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Abstract

Although they have become a widely used experimental technique for identifying differentially expressed (DE) genes, DNA
microarrays are notorious for generating noisy data. A common strategy for mitigating the effects of noise is to perform
many experimental replicates. This approach is often costly and sometimes impossible given limited resources; thus,
analytical methods are needed which increase accuracy at no additional cost. One inexpensive source of microarray
replicates comes from prior work: to date, data from hundreds of thousands of microarray experiments are in the public
domain. Although these data assay a wide range of conditions, they cannot be used directly to inform any particular
experiment and are thus ignored by most DE gene methods. We present the SVD Augmented Gene expression Analysis
Tool (SAGAT), a mathematically principled, data-driven approach for identifying DE genes. SAGAT increases the power of a
microarray experiment by using observed coexpression relationships from publicly available microarray datasets to reduce
uncertainty in individual genes’ expression measurements. We tested the method on three well-replicated human
microarray datasets and demonstrate that use of SAGAT increased effective sample sizes by as many as 2.72 arrays. We
applied SAGAT to unpublished data from a microarray study investigating transcriptional responses to insulin resistance,
resulting in a 50% increase in the number of significant genes detected. We evaluated 11 (58%) of these genes
experimentally using qPCR, confirming the directions of expression change for all 11 and statistical significance for three.
Use of SAGAT revealed coherent biological changes in three pathways: inflammation, differentiation, and fatty acid
synthesis, furthering our molecular understanding of a type 2 diabetes risk factor. We envision SAGAT as a means to
maximize the potential for biological discovery from subtle transcriptional responses, and we provide it as a freely available
software package that is immediately applicable to any human microarray study.
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Introduction

Since their inception over 13 years ago [1], DNA microarrays

have become a staple experimental tool used primarily for

exploring the effects of biological interventions on gene expression.

Microarrays have enabled a range of experimental queries,

including a survey of gene expression across dozens of mammalian

tissues [2], a comparison of human cancers in over 2000 tumor

samples [3], and the identification of differentially expressed (DE)

genes between pairs of conditions. Identifying DE genes is

especially common, as it is often the first means of characterizing

differences between two poorly understood conditions. As of 2009,

there are publicly available microarray data for w2400 human

conditions (at the Gene Expression Omnibus [4]). These data

make possible a huge number of pairwise comparisons for DE

gene analysis. Given this sizable opportunity for biological

discovery, we focus our attention on the task of DE gene

identification.

Microarrays are notorious for generating noisy or irreproducible

data [5–8]. This is partially due to the inherent technical noise of

the experiment, which can be modeled and often removed from

the resulting data. However, biological noise also plays a

significant role, and effects of this noise source are not as easily

corrected [9]. A common solution to biological noise involves

replicating the experiment many times in order to ‘‘average out’’

noise effects. In the context of DE gene prediction, we define a

replicate as a biologically independent comparison of RNA levels

between the experimental conditions of interest. Unfortunately,

assay cost and a limited supply of biological material often limit the

efficacy of a replication-based strategy. To circumvent these

difficulties, we need analytical methods which increase DE gene

prediction accuracy at no additional cost.

One inexpensive source of microarray replicates comes from

prior experiments. In the last decade, researchers have generated

data from hundreds of thousands of microarrays, and many of these

are publicly available at repositories like the Gene Expression
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Omnibus (GEO). It is unlikely that any of these arrays (hereafter

referred to as ‘‘knowledge’’) represent exact replicates of data from a

novel study (referred to as ‘‘data’’), but a subset of these experiments

may describe similar underlying biology and could be considered

‘‘partial replicates’’. Because it is not clear a priori which of the prior

experiments (if any) would qualify as partial replicates, pre-existing

microarray knowledge cannot be used directly to identify DE genes

in a novel dataset.

It is therefore worth considering indirect methods for using this

knowledge. Two previously existing methods use microarray

knowledge to compute more accurate variance estimates for each

gene [10,11]. Both methods replace sample variance estimates for

each gene by gene-specific variances calculated across a compen-

dium of microarrays from GEO. This approach was shown to be

most useful with small data sample sizes, and no further benefits

were seen when the microarray knowledge exceeded *250 arrays.

A different approach might involve identifying transcriptional

modules: groups of genes that exhibit coordinated or correlated

expression changes across a range of conditions. A complete and

accurate understanding of module structure would reveal

expression dependencies between genes, such that on average,

genes in the same module would be coexpressed more often than

genes chosen at random. Thus, knowledge of one gene’s

expression would confer information about the expression of the

other genes in the module. Several studies [12–18] have used

microarray knowledge to identify transcriptional modules. Of

these, five have been tested on yeast datasets of 1000 arrays or

fewer [12–14,16,17] and one has been applied to *2000 human

cancer datasets [15]. Only one [18] was applied to a diverse

human microarray knowledge set, in this case containing *2500
arrays. Given that tens of thousands of arrays are publicly

available for some individual microarray platforms, a larger-scale

identification of transcriptional modules is certainly possible.

Knowledge of transcriptional modules and their constituent

genes is not directly applicable to DE gene identification, and most

existing methods ignore these relationships. Of the few that

provide a means to incorporate expression modules [19–21], none

provide a mechanism for extracting these modules from large-scale

microarray knowledge sets. Consequently, there is a need for a

method that can identify relevant transcriptional modules from

huge compendia of microarray knowledge and use this informa-

tion to better predict DE genes.

In this work, we present the SVD Augmented Gene expression

Analysis Tool (SAGAT), a mathematical approach that identifies

expression modules from microarray knowledge and combines

these with novel data to identify DE genes. To accomplish these

tasks, SAGAT employs Singular Value Decomposition (SVD)

in concert with pseudoinverse projection. SVD has been used

previously to decompose microarray knowledge into mathemat-

ically independent transcriptional modules (eigengenes) and the

corresponding independent cellular states where these modules are

active (eigenarrays) [22]. Most non-SVD module-finding methods

identify discrete modules where module membership for each gene

is a binary feature. In contrast, SVD assigns a continuously-valued

weight for each gene, which allows varying strengths of co-

expression to be present in the same module and genes to be part

of multiple modules. SVD models the expression of each gene as a

linear combination of the eigengenes’ expressions, and a number

of studies have used this technique to define modules on smaller

scales. Raychaudhuri et al. [23] and Alter et al. [22] each initially

applied SVD (the former in the form of PCA) to yeast time course

data to identify fundamental modes of expression response that

vary over time. The latter study also demonstrated the ability of

SVD to remove noise or experimental artifacts present in the data.

Shortly thereafter, Troyanskaya et al. [24] used SVD to identify

eigengenes in gene expression data for the purposes of missing

value estimation. Alter and colleagues subsequently employed

generalized [25] and higher order [26] versions of SVD for the

integration and decomposition of heterogeneous microarray

datasets. Horvath and Dong [27] used SVD of microarray data

in combination with coexpression analysis to generate eigengene

coexpression networks. Finally, in a large scale study, SVD was

shown to reduce noise when used in the integration of disparate

microarray datasets [28].

The technique of pseudoinverse projection has also previously

been applied to genome-scale data. Alter and Golub demonstrated

the utility of SVD coupled with pseudoinverse projection by

reconstructing one genomic dataset in terms of the eigenarrays of

another [29]. This enabled the observation of a set of cellular states

in one dataset that were also manifested in the other. Subsequent

work used pseudoinverse projection in concert with an alternative

matrix decomposition technique (non-negative matrix factorization)

to classify gene expression states of one organism in terms of another

[30]. In the current work, using SAGAT, we combine SVD-derived

modules, pseudoinverse projection, and a rigorous statistical model

to adjust gene expression error estimates in a dataset of interest. This

yields a knowledge-informed differential expression score for each

gene.

