) HOMA-IR, (D) fasting glucose, (E) HDL cholesterol, and (F) systolic blood
pressure.

doi:10.1371/journal.pone.0148361.g001

Metabolomic Profiles of Cardiometabolic Disease in the Community

PLOS ONE | DOI:10.1371/journal.pone.0148361 February 10, 2016 8 / 16



longitudinal changes in the remaining metabolic traits (BMI, waist circumference, HDL, triglyc-
erides, blood pressure traits) that were not already associated in cross-sectional analyses.

Differential effect of metabolites on insulin resistance in obese and non-
obese individuals
In exploratory analyses, we compared metabolite profiles associated with insulin resistance, as
estimated by HOMA-IR, separately in obese (n = 511) and non-obese (n = 1680), non-diabetic
individuals. Many metabolites associated with insulin resistance appear to be consistent across
BMI strata (Tables A and B in S1 File). However, obesity status appeared to “modify” the asso-
ciation for 9 of the metabolites, with suggestive P-values for interaction (P�0.01 for all,
Table 5). This included amino acids and related metabolites (3-hydroxyphenylacetic acid, tryp-
tophan, tyrosine, isoleucine), bile acids (glycocholate, taurocholate), and others (carnitine, cre-
atine, inosine). All metabolites appeared more strongly associated with HOMA-IR among the
non-obese, with exception of isoleucine, which appeared to have a stronger association with
HOMA-IR among the obese. Of note, none of the P-values for interaction met the Bonferroni-
corrected P-value threshold.

Discussion
Our findings are threefold: first, BMI is associated with broad alterations in metabolites repre-
senting multiple distinct biochemical pathways, including the metabolism of amino acids, the
citric acid cycle, nucleotides, the urea cycle, and specific triacylglycerol species. Second, there
was considerable overlap in metabolite profiles associated with BMI and other metabolic traits,
including abdominal adiposity, insulin resistance, and dyslipidemia. By contrast, profiles of

Fig 2. Heatmap of non-lipid metabolite profiles associated with metabolic traits.

doi:10.1371/journal.pone.0148361.g002
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Fig 3. Heatmap of lipid metabolite profiles associated with metabolic traits.

doi:10.1371/journal.pone.0148361.g003

Table 4. Metabolites associated with longitudinal changes in fasting glucose.

Longitudinal change in fasting glucose

Metabolite Beta SE P-value

fructose; glucose; galactose 2.25 0.45 5.71E-07

ornithine 1.19 0.28 2.22E-05

cotinine 1.14 0.27 3.47E-05

aminoadipic acid 1.41 0.35 5.85E-05

isoleucine 1.33 0.34 1.11E-04

5- hydroxyindoleacetic acid -1.30 0.34 1.14E-04

leucine 1.20 0.35 6.17E-04

Beta estimates represent change in fasting glucose per year, per 1-standard deviation change in log-

metabolite. Analyses adjusted for age, sex, batch, body mass index, and log-triglyceride concentrations.

doi:10.1371/journal.pone.0148361.t004
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fasting glucose and blood pressure traits were relatively distinct. Lastly, obesity appeared to
modify metabolic signatures of insulin resistance. Collectively, these data highlight the impor-
tant interaction of obesity and metabolic health—and reveal with further granularity the intri-
cateness of this relationship.

A number of recent studies have identified a range of metabolites as markers and possible
effectors of metabolic disease [3,4,8,14–18]. We extend these analyses to a broad range of cardi-
ometabolic phenotypes and present a more detailed analysis of metabolite profiles with respect
to adiposity, dyslipidemia, metabolic disease, and blood pressure. Our group has previously
examined metabolites in relation to these traits [5], however we now extend findings to more
than double the previous sample size, with a much broader profiling platform that now
includes negatively charged anions and lipid subspecies. A number of novel findings are worth
noting. For example, mounting evidence supports the role of dysregulated branched-chain
amino acid metabolism in human cardiometabolic disease [6,7,14,16,19–21], with experimen-
tal studies demonstrating activation of the mammalian target of rapamycin (mTOR) by
branched chain amino acids leading to insulin resistance [14,22,23]. Our study demonstrates
not only that branched-chain and aromatic amino acids are associated with BMI, but also
other essential and non-essential amino acids (alanine, asparagine, glycine, proline) and amino
acid intermediates. The latter included multiple metabolites of the tryptophan pathway (indole
propionate, kynurenic and quinolinic acid), cystathionine in the cysteine pathway, and 2-ami-
noadipic acid, a lysine metabolite, which has previously been associated with incident diabetes
[24]. Prior studies have demonstrated lower glycine concentrations to be associated with meta-
bolic traits, worse glucose disposal rate, and diabetes [14,16,25,26]. We now confirm the associ-
ation of lower glycine concentrations with unfavorable metabolic traits, and moreover show
that its derivative metabolite, dimethylglycine, is positively associated with metabolic traits.