We demonstrate SAGAT in several ways. First, we investigate

whether transcriptional modules are readily detectable in a large

compendium of microarray knowledge. Second, we test SAGAT

on a range of simulated datasets to assay its performance with

respect to a known gold standard. Third, we evaluate SAGAT’s

ability to increase DE gene predictive power in three highly

replicated real world datasets. Finally, we apply SAGAT to a new

human dataset investigating transcriptional profiles in the setting

of insulin resistance (IR), a risk factor for type 2 diabetes. Though

a known relationship exists between obesity and insulin resistance

[31,32], it is not always consistent [33,34]; in addition, many

studies characterizing IR do not deconvolve the effects of obesity

[35]. This novel microarray dataset builds upon previous work

[35–37] to investigate obesity-independent transcriptional effects

of insulin resistance. We illustrate the improved sensitivity of

SAGAT over existing methods by identifying IR candidate DE

Author Summary

Though the use of microarrays to identify differentially
expressed (DE) genes has become commonplace, it is still
not a trivial task. Microarray data are notorious for being
noisy, and current DE gene methods do not fully utilize
pre-existing biological knowledge to help control this
noise. One such source of knowledge is the vast number of
publicly available microarray datasets. To leverage this
information, we have developed the SVD Augmented
Gene expression Analysis Tool (SAGAT) for identifying DE
genes. SAGAT extracts transcriptional modules from
publicly available microarray data and integrates this
information with a dataset of interest. We explore SAGAT’s
ability to improve DE gene identification on simulated
data, and we validate the method on three highly
replicated biological datasets. Finally, we demonstrate
SAGAT’s effectiveness on a novel human dataset investi-
gating the transcriptional response to insulin resistance.
Use of SAGAT leads to an increased number of insulin
resistant candidate genes, and we validate a subset of
these with qPCR. We provide SAGAT as an open source R
package that is applicable to any human microarray study.

SAGAT
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genes, and we validate a subset of these using quantitative PCR

assays. Results of this analysis contribute to a more comprehensive

molecular understanding of human insulin resistance.

Results

Modularity of Gene Expression Data
To demonstrate that transcriptional modules are detectable in a

multi-condition microarray knowledge compendium, we charac-

terized the degree of modularity in a collection of 4440 arrays from

the HGU95Av2 platform. We consider an expression module a

group of genes exhibiting coordinated expression across some

subset of the entire compendium. Genes in such a group will have

relatively large positive or negative pairwise covariances; thus,

degree of modularity refers to the number of genes in the

compendium that belong to one or more groups of significantly

covarying genes.

Figure 1A displays a binarized representation of the sample

covariance matrix for the entire HGU95Av2 compendium,

whereby each covariance value whose magnitude is w:25 is

colored black (white otherwise). This matrix was then subjected to

hierarchical biclustering (Figure 1B), which resulted in many

blocks of nonzero binary covariance, ranging in size from a few

genes to nearly 1000. Furthermore, this covariance pattern does

not appear to be due to chance, as the biclustering results from 100

randomized knowledge matrices (see Materials and Methods)

showed no covariance blocks exceeding a 15 gene cutoff.

To parameterize a simulation study (details below), we used a

1000-gene compendium to characterizee the mean number of

genes per module, the mean percentage of DE genes found in

modules, and the mean percentage of non-DE genes found in

modules. This was achieved by subsetting the HGU95Av2

compendium and coupling it with a human prostate cancer

dataset [38]. The mean number of genes per module was 15, the

mean percentage of DE genes found in modules was 60% (673/

1122), and the mean percentage of non-DE genes found in

modules was 47% (3752/7983). These values were employed in

the simulation study that follows.

Singular Value Decomposition (SVD) of Gene Expression
Data

SVD identifies eigengenes whose expression is mutually

orthogonal across all arrays in the compendium. To demonstrate

that mathematical orthogonality correlates with biological orthog-

onality (as manifested by biologically independent eigengenes), we

performed a Gene Ontology (GO) term enrichment analysis of a

subset of the eigengenes from the HGU95Av2 compendium (using

the gene weights of each eigengene as scores). Table 1 displays the

top three significant Biological Process terms with fewer than 500

annotated genes for eigengenes 1–5, 10, 20, 50, and 200. The

terms within each eigengene are largely consistent, and each

eigengene describes a relatively distinct biological process. We

note that there is not an absolute correspondence between the

modules displayed in Figure 1B and the eigengenes identified by

SVD, as the methods used to identify these structures are

algorithmically different. However, we detected substantial overlap

in the enriched Biological Process terms associated with the largest

covariance modules and highest ranking eigengenes (e.g. the

largest module and first eigengene were both strongly enriched for

translation and biosynthesis terms).

Simulation Study
We first tested the validity of the SAGAT model using simulated

data. We simulated knowledge compendia with structures ranging

from that shown in Figure 2A, where 60 of the 100 DE genes are

in 15-gene modules and none of the 900 non-DE genes are, to that

shown in Figure 2C, where the same number of DE genes are in

modules and all 900 non-DE genes are also. Figure 2B depicts a

modularity structure that is approximately equivalent to that of the

prostate cancer dataset, where 60% of prostate cancer DE genes

are found in modules and 47% of non-DE prostate cancer genes

are found in modules.

After running SVD on each simulated compendium to calculate

the appropriate W matrix, we tested SAGAT on all combinations

of data and knowledge. As SAGAT relies on a single parameter

specifying the number of eigengenes (M), we first estimated the

optimal value for this parameter by trying all possible values on

Figure 1. Modularity characterization of HGU95Av2 compendium. (A) All pairwise covariances were calculated between 9105 genes; entries
whose absolute values were greater than .25 were set to one and colored black (set to zero and colored white otherwise). (B) Binarized covariance
matrix after hierarchical biclustering ( 1{binary covariance½ � distance metric and complete linkage) to identify coordinated expression modules. The
observed modularity is not due to chance, as an identical procedure applied to a randomized expression matrix showed no covariance blocks larger
than a few genes (not shown).
doi:10.1371/journal.pcbi.1000718.g001

SAGAT
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several configurations of data and knowledge (results not shown).

The best performance was achieved with M~200; we used this

value for all subsequent simulation runs.

Figure 3 displays results from running SAGAT on two

compendia with modularity structures identical to Figures 2A

(3A,3B) and 2B (3C,3D) coupled with datasets having either

one or 15 replicates. The mean AUC improvement over the

fold change metric (Mean D), ranging from .0042 to .0708, is

shown. Within the range of structures bounded by these two

compendia and for both sample sizes, SAGAT consistently

improves the AUC of DE gene prediction. The two trends

observed are: (1) increasing performance improvement with

decreasing numbers of array replicates, and (2) increasing

performance improvement with decreasing numbers of non-DE

gene modules. Performance begins to degrade below that of fold

change if the simulated compendia adopt modularity structures

between those of Figures 2B and C (results not shown), but we

have evidence suggesting that the modularity of real world datasets

resemble configurations falling between Figures 2A and B (see

Discussion).

To demonstrate that use of SAGAT could yield improved

statistical power without concurrently increasing the false positive

rate of prediction, we repeated the above experiments using true

positive rate (TPR) evaluated at a fixed false positive rate (FPR) of

.05 (in place of AUC). These results are shown in Figure S3, and

the performance improvements with respect to fold change closely

resemble those displayed in Figure 3.

Highly Replicated Real Datasets
To evaluate SAGAT performance on real data, we tested it on

subsets of three highly replicated human microarray datasets (see

Materials and Methods for details). As a gold standard, we used

either the fold change or limma t [39] metrics to identify significant

DE genes from each dataset in its entirety; this resulted in 1122

(12.3%), 588 (4.4%), and 6002 (29.9%) DE genes for the prostate

cancer, letrozole treatment (GEO ID: GSE5462), and colorectal

cancer (GSE8671) datasets, respectively.

After downloading the three corresponding knowledge com-

pendia (minus the highly replicated datasets) and running SVD

on each, we determined the optimal number of eigengenes by

Table 1. GO Biological Process enrichment of HGU95Av2 compendium eigengenes.

Eigengene Term ID Name # genes p-value

1 GO:0006412 Translation 271 v1|10{30

GO:0009059 Macromolecule biosynthetic process 431 1:90|10{23

GO:0006396 RNA processing 269 1:20|10{20

2 GO:0000278 Mitotic cell cycle 203 7:20|10{7

GO:0022403 Cell cycle phase 223 3:40|10{6

GO:0000279 M phase 172 1:10|10{5

3 GO:0007155 Cell adhesion 494 2:60|10{12

GO:0006955 Immune response 481 2:70|10{12

GO:0000902 Cell morphogenesis 305 6:20|10{10

4 GO:0042110 T cell activation 86 3:60|10{8

GO:0046649 Lymphocyte activation 128 6:90|10{6

GO:0045321 Leukocyte activation 145 1:20|10{5

5 GO:0022403 Cell cycle phase 223 1:50|10{8

GO:0000278 Mitotic cell cycle 203 1:50|10{8

GO:0007067 Mitosis 131 2:80|10{8

10 GO:0006941 Striated muscle contraction 27 1:00|10{4

GO:0016567 Protein ubiquitination 43 9:10|10{4

GO:0006936 Muscle contraction 130 1:22|10{3

20 GO:0006323 DNA packaging 177 1:10|10{3

GO:0006997 Nuclear organization and biogenesis 22 2:50|10{3

GO:0006325 Establishment of chromatin architecture 171 2:90|10{3

50 GO:0008354 Germ cell migration 6 2:60|10{3

GO:0050764 Regulation of phagocytosis 6 3:30|10{3

GO:0007067 Positive regulation of phagocytosis 6 3:30|10{3

200 GO:0009187 Cyclic nucleotide metabolic process 35 3:40|10{4

GO:0009605 Response to external stimulus 424 5:70|10{4

GO:0030193 Regulation of blood coagulation 11 6:60|10{4

A Kolmogorov-Smirnov (K-S) test was used to evaluate the significance of enrichment. The member genes of each eigengene were ranked by the absolute value of their
weights and the K-S test was run on all Biological Process terms. The top three terms with a p-value of .05 or smaller (and fewer than 500 annotated genes) are
displayed.
doi:10.1371/journal.pcbi.1000718.t001

SAGAT
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training on the prostate cancer dataset. Figure 4 shows results of

SAGAT run on two non-overlapping subsets of this dataset and

the HGU95Av2 compendium while varying the number of

eigengenes (parameter M). The AUCs of the fold change metric

are displayed as red horizontal lines. SAGAT outperforms fold

change for many values of M, and for both subsets there is a

distinct maximum in the AUC curve for a particular value of the

parameter. For these two subsets and several others tested (not

shown), the optimal value for M is approximately half the number

of arrays in the compendium. We used this value for subsequent

analyses on all datasets and compendia, which translates to 2220,

7238, and 6108 eigengenes for the HGU95Av2, HGU133A, and

HGU133plus2.0 platforms, respectively. To show that SAGAT’s

performance as a function of M was not due to chance, we

randomized the expression values of the compendium and re-ran

the same test in Figure 4B. These results are shown in gray. In this

case, SAGAT never outperforms fold change, suggesting that the

performance improvement from the original compendium is not

spurious.

Next we applied SAGAT to multiple subsets of each of the three

datasets. Figure 5 displays the performance of SAGAT coupled

with the appropriate W matrices. For comparison, we feature

AUC differences with respect to fold change of both SAGAT and

Figure 2. Modularity structures of simulated microarray compendia. Simulated compendia ranged from containing only DE gene modules
(A) to having DE gene plus the maximum number of non-DE gene modules (C). (B) This configuration represents a conservative approximation of the
structure of a real biological dataset (see Discussion).
doi:10.1371/journal.pcbi.1000718.g002

Figure 3. SAGAT performance on four simulated data-knowl-
edge configurations. In each panel, both SAGAT and the fold change
metric were applied to 200 simulated datasets consisting of either one
[(A) and (B)] or 15 replicates [(C) and (D)]; the AUC improvement
achieved by SAGAT over fold change is displayed for each. In (A) and
(C), a simulated knowledge compendium matching Figure 2A was used
by SAGAT; in (B) and (D) the simulated knowledge corresponds to
Figure 2B. On average, SAGAT outperforms fold change in all four cases
with the mean improvement located at the top of each panel. The
simulated knowledge structure for (B) and (D) represents a conservative
approximation of the structure of a real biological dataset (see
Discussion).
doi:10.1371/journal.pcbi.1000718.g003

Figure 4. Identifying the optimal number of eigengenes. (A) and
(B) show SAGAT performance versus varying numbers of eigengenes
(parameter M) when applied to two non-overlapping four-array subsets
of the prostate cancer dataset. The HGU95Av2 knowledge compendium
was used for this task. The red horizontal lines denote the performance
of the fold change metric. In both cases, M set to approximately half the
number of arrays in the compendium leads to the best performance;
this point is marked with green vertical lines. In (B), the light gray points
display SAGAT performance when using a randomized knowledge
compendium; this suggests that SAGAT improvement over fold change
is not due to chance.
doi:10.1371/journal.pcbi.1000718.g004

SAGAT
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the limma t-statistic. Figures 5A and B display performance on the

prostate cancer dataset using a fold change and limma t-derived

gold standard, yielding mean AUC improvements of .023 and

.018, respectively. Given that the relative performance trends are

similar, Figures 5C and D show performance on the letrozole

treatment and colorectal cancer datasets using only the fold

change-derived gold standard, yielding AUC improvements of

.009 and .019, respectively. In all three datasets, irrespective of

sample size, SAGAT nearly always improves the AUC over fold

change; in cases where this does not occur, AUC is left essentially

unchanged. In contrast, the t-statistic consistently lowers the AUC

of DE gene prediction and is not applicable when the number of

replicates is 1. Though the limma t performance improves when

using a limma t gold standard, it is still unable to outperform the

other two metrics. AUC improvement for SAGAT generally

decreases with increasing sample size, and the improvement is

largest for the prostate cancer and colorectal cancer datasets.

To express the performance of SAGAT in a more tangible

form, we estimated the effective number of arrays added by using

the method. Table 2 shows results for each of the three highly

replicated datasets at four initial sample sizes. On average, with

one exception in 12 tests, use of SAGAT always increased the

effective number of arrays. In some cases, this improvement was

quite significant: a two-array prostate cancer subset coupled with

SAGAT effectively performed as well as a 4.72 array dataset. As

before, the number of arrays added generally decreases with

increasing sample size.

As with the simulated data, we also repeated the highly

replicated dataset experiments using TPR calculated at an FPR of

.05 as an evaluation metric. These results are displayed in Figure

S4, and the performance improvements very closely resemble

those shown in Figure 5.

Comparison to Related Method
We evaluated the GEO method (both standard and ‘‘voting’’

methods) on the prostate cancer dataset and HGU95Av2

compendium and compared its performance to SAGAT. Figure

S1 shows the results, which demonstrate that SAGAT (and fold

change) outperform the GEO method in much the same way as

when compared to the limma t-statistic above.

Figure 5. SAGAT, fold change, and limma t performance on subsets of three highly replicated human datasets. In each panel, the gold
standard was defined as the top 1122, 588, and 6002 highest scoring genes for the prostate cancer, letrozole treatment, and colorectal cancer
datasets, respectively. (A) The fold change metric was used to rank genes for the gold standard. SAGAT (with HGU95Av2 compendium), fold change,
and limma t were run on all combinations of n = 1, 2, 5, and 15 replicate subsets and the performance improvement of SAGAT and limma t over fold
change displayed. Limma t requires two or more replicates to score genes. (B) Identical conditions as (A), with the limma t metric used to rank gold
standard genes. (C) and (D) Similar plots for the letrozole treatment (HGU133A compendium) and colorectal cancer (HGU133plus2.0 compendium)
datasets, respectively. Fold change was used to rank gold standard genes in these panels. In all cases, SAGAT performs as well or better than the fold
change and limma t metrics, while the limma t nearly always yields the poorest performance.
doi:10.1371/journal.pcbi.1000718.g005

SAGAT
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We also measured the sensitivity of SAGAT performance to

compendium size. As Figure S2 shows, SAGAT continues to

improve performance as the compendium increases to its full size.

The performance begins to level off near 4400 arrays, but further

improvement would still be expected with an even larger

compendium.

Insulin Resistance Dataset
Given encouraging performance of SAGAT on simulated and

real human datasets, we applied it to an unpublished experimental

dataset investigating expression differences between human insulin

resistant and insulin sensitive adipose tissue. The obesity-

independent relationship between insulin resistance and adipose

gene expression has previously been characterized on a small scale

[40], but no large-scale studies have attempted to decouple the

effects of obesity from insulin resistance [35]. In this experimental

design, patients were otherwise healthy and matched for levels of

obesity; thus, we expected to identify more subtle expression

changes associated with insulin sensitivity status.

As detailed in Materials and Methods, the same 12 pairs of

RNA samples were applied to three different microarray

platforms: Affymetrix, Agilent, and Illumina. We initially attempt-

ed to identify DE genes using the limma t metric on data from each

platform individually. After correcting the results for multiple tests,

we did not detect any significant genes at a .05 FDR cutoff. Next,

we integrated results from all three platforms to try to capture

subtle but consistent signals. We applied the method of Rank

Products (RP) [41] to lists of genes ranked by either fold change or

SAGAT. Table 3 shows results from this procedure. As we wanted

to evaluate only the most confident predictions, we corrected for

multiple testing by controlling the PFER (per family error rate).