We observed that most amino acids associated with BMI were also associated with abdomi-
nal adiposity, insulin-resistance, HDL, and triglycerides. However, two essential amino acids
were negatively associated with fasting glucose but not with BMI: histidine, which has been
shown to protect against diabetic deterioration in mice [27], and threonine, a precursor to gly-
cine synthesis. Among non-amino acid metabolites, considerable overlap in metabolite profiles
existed between BMI, abdominal adiposity, insulin resistance, and lipid traits, but not with ele-
vated fasting glucose, highlighting two known distinct metabolic phenotypes. Whereas

Table 5. Association of metabolite profiles and HOMA-IR in obese and non-obese individuals.

Obese (n = 511) Non-obese (n = 1680)

Beta est s.e. P-value Beta est s.e. P-value P for interaction

3-hydroxyphenylacetic acid 0.01 0.02 0.52 0.12 0.03 3.47E-04 1.40E-03

carnitine -0.02 0.02 0.36 0.07 0.03 0.05 1.70E-03

glycocholate 0.03 0.02 0.09 0.12 0.03 4.50E-04 3.89E-03

tryptophan 0.02 0.02 0.33 0.06 0.03 0.07 0.01

tyrosine 0.05 0.02 0.02 0.11 0.03 1.52E-03 0.01

creatine 0.03 0.02 0.21 0 0.04 0.96 0.01

isoleucine 0.08 0.02 8.90E-04 0.10 0.04 0.01 0.01

taurocholate 0.09 0.02 1.45E-05 0.18 0.03 1.11E-08 0.01

inosine 0.00 0.02 0.82 0.11 0.04 3.37E-03 0.01

Beta estimates represent change in HOMA-IR per 1-standard deviation change in log-metabolite. Analyses adjusted for age, sex, batch, body mass index,

and log-triglyceride concentrations. Bold font indicates P-value below Bonferroni-corrected threshold of P<0.00023.

doi:10.1371/journal.pone.0148361.t005
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impaired fasting glucose reflects predominantly a defect in insulin secretion, impaired glucose
tolerance is more closely related to insulin resistance [28,29] and clinical outcomes [30]. Our
study provides further granularity with respect to differences in metabolite intermediaries
between these two phenotypes.

Multiple additional metabolic pathways appear to be altered in relation to metabolic traits,
including carbohydrate metabolism, ketosis, lipid metabolism, and bile acid metabolism
[3,4,8,14,17,31–33]. Our findings affirm the effect of BMI and related traits on this wide spec-
trum of metabolic pathways, and extend previous findings in two ways. First, our broad-based
platform was able to shed further light regarding multiple metabolic intermediates involved in
related pathways. For example, we demonstrate novel alterations in multiple intermediates of
the citric acid cycle, including aconitate, isocitrate, and alpha-ketoglutarate, all of which are
positively associated with BMI, abdominal obesity, HOMA-IR, and triglycerides. A previous
study demonstrated that alpha-ketoglutarate was reduced after weight loss in obese insulin-
resistant women [34]. Further, the citric acid cycle enzyme NADP+-dependent isocitrate dehy-
drogenase is expressed in liver and adipocytes, where it produces NADPH by converting isoci-
trate to alpha-ketoglutarate, and thereby plays a critical role in adipogenesis, particularly with
respect to triglycerides and cholesterol [35].

Previous studies have demonstrated an inverse association of long-chain acylcarnitines
[32], positive association with medium-chain acylcarnitines [31], and also greater fatty acid
saturation levels [3,4,18] with metabolic traits. We extend these findings and demonstrate a
distinct TAG pattern associated with BMI, central adiposity, and HOMA-IR, with lower car-
bon length and saturation associated with worse metabolic profiles. This finding is in concert
with prior lipidomic studies, that have demonstrated the association of low carbon number
and double-bond content TAG subspecies with incident cardiovascular disease [36].
Whether TAG subspecies are markers or effectors of disease remains unclear, however it is
known that triglycerides may modulate lipoprotein retention and thrombogenicity as poten-
tial underlying mechanisms of atherosclerosis [37]. Together, these findings suggest that pro-
filing of specific TAG species beyond conventional assessment of bulk triglyceride
concentrations may lend more granular insights into underlying pathways contributing to
cardiometabolic disease.