This is a strict multiple hypothesis test correction method that is

generally more conservative than the FDR (false discovery rate) or

FWER (family wise error rate) [42]. A total of 19 genes were found

to be significantly DE at a PFER of .05. When ranking genes by

fold change before applying RP, 12 genes were found to be

significantly DE—five upregulated and seven downregulated.

When using SAGAT to rank the genes instead, 18 genes were

significantly DE—seven upregulated and 11 downregulated.

SAGAT with RP detected all but one of the genes found using

fold change with RP, and seven genes were identified only through

use of SAGAT. We refer to the 11 genes detected by both fold

change and SAGAT rankings as Group I; Group II genes are

those that were detected exclusively using SAGAT.

We searched the literature for evidence implicating the genes of

Table 3 in insulin resistance, diabetes, or fatty acid metabolism (an

important function of adipose tissue). Genes for which evidence

was found are marked with an asterisk. Four of the Group I genes

[FOSB (Entrez Gene ID: 2354), FADS1 (3992), SELE (6401),

PPBP (5473)] had some literature describing their involvement;

five of the Group II genes [ATP1A2 (Entrez Gene ID: 477), FASN

(2194), FOS (2353), CXCR4 (7852), ELOVL6 (79071)] were also

implicated.

To experimentally validate these candidates, we performed

quantitative RT-PCR (qPCR) using 23 of the original 24 RNA

samples subjected to an amplification reaction. We tested 11 of the

19 genes from Table 3: five from Group I and six from Group II.

We also tested four genes that were not significant by Rank

Products; these genes serve as negative controls. For each gene, we

calculated the mean log2 fold change over the b-actin (Entrez

Gene ID: 60) housekeeping gene for the insulin resistant and

insulin sensitive samples. Results are displayed in Figure 6. Of

the Group I and II genes tested, all had qPCR expression

differences that matched the direction of those identified using

Rank Products.

We then tested the significance of each gene’s expression

difference using a Wilcoxon rank-sum test. Three of the genes had

p-values smaller than a .05 threshold: CSN1S1 (Entrez Gene ID:

1446), FOSB, and CXCR4 (marked by asterisks in Figure 6). The

first two genes are from Group I; the third is from Group II. Of

the four negative controls tested, none were found significantly

different in expression between the two groups.

Discussion

In this work, we present SAGAT, a principled method for

integrating pre-existing microarray knowledge with a dataset of

interest to identify DE genes. From prior knowledge, SAGAT

extracts ‘‘eigengenes’’, or mathematically independent transcrip-

tional modules, which collectively describe observed expression

dependencies between genes. These dependencies are combined

with the expression changes of each gene in the data to form the

SAGAT score, which enables expression information to be shared

between genes that are coexpressed in the knowledge.

To validate SAGAT, we first demonstrated that a compendium

of microarray knowledge showed significant modularity. This

result, which was not sensitive to varying compendium sizes (not

shown), was not surprising, as it has been shown before on

knowledge sets of a smaller scale. Nevertheless, it was not clear

whether such modules would be detectable on a much larger and

more heterogeneous collection of microarrays.

Next, we demonstrated favorable SAGAT performance in

identifying DE genes on a series of simulated datasets. We note

that our model for simulating data represents an oversimplification

of realistic coexpression relationships between genes (see Materials

Table 2. Effective number of arrays when using SAGAT on three human datasets.

Prostate cancer Letrozole treatment* Colorectal cancer

# Initial
arrays Min Mean Max Min Mean Max Min Mean Max

2 2.32 3.66 4.72 2.28 2.90 4.24 2.20 2.92 3.59

4 4.43 5.66 6.59 3.97 4.74 5.81 4.13 4.92 5.56

10 10.77 11.21 11.91 9.95 10.52 11.27 10.13 10.68 11.22

30 30.14 30.87 31.70 29.45 30.08 30.58 28.89 29.00 29.10

AUC values from Figure 5 were converted to effective numbers of arrays by creating a ‘‘standard curve’’ of AUC versus sample size and interpolating (see Materials and
Methods section for details).
*Results in the last row of the Letrozole treatment section were calculated using 28 initial arrays.
doi:10.1371/journal.pcbi.1000718.t002
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and Methods), but with it we can create distinct numbers of

modules in DE and non-DE genes to test the limits of SAGAT

performance. As detailed in the Results, SAGAT most improves

performance with respect to the fold change metric when

transcriptional modules are only composed of DE genes. As the

number of non-DE gene modules increases, the performance

improvement decreases, but at a realistic ratio of DE gene modules

to non-DE gene modules (Figure 2B, which closely matches the

configuration of the prostate cancer dataset), SAGAT still

outperforms fold change for all numbers of replicates tested.

We evaluated SAGAT on three highly replicated microarray

datasets. We chose datasets with many replicates so we could

approximate a gold standard DE gene list for each one. Ideally,

results from an independent and more accurate experiment like

quantitative RT-PCR would provide the DE gene truth for a given

dataset, but quantifying expression differences of every gene on a

microarray would be prohibitively expensive. Instead, we assume

that for each of the three datasets, the number of replicates is large

enough that DE genes calculated using fold change on all arrays is

approximately correct. Then the task becomes using small (often

noisy) subsets of each dataset to predict the true DE genes. We

applied the fold change, limma t, and SAGAT metrics to multiple

non-overlapping subsets of varying numbers of replicates. SAGAT

always outperforms the t-statistic, often by a large margin. With

sample sizes of only 1 replicate, the limma t is not applicable as it

requires a fold change variance estimate. Compared to fold

change, SAGAT nearly always better identifies DE genes; in the

worst case it leaves performance unchanged. These results suggest

that SAGAT would be consistently beneficial for predicting DE

genes from a dataset of interest. Importantly, the results displayed

in Figure S4 demonstrate that use of SAGAT leads to improved

statistical power at a small fixed false positive rate, which is a

necessity for the effective analysis of high-throughput biological

experiments.

We expressed SAGAT’s performance improvement over fold

change in terms of the effective number of arrays added. This

shows that, except in a small number of cases, use of SAGAT

always increases the effective sample size of an experiment. In

some cases this increase is substantial: for one two-array subset of

the prostate cancer dataset, the effective sample size became 4.72

arrays, or more than double the initial sample size of the

experiment. As expected, the number of arrays added decreases as

the initial number of arrays increases, due in part to the lower

capacity for prediction improvement when starting with a larger

sample size.

We also demonstrated that SAGAT outperforms the related

GEO method when evaluated on the prostate cancer dataset. As

even the fold change method consistently outperforms the GEO

method, it appears that more accurate estimation of gene

variances is not the most effective way to improve performance

for this dataset. In contrast, use of gene module information from

an SVD of microarray knowledge gives consistent improvement

over fold change.

We determined the sensitivity of SAGAT performance to the

number of arrays in the knowledge compendium. It was shown in

[11] that the GEO method does not give further performance

improvement when knowledge exceeds *250 arrays. To com-

pare, we evaluated the effect of compendium size on SAGAT

Table 3. Insulin resistance significant DE genes.

Symbol Description Direction
SAGAT
PFER

FC
PFER

FOSB* FBJ murine osteosarcoma viral oncogene homolog B Up v1e{4 v1e{4

ACTG2 actin, gamma 2, smooth muscle, enteric Down 0.0007 0.0007

FADS1* fatty acid desaturase 1 Down 0.0022 0.0048

PMP2 peripheral myelin protein 2 Down 0.0034 0.0770

ATP1A2* ATPase, Na+=K+ transporting, alpha 2 Down 0.0040 0.1620

CNN1 calponin 1, basic, smooth muscle Down 0.0067 0.0114

CSN1S1 casein alpha s1 Down 0.0123 0.0004

SELE* selectin E (endothelial adhesion molecule 1) Up 0.0174 0.0006

CASQ2 calsequestrin 2 (cardiac muscle) Down 0.0176 0.0238

FAM150B family with sequence similarity 150, member B Down 0.0188 0.0006

FASN* fatty acid synthase Down 0.0231 0.0610

FOS* v-fos FBJ osteosarcoma viral oncogene homolog Up 0.0242 0.0885

SRGN serglycin Up 0.0249 0.6952

CILP cartilage intermediate layer protein Up 0.0271 0.0420

CXCR4* chemokine (C-X-C motif) receptor 4 Up 0.0311 0.6058

PPBP* pro-platelet basic protein (chemokine ligand 7) Down 0.0325 0.0355

AADAC arylacetamide deacetylase (esterase) Up 0.0374 0.0019

ELOVL6* long chain fatty acid elongation Down 0.0425 0.0734

IL6* interleukin 6 (interferon, beta 2) Up 0.1340 0.0120

Significance was determined by running the Rank Products (RP) algorithm on ranked lists of genes derived from Affymetrix, Agilent, and Illumina microarray data. Genes
were ranked by both fold change and SAGAT before applying RP; the PFER (per family error rate) is displayed for both cases. Only those genes with a PFER of .05 or
smaller (achieved using SAGAT or fold change) are considered significant. Genes in normal font were significant using both fold change and SAGAT, genes in bold were
identified only with SAGAT, and IL6 was found only with the fold change metric.
*Literature evidence implicates gene with insulin resistance, diabetes, or fatty acid metabolism.
doi:10.1371/journal.pcbi.1000718.t003
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performance using the prostate cancer dataset. Unlike the GEO

method, SAGAT continues to improve performance as the

compendium increases in size. The improvement starts leveling

off near the compendium’s full size (4400 arrays), but an even

larger knowledge compendium should still give better perfor-

mance. Thus, SAGAT is able to extract useful information from

much larger microarray compendia than the GEO method.

Given SAGAT’s potential to improve DE gene identification,

we applied the method to a novel insulin resistance dataset

obtained from three different microarray platforms. An initial

attempt to identify DE genes on each platform separately yielded

no candidates, suggesting that the transcriptional response in

question was noisy and/or subtle. A Gene Ontology term

enrichment analysis on data from each platform consistently

identified terms related to immune response (results not shown),

implying that a reproducible biological signal was present in the

data. To improve the signal to noise ratio at the gene level, we

used the method of Rank Products (RP) across all three platforms

to identify subtly but consistently changing DE genes.

An application of RP to genes ranked by fold change yielded 12

DE gene candidates with a per family error rate of .05 or smaller.

A similar analysis on genes ranked by SAGAT yielded 18 genes,

11 of which overlapped with the fold change list. This suggests that

the incorporation of transcriptional module information resulted

in an increased sensitivity to detecting DE genes. We intentionally

used a very strict significance threshold to select a small number of

DE genes that were most consistently changed (and which

hopefully represent true biological differences), but relaxation of

this threshold would lead to additional candidates.

We next performed a literature search on each significant gene

for information implicating it in insulin resistance, diabetes, or fatty

acid metabolism. This uncovered evidence for multiple genes from

three biological processes: inflammation [SELE, IL6 (Entrez Gene

ID: 3569), PPBP, CXCR4], cell differentiation [FOSB, FOS], and

fatty acid synthesis [FADS1, FASN, ELOVL6] [43–45]. A role for

inflammation in IR has previously been suggested by a similar study

[35], but of the four pro-inflammatory genes listed above only IL6

was also detected in that work. In this study, SELE, IL6, and

CXCR4 were upregulated in insulin resistant patients, reinforcing

the positive role of inflammation in IR.

Cell differentiation has also been implicated in insulin resistance

in the sense that insulin resistant adipose tissue displayed lower

expression of differentiation markers than their insulin sensitive

counterparts [37]. In this work FOSB and FOS were upregulated

in IR, which is compatible with the above since both gene

products have been shown to trigger de-differentiation [46,47].

Fatty acid synthesis has long been known to be relevant to

insulin resistance [48]. The details of this relationship are not

always consistent: FADS1 is known to be downregulated in IR

[49], while ELOVL6 has shown the opposite effect [50] and

FASN has shown conflicting results [51]. To our knowledge, no

single study has analyzed the effects of all three of these fatty acid

synthesis genes with respect to insulin resistance in adipose tissue.

Our results show a coherent decrease in the gene expression of all

three genes, suggesting that obesity-independent insulin resistance

is associated with altered fatty acid synthesis and storage in adipose

tissue. We speculate that such an occurrence may lead to

inappropriate fatty acid accumulation elsewhere (i.e. circulating

in serum), which has been known to lead to IR [51]. One

explanation for the inconsistent results in previous studies is the

potentially confounding effects of obesity (a condition where fatty

acid synthesis increases) and insulin resistance. The current study

explicitly attempts to remove the former effect.

Taken together, the above results emphasize the importance of

increased inflammation, differentiation, and decreased fatty acid

synthesis to adipose tissue-based insulin resistance. We note that

our confidence in this assertion was greatly helped by SAGAT, as

four of the nine genes involved in these processes were only

identified using this method. This is particularly true for genes like

CXCR4, whose PFER received a substantial boost upon

application of SAGAT (0.6058 to 0.0311). We expect that further

experimentation will reveal the precise relationships between these

processes and IR.

The remaining significant genes detected only by SAGAT

exhibited varying levels of insulin resistance-related literature

evidence. ATP1A2, which codes for an ATPase, was previously

found to be differentially expressed between insulin resistant and

insulin sensitive muscle tissue, though in the opposite direction

than was found in this study [52]. PMP2 (Entrez Gene ID: 5375)

and SRGN (5552), coding for a myelin protein and hematopoietic

proteoglycan, respectively, lack any literature evidence for a

relationship to IR; illumination of their specific roles would require

further study.

To confirm the validity of some of the above DE gene

candidates, we performed qPCR using RNA samples from 23 of

the original 24 patients (one IR sample did not have sufficient

RNA for the procedure). We tested five genes found to be

significant using both fold change and SAGAT, six genes found

only with SAGAT, and four negative controls. All of the qPCR

expression differences of the non-control genes matched the

direction of those from the microarray data, suggesting that these

changes are reproducible. We then tested the significance of these

changes using a Wilcoxon rank-sum test (RST). We note that the

Figure 6. Quantitative PCR validation of insulin resistance
candidate genes. Fifteen genes were tested for differential expression
between 11 out of the original 12 insulin resistant samples and all 12
original insulin sensitive samples using TaqMan Real-time PCR. The first
five genes came from predictions of both fold change and SAGAT, the
next six were suggested by SAGAT only, and the last four genes served
as negative controls. The directionality of differential expression of all
non-control genes was in agreement between the microarray and qPCR
data. Three DE genes were statistically significant according to qPCR:
CSN1S1, FOSB, and CXCR4.
doi:10.1371/journal.pcbi.1000718.g006
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RST is one of the more conservative two-sample tests available

[53], and we anticipated noisy data due to the amplification

reactions needed prior to qPCR (see Materials and Methods

section). Nevertheless, three genes—two identified by fold change

and SAGAT, one by only SAGAT—were found to be significant.

In contrast, none of the negative control genes showed significant

expression differences. Combining the qPCR results together with

the literature evidence implicating four of the eight genes not

confirmed by qPCR suggests a false positive rate of 0.4 (2/5) for

fold change and 0.36 (4/11) for SAGAT. Though the difference

between these values may not be statistically significant, this result

suggests that SAGAT was able to improve the sensitivity of DE

gene detection in this experiment without increasing the false

positive rate. We did not explicitly test IL6 using qPCR, although

we note that previous work has shown this gene to be over-

expressed in insulin resistant adipose tissue [35]. This is the only

gene detected using fold change that was not also detected using

SAGAT, which may reflect discordant expression patterns of IL-6

between previously existing datasets and this one.

We now explore the means by which SAGAT improves pre-

diction of DE genes. Results from the simulation study demonstrate

that the method improves performance to the extent that DE genes

are more likely to be in transcriptional modules than non-DE genes.

This is realized through the standard error term (denominator) of

the SAGAT score (see Materials and Methods). For a given gene in

a module (eigengene), the standard error for that gene’s mean

expression difference receives contributions from measurements of

the other genes in that module, leading to a smaller error (more

precise estimate of expression). Thus, genes in modules will on

average have slightly boosted SAGAT scores compared to genes

acting in isolation. In the process of characterizing modularity of the

HGU95Av2 knowledge set to parameterize our simulation, we have

discovered that DE genes are more likely to be in modules than non-

DE genes. Given that the performance improvements in the

letrozole treatment and colorectal cancer datasets were similar to

the prostate cancer case, we expect this feature of DE genes (and the

corresponding performance improvement by SAGAT) to be

generalizable to a wide variety of biological datasets. To support

this hypothesis, we note that genes which are frequently

differentially expressed are more likely to be associated with a

disease [54], and genes implicated in the same disease show higher

levels of coexpression (modularity) than randomly selected genes

[55].