Interestingly, we found no metabolites that predicted change in BMI over time above and
beyond baseline BMI. This is probably due to the fact that baseline and subsequent BMI mea-
surements are highly correlated. By contrast, we found multiple metabolites that predicted
future change in fasting glucose measures, including aminoadipic acid, ornithine, isoleucine,
5-HIAA, and cotinine, each of which has support from previous studies linking metabolite to
glucose homeostasis and diabetes mellitus: Our group has previously demonstrated an associ-
ation of 2-aminoadipic acid with incident diabetes [24]. In this study, administration of
2-aminoadipic acid to mice lowered their fasting glucose levels. Further, in cell-based experi-
ments, 2-aminoadipic acid enhanced insulin secretion from pancreatic beta cell lines. This
suggests that 2-aminoadipic acid may be involved in glucose homeostasis and underlying
pathology. Ornithine is an amino acid that is part of the urea cycle. In animal models of dia-
betes, insulin deficiency was associated with increased levels of ornithine along with high
branched chain amino acid levels such as isoleucine, [38] and recapitulates hyperaminoacide-
mia seen in human metabolic disease that precedes diabetes [6]. Amino acid supplementation
in humans directly promotes insulin resistance [23], and may be related to effects on insulin
signaling in skeletal muscle [39]. 5-HIAA is a metabolite of serotonin, a neurotransmitter
that plays a central role in glucose homeostasis via central autonomic pathways and periph-
eral release from gastrointestinal enterochromaffin cells [40]. Genetic serotonin receptor
deletion is associated with diabetes mellitus, further substantiating the role of serotonin in

Metabolomic Profiles of Cardiometabolic Disease in the Community

PLOS ONE | DOI:10.1371/journal.pone.0148361 February 10, 2016 12 / 16



diabetes development [41]. Lastly, cotinine is the predominant metabolite of nicotine, and
can be used as a marker of smoking status [42], which in turn has been linked to incident dia-
betes in cohort studies [43]. Smoking has been shown to lead to impaired glucose tolerance
acutely [44], and abdominal adiposity [45], both of which may lead to eventual diabetes
mellitus.

It is well recognized that within a given BMI category, a range of metabolic health pheno-
types can be observed. Whether or not 'metabolically healthy obesity' exists is controversial
[46], but it is known that heterogeneity exists in the relation of metabolic profiles with meta-
bolic health across weight categories [19]. Our findings highlight the complex interaction of
obesity with metabolic health, and demonstrate notable differences in metabolic signatures of
insulin resistance in obese compared with non-obese individuals. For example, the amino acids
isoleucine and proline were more strongly associated with insulin resistance in the non-obese.
By contrast, the association of saturated TAGs and both conjugated and deconjugated bile
acids with insulin resistance was markedly more pronounced in obesity. The association of bile
acids and metabolic traits has previously been described [3,47–49]. Differences in obese com-
pared with non-obese may also relate to the rate-limiting enzyme of bile acid synthesis, choles-
terol 7α-hydroxylase (CYP7A), whose basal expression is increased in an obesity mouse model
via both glucose-stimulated epigenetic modifications and the insulin/FoxO1 pathway [50].
Alterations in gut microbiota may also contribute, as intestinal flora can modify bile acids by
deconjugation, oxidation, dehydroxylation, and sulfation [51], and have been implicated in the
pathogenesis of diabetes [52].

Several limitations deserve mention. The 217 metabolites analyzed in this study were
selected as part of a targeted platform geared toward small molecules based on previous studies
linking several metabolites to insulin resistance [6]. Other metabolite platforms can acquire
profiles in a less biased manner, however advantages for our approach included highly specific
analyte identification, and capability for absolute quantification of metabolites. It remains
unclear whether metabolites represent biomarkers or actual mediators of metabolic disease,
and causal inferences cannot be drawn from our observational study. There were 154 individu-
als with diabetes mellitus in our sample, and we thus we had limited power to examine the
association of metabolites with metabolic traits among this subset. We were unable to ascertain
relations of plasma metabolites to the adipose tissue secretome, as these data were not available
in our study sample. Lastly, we performed metabolite profiles at one single time point, preclud-
ing the assessment of cardiometabolic disease and medication effects on longitudinal changes
in metabolites.

In summary, body mass index was associated with a broad range of metabolic alterations.
Metabolite profiling illuminated considerable overlap with abdominal adiposity, insulin resis-
tance, and dyslipidemia, but not with fasting glucose or blood pressure traits. The association
of metabolic profiles with IR was modified by the presence or absence of obesity, highlighting
heterogeneity in the association of obesity and metabolic disease. Future studies are needed to
identify which metabolites could have importance as causal risk factors for metabolic disease,
and, in turn, which metabolites could serve as potential targets for therapy.
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