A closer look at the functional form of the SAGAT score shows

its similarity to versions of the t-statistic, including the limma t and

SAM [39,56]. The difference between these metrics lies in their

method for calculating the standard error of each gene’s mean

expression difference. Though the limma t-statistic borrows

information for calculating this term from other genes, SAGAT

is the only approach that identifies and uses expression

dependencies between genes in the computation of gene-wise

variances. Fortunately, this addition is not computationally

expensive, as SAGAT utilizes efficient algorithms. Eigengenes

are identified using SVD, which must only be run once per

knowledge compendium. Computation of the SAGAT score

requires projection of a small (with respect to the size of the

knowledge) dataset into eigengene space followed by a simple dot

product for each gene. Practically, the running time of SAGAT is

approximately the same as that of related methods like the limma t-

statistic. We note, however, that the distribution of the SAGAT

score is complex, and unlike the t-statistic, it does not provide for a

straightforward estimation of statistical significance. Thus, we

advocate data permutation-based methods (similar to those used

by SAM) to calculate SAGAT p-values.

Use of SAGAT does require some explicit assumptions about

microarray knowledge. First, we assume that (detectable) multi-

gene transcriptional modules give rise to the expression values in a

compendium of microarray knowledge. Previous work [12–18]

detecting reproducible, biologically plausible transcriptional mod-

ules (along with results from our characterization of the

HGU95Av2 compendium) suggest that this is a valid assumption.

Second, representing the transcriptional levels of each gene as a

weighted combination of eigengene levels assumes that each gene’s

expression can be modeled in a linear fashion. While some

evidence exists to support this assumption [57], it is more realistic

that expression is a non-linear phenomenon. Nevertheless, linear

approximations have proven useful and even quite accurate in the

modeling of non-linearity [58]. We find empirical support for this

accuracy in the coherence of the GO terms significantly enriched

in eigengenes of the HGU95Av2 compendium. Third, though

SVD does not make any distributional assumptions about the

knowledge, the analytical derivation of the SAGAT score requires

the eigengene expressions to be statistically independent. When

the underlying eigengenes are distributed as multivariate normal

(MVN) random variables, they will exhibit independence, but

otherwise this may not be the case. Given that we did not explicitly

enforce this assumption in either the simulated data (here, genes

were MVN, not eigengenes) or the highly replicated real datasets,

this assumption does not appear to be detrimental to SAGAT

performance.

An implicit assumption in the use of prior microarray

knowledge to inform a novel dataset is that the expression

dependencies from the knowledge are conserved in the novel

dataset. In a worst-case scenario, a novel dataset would exhibit a

transcriptional response completely unlike anything assayed

previously. Given the modular nature of transcription, we expect

this to be unlikely, and the favorable performance of SAGAT on

three independent biological datasets supports this assertion.

Additionally, as even more microarray experiments are performed

and their data become available, the likelihood of such a scenario

occurring will tend to zero.

As SAGAT requires a large compendium of microarray

knowledge, it is worth examining potential biases in currently

available compendia. Due to their popularity among researchers,

the vast majority of publicly available human microarray datasets

are from Affymetrix platforms. Thus, the three compendia and

highly replicated datasets used in this study represent the three

most popular human Affymetrix GeneChips. One concern would

be that a non-biological bias (perhaps due to cross-hybridization

between specific probesets) exists in Affymetrix data which cannot

be detected and removed without considering data derived from

other platforms. This might lead to artifactual coexpression

relationships. Another concern would be that the dependency

information inferred from Affymetrix microarray knowledge is not

extensible to non-Affymetrix datasets, due to differences in

probesets or the artifactual coexpression phenomenon discussed

above. While these concerns may have some merit, we note that in

applying SAGAT to a novel insulin resistance dataset we

incorporated microarray knowledge from an Affymetrix platform

with data from Affymetrix, Illumina, and Agilent platforms. Given

the ability of SAGAT to correctly identify novel DE genes in this

case, we do not believe such a large Affymetrix-specific bias is

present.

Finally, as the value for parameter M (specifically, the fraction

M/P—see Materials and Methods) was set for all three Affymetrix

compendia based on performance observed using the HGU95Av2

compendium, there is an implicit assumption that the optimal

parameter value is identical between platforms. We evaluated this

SAGAT
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by testing SAGAT on several data subsets from the HGU133A

and HGU133plus2.0 platforms across a range of M values. Results

suggest that a value of M that is approximately half the number of

arrays in the compendium is nearly optimal for all three

compendia (not shown). Nevertheless, more principled approaches

of effectively choosing platform-specific values for M likely exist,

and future work will include identifying these approaches.

We provide SAGAT as an R package (sagat), which is available

at https://simtk.org/home/sagat. The package includes all

necessary functions to run the method along with preprocessed

versions of the W matrix for the three Affymetrix platforms

analyzed in this work. Given its abilities to improve the prediction

of DE genes, we expect that SAGAT will be useful to microarray

researchers studying a wide range of biological phenomena.

Materials and Methods

Ethics Statement
The insulin resistance study was approved by the Stanford

University Human Subjects Committee and the National Institute

of Digestive Diseases and Kidney Disease (NIDDK) Institutional

Review Board, and all subjects gave written informed consent.

Modularity of Gene Expression Data
We downloaded all available expression data for the Affymetrix

HGU95Av2 microarray (GPL91) from the Gene Expression

Omnibus (GEO: http://www.ncbi.nlm.nih.gov/geo/) in August

2007. These data are hereafter referred to as ‘‘knowledge’’, or a

knowledge compendium. The Robust Multi-array Average (RMA)

algorithm was first used to compute averages between probes in a

probeset. Probesets were then mapped to a non-redundant list of

Entrez Gene IDs (provided by the Bioconductor R package

hgu95av2 version 1.16.0), and expression values for multiple

probesets of the same gene were averaged using an arithmetic

mean. This resulted in a matrix of 9105 genes by 4440 arrays,

which is available for download at https://simtk.org/home/sagat.

We log transformed and quantile normalized the arrays to ensure

that they were on the same scale, and we computed the gene-gene

covariance matrix across all 4440 arrays, ignoring missing values.

In order to simplify characterization of the covariance structure,

we discretized the covariance matrix such that diagonal entries

and entries whose absolute value was greater than the mean

covariance value (.25) were set to one, and all others were set to

zero. We then hierarchically biclustered the rows and columns of

the binarized covariance matrix (using a distance metric of

1{binary covariance½ � and complete linkage) to enable visuali-

zation of gene groups with significant covariances. Here, we define

an expression module as a group of genes of size §15, identified

upon hierarchical biclustering of the covariance matrix, whose

pairwise binarized covariance values are all nonzero.

To test whether the observed modularity was due to chance,

we generated 100 permuted versions of the knowledge matrix,

whereby the columns of each row were permuted independently of

the other rows. We followed the subsequent steps of calculating

covariance, discretizing, and clustering as above, and we counted

the number of diagonal covariance clusters containing §15 genes

(i.e. expression modules).

To characterize expression modularity with respect to differen-

tially expressed (DE) or non-DE genes, we coupled the

HGU95Av2 compendium with a human prostate cancer micro-

array dataset [38]. Beginning with the clustered, binarized

covariance matrix of Figure 1B, we generated five 1000-gene

covariance matrices by randomly subsetting the full matrix. In

each one, we zeroed all covariance values in off-diagonal clusters

and those in diagonal clusters with fewer than five genes (in the

1000-gene matrix, we relax the cutoff for expression modules to

five genes). We calculated the mean number of genes per module

in the remaining covariance modules across the five matrices and

used this for simulating new compendia (details below). Using the

prostate cancer dataset, we identified DE genes as those having a

limma t-statistic with FDR ƒ:05 (calculated with the limma R

package version 2.8.1). We split each of the five covariance

matrices above into DE or non-DE subsets, and we calculated the

mean percentages of genes in covariance modules for each. These

values were also used for simulating compendia (below).

Singular Value Decomposition (SVD) of Gene Expression
Data

An overview of the SVD procedure is illustrated in Figure 7A. In

equation form, SVD transforms an N|P (genes6arrays) knowl-

edge matrix X into the product of three matrices U, S, and V:

X~U|S|VT ð1Þ

where | and T represent matrix multiplication and transposition,

respectively. As detailed in [22], the dimensions of U, S, and VT are

genes6eigenarrays, eigenarrays6eigengenes, and eigengenes6ar-

rays, respectively. We follow the notation used in [59] and treat the

dimensions of the product SVT as ‘‘scaled eigengenes’’6arrays. As

SVD requires complete data, we either exclude arrays of the

knowledge matrix with missing values (if fewer than 10% of the total

number of arrays are incomplete) or impute missing values using the

K-nearest neighbor algorithm implemented in the impute R package

(version 1.6.0) [24]. We center and scale the rows of the complete

data matrix and run the svd R function.

To confirm the validity of an eigengene theory of gene expre-

ssion, we first ran SVD on the HGU95Av2 knowledge matrix with

missing values imputed. We then identified enriched Biological

Process Gene Ontology terms for each eigengene by applying the

Kolmogorov-Smirnov statistic (implemented in the topGO R

package version 1.2.1). Specifically, within each eigengene, all

9105 genes were ranked (in descending order) by the magnitudes

of their weights (determined from the appropriate column of U).

GO terms significantly enriched at the top of each ordered list

were then identified using the getSigGroups R function.

SAGAT—SVD Augmented Gene Expression Analysis Tool
SVD constructs a linear relationship between genes and

eigengenes such that each gene’s expression can be formulated

as a linear combination of the eigengene expressions (Figure 7B).

We can explicitly represent this in equation form by approximat-

ing (1) as follows:

X&W|E ð2Þ

where W is simply a matrix containing the first M columns of U (M

most significant eigenarrays), and E is the product of the first M

rows of matrix S with VT . Intuitively, E represents the knowledge

matrix X transformed from array space into eigenarray space, and

W provides the map between genes and scaled eigengenes. Given

a novel dataset D with m replicates (referred to as ‘‘data’’), we

obtain data-specific eigengene expressions by solving the following

approximation for ED:

D&W|ED ð3Þ

SAGAT
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where we use W from (2), and ED represents dataset D
transformed into eigengene space. We obtain a mathematically

rigorous solution to (3) by premultiplying both sides by the

transpose of W. This is possible due to the orthogonality properties

of SVD and is equivalent to a projection using the pseudoinverse

of W. Such a projection gives the optimal (in the least squares

sense) approximation of dataset D in terms of the knowledge set X.

We note that pseudoinverse projection has previously been

successfully used in other areas of microarray analysis, particularly

with respect to noise reduction in data [29,30,60]. Knowledge of

ED (and D) allows us to calculate a mean log expression ratio for

each gene gk (�eegk
) and a log expression ratio sample variance for

each eigengene (~ss2
hi

) (Figure 7C).

To perform hypothesis tests for differential expression, we

created a probabilistic model for each gene’s mean log expression

ratio �eegk
. The properties of SVD allow us to approximate this

quantity in the following manner:

�eegk
&mgk

z
XM
i~1

wgk ,hi
|�~ee~eehi

� �
ð4Þ

where & implies ‘‘approximately equal to’’, | represents scalar

multiplication, mgk
represents the unknown true mean log

expression ratio of gene gk, M is the number of eigengenes used

to reconstitute the gene expressions, the weights wgk ,hi

n o
come

from W, and the �~ee~eehi
’s are mean log ratios for mean-centered

eigengenes (assumed to be normally distributed):

�~ee~eehi
*N 0,

s2
hi

m

 !
ð5Þ

where * implies ‘‘distributed as’’, N(:) specifies a normally

distributed random variable, and s2
hi

represents the population

expression variance for eigengene hi. Thus, the �eegk
’s acquire the

following distribution:

�eegk
*N mgk

,

PM
i~1

w2
gk ,hi

s2
hi

m

0
BBB@

1
CCCA ð6Þ

By using the empirical Bayes variance estimators ~ss2
hi

(calculated

using the limma R package (version 2.8.1) [39]) in place of the

unknown s2
hi
’s, we arrive at the test-statistic t̂tgk

for gene gk,

analogous to the one sample t-statistic:

t̂tgk
~

�eegkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i~1

w2
gk ,hi

~ss2
hi

m

vuuut
ð7Þ

This ‘‘SAGAT score’’ borrows information regarding expres-

sion variability for each gene from covarying genes via their shared

eigengenes. Though the statistical model used to derive this metric

assumes normally distributed eigengene log expression ratios, it

will still provide quantitatively useful scores when this assumption

is not met. In the case when m~1, the ~ss2
hi
’s are undefined and a

slight modification is required. We discovered that the following

form of the SAGAT score gave performance consistent with that

achieved on datasets with m greater than 1:

t̂tgk
~

�eegkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i~1

w2
gk ,hi

Dehi
D

m

vuuut
ð8Þ

where ehi
is the single log ratio for eigengene i calculated by

transforming the data into eigengene space and D:D implies absolute

value.

Figure 7. Overview of SAGAT method. (A) Schematic of SVD
applied to a matrix of microarray knowledge. The dimensions of matrix
SVT are ‘‘scaled eigengenes’’ by arrays. The weight matrix W,
consisting of the first M columns of U, is used in subsequent steps.
(B) Graphical depiction of SVD model, whereby each gene’s expression
is a weighted combination of underlying eigengene expressions with
weights given by W. (C) SAGAT transforms a dataset of interest into
eigengene space by premultiplying the data matrix by the transpose of
the weight matrix W. Both the original and transformed data matrices
are subsequently used to calculate the SAGAT statistic (in the forms of

�eegk

� �
and ~ss2

hi

n o
, respectively).

doi:10.1371/journal.pcbi.1000718.g007
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In (2), (4), (6), (7), and (8) above, the correct value for M is

unknown, so we treat it as a parameter to be learned from data.

Details of the learning procedure for simulated and highly

replicated real data are found below in the corresponding sections.

Simulation Study
We simulated 1000-gene compendia of microarray knowledge

by generating 1000 multivariate normal random variables (using

the mvrnorm function in the R MASS package version 7.2–48).

The mean vector used for the simulation was derived from sample

means of 1000 random genes from the HGU95Av2 compendium;

the covariance matrix contained all zeros except in positions

needed to create the desired modularity structures (Figure 2). In

these positions, we used a covariance value of 4, which was chosen

to be large enough to generate knowledge compendia that led to

noticeable differences in SAGAT performance. We simulated

1000-gene microarray data with numbers of replicates ranging

from 1–15 using the procedure listed in [19], parameterized with

values derived from the prostate cancer dataset. Each dataset was

engineered to contain 100 DE genes.

We ran SVD on each simulated compendium and used the

resultant W matrix to test SAGAT on all combinations of data and

knowledge. To estimate M, we evaluated SAGAT performance as

a function of varying M across a range of simulated data (1–15

replicates) and knowledge compendia (all configurations between

Figures 2A and B). We chose a value of M that gave optimal

performance across all tested configurations; this value was used

for all subsequent tests on simulated data. We compared the results

of these tests (in the form of ROC AUC and TPR at a fixed FPR

of .05) to that achieved by fold change to determine the range of

data/knowledge configurations in which SAGAT outperformed

fold change.

Highly Replicated Real Datasets
We evaluated SAGAT’s potential to improve DE gene

prediction on real data by testing the method on three highly

replicated datasets. This approach is similar to that used by [11],

except that we choose area under the ROC curve and true positive

rate as our evaluation metrics. The first dataset, listed above,

measures differences in expression between prostate cancer tissue

and matched non-cancer prostate [38]. This dataset measures

expression of 9105 genes (identified by mapping probe names to

Entrez Gene IDs as above) across 47 pairs of samples (‘‘replicates’’:

as Affymetrix arrays measure one RNA sample at a time, one

experimental replicate is equivalent to two arrays). The second

dataset compares breast cancer tissue before and after letrozole

treatment [61]. These data were collected across 58 pairs of

samples on the HGU133A Affymetrix platform, which measures

expression of 13410 Entrez Genes. The final dataset measures

expression differences between colorectal cancer tissue and

matched non-cancer tissue [62]. This dataset was generated for

32 pairs of samples on the HGU133plus2.0 Affymetrix platform,

which encompasses 20099 Entrez Genes. For each dataset we

determined truly DE genes by calculating either mean fold

changes or limma t statistics across all replicates and counting genes

with the largest scores (irrespective of sign) as DE. The number of

DE genes in each case was set to the number of genes whose t-

statistic was significant at a .05 FDR cutoff. We performed all

analyses using the limma R package (version 2.8.1).

To obtain knowledge for each dataset, we downloaded all

publicly available microarray datasets from GEO (minus the

highly replicated datasets listed above) for each of the correspond-

ing Affymetrix platforms. As mentioned above, the HGU95Av2

compendium contained 4440 arrays, while the HGU133A

(GPL96) and HGU133plus2.0 (GPL570) compendia consisted of

14476 and 12217 arrays, respectively (as of March 2008). For each

knowledge source, we either imputed missing data (HGU95Av2)

or excluded incomplete arrays (HGU133A, HGU133plus2.0) to

arrive at the number of arrays listed above. As with the above

datasets, we mapped probe names of each knowledge compendi-

um to the corresponding Entrez Genes. We ran SVD as detailed

above on each knowledge matrix, generating the matrices W0
GPL91,

W0
GPL96, and W0

GPL570, each containing the maximal number of

eigengenes.

We evaluated SAGAT on its ability to identify DE genes from

subsets of each dataset that best match the truly DE genes

discovered using all replicates. For each dataset, we generated the

maximal number of non-overlapping subsets of size 1, 2, 5, and 15

(14 for Letrozole treatment) replicates. We ran SAGAT on each

data subset with the appropriate W matrix (defined below),

calculated fold changes and limma t-statistics for comparison, and

computed the ROC AUCs and TPRs evaluated at FPR = .05 for

all three metrics with respect to the truly DE genes. We used the R

package ROCR (version 1.0–2) [63] for AUC and TPR

calculations.

To determine the optimal number of eigengenes (M parameter)

to use in the W matrices for each dataset, we tested all possible

numbers of eigengenes from 5 to 4400 (in multiples of 5) on several

subsets of the Prostate cancer dataset. The number of eigengenes

that gave the best performance overall was used as the value for

MGPL91, and the values for MGPL96 and MGPL570 were set such

that they yielded an identical fraction of M/P, where P is the total

number of arrays. From these values of M we subset the matrices

W0
GPL91, W0

GPL96, and W0
GPL570 by only including the first M

columns of each to form WGPL91, WGPL96, and WGPL570,

respectively. We used these modified matrices in the SAGAT

analysis described above.

We also characterized SAGAT performance in terms of the

effective number of arrays added. For each of the highly replicated

datasets, we calculated ROC AUCs of the fold change metric

applied to all non-overlapping replicate subsets ranging in size

from 1 to the total number of replicates. These AUCs enabled us

to fit a ‘‘standard curve’’ for each dataset, from which we could

interpolate the mean number of arrays gained by using SAGAT

given initial numbers of 2, 4, 10, and 30 (28 for Letrozole dataset)

arrays [equivalent to 1, 2, 5, and 15 (14) replicates, respectively].

Comparison to related method
We compared SAGAT performance to that of the GEO

method, which was implemented as described in [11] using both

the standard method and ‘‘voting’’ scheme. The comparison was

made as above on subsets of the prostate cancer dataset, using the

HGU95Av2 compendium as knowledge. We also evaluated the

effect of smaller compendium sizes on SAGAT performance by

taking random subsets of 100 to 4000 arrays (10 subsets per size) of

the HGU95Av2 compendium and calculating the mean AUC

improvement over fold change across all subsets of the prostate

cancer dataset.

Insulin Resistance Dataset
We applied SAGAT to an unpublished biological dataset

investigating human insulin resistance. Briefly, 33 moderately

obese but otherwise healthy female patients were tested for insulin

resistance using a modified insulin suppression test [64]. RNA was

isolated from the adipose tissue of the 12 most and 12 least insulin

resistant patients and hybridized to three different microarray

platforms: Affymetrix HGU133plus2.0, Agilent G4112A, and

Illumina HumanRef-8 v2. The data from the Affymetrix platform

SAGAT
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were normalized using a bias correction algorithm [65]; data from

the other two platforms were normalized using default algorithms

accompanying the respective feature extraction programs. Raw

data for each of the three platforms are available for download as

Datasets S1,S2,S3.

We first used the limma t-statistic to identify DE genes using the

data from each platform individually. To utilize data from all three

platforms simultaneously, we applied the method of Rank

Products to lists of genes from each platform ranked either by

fold change or SAGAT score (in both cases separating up and

downregulated genes).

Predicted DE genes were validated by quantitative RT-PCR

experiments. 200ng of total adipose tissue RNA was amplified

using the Ambion MessageAmp II aRNA Amplification Kit (cat

#AM1751) according to manufacturer’s instructions. 1ug of

amplified product was then used for quantitative PCR analysis using

Taqman primer/probe sets for ACTG2 (Entrez Gene ID: 72),

CSN1S1, FOSB, SELE, FAM150B (285016), PMP2, ATP1A2,

CXCR4, ELOVL6, FASN, SRGN, EPHX2 (2053), F2 (2147),

CEBPD (1052), and LIPG (9388) as well as Human b-actin

endogenous control. Primer/probe sets were purchased from Applied

Biosystems (Foster City, CA). Amplification was carried out in

triplicate on an ABI Prism 7900HT at 500C for 2 min and 950C for

10 min followed by 40 cycles of 950C for 15 s and 600C for 1 min. A

threshold cycle (CT value) was obtained from each amplification

curve and a DCT value was first calculated by subtracting the CT

value for b-actin from the CT value for each sample. A DDCT value

was then calculated by subtracting the DCT value of a single insulin-

sensitive subject (control). Fold-changes compared with the control

were then determined by raising 2 to the DDCT power.

We tested the significance of each gene’s qPCR-derived

expression differences using a one-sided Wilcoxon rank-sum test

(two-sided test was used for negative controls). Genes with p-values

smaller than a .05 threshold were considered significant.

Supporting Information

Figure S1 Comparison of SAGAT and the GEO method. Each

panel displays performance on the prostate cancer dataset. (A) The

fold change metric was used to rank genes for the gold standard.

SAGAT and the GEO method (both with HGU95Av2 compen-

dium) and fold change were run on all combinations of 1, 2, 5, and

15 replicate subsets and the performance improvement of SAGAT

and GEO over fold change displayed. (B) Identical conditions as

(A), with the limma t metric used to rank gold standard genes. (C)

and (D) Similar plots comparing SAGAT and the GEO voting

method, which requires two or more replicates to score genes. Fold

change and limma t metrics were used to rank gold standard genes

in (C) and (D), respectively. In all cases, SAGAT performs as well

or better than the GEO method.

Found at: doi:10.1371/journal.pcbi.1000718.s001 (1.72 MB TIF)

Figure S2 Effect of compendium size on SAGAT performance.

SAGAT was run on all subsets of the prostate cancer dataset using

randomly subset versions of the HGU95Av2 compendium ranging

in size from 100 to 4400 arrays. The mean AUC improvement

over the fold change method is displayed on the y-axis. Each

boxplot shows the results of using 10 random compendium subsets

of a given size. Though the rate of performance improvement

lessens as the number of arrays in the compendium increases,

extrapolation suggests that the addition of more arrays will lead to

further improvement.

Found at: doi:10.1371/journal.pcbi.1000718.s002 (7.56 MB TIF)

Figure S3 SAGAT true positive rate for four simulated data-

knowledge configurations. In each panel, both SAGAT and the

fold change metric were applied to 200 simulated datasets

consisting of either one [(A) and (B)] or 15 replicates [(C) and

(D)]; the true positive rate (TPR) improvement (evaluated at a

fixed false positive rate of .05) achieved by SAGAT over fold

change is displayed for each. In (A) and (C), a simulated knowledge

compendium matching Figure 2A was used by SAGAT; in (B) and

(D) the simulated knowledge corresponds to Figure 2B. SAGAT

performance improvements measured by TPR closely resemble

those measured by AUC (displayed in Figure 3).

Found at: doi:10.1371/journal.pcbi.1000718.s003 (1.09 MB TIF)

Figure S4 SAGAT, fold change, and limma t TPR performance

on subsets of three highly replicated human datasets. In each panel,

the gold standard was defined as the top 1122, 588, and 6002

highest scoring genes for the prostate cancer, letrozole treatment,

and colorectal cancer datasets, respectively. (A) The fold change

metric was used to rank genes for the gold standard. SAGAT (with

HGU95Av2 compendium), fold change, and limma t were run on

all combinations of n = 1, 2, 5, and 15 replicate subsets and the

performance improvement (measured by TPR evaluated at a fixed

false positive rate of .05) of SAGAT and limma t over fold change

displayed. Limma t requires two or more replicates to score genes.

(B) Identical conditions as (A), with the limma t metric used to rank

gold standard genes. (C) and (D) Similar plots for the letrozole

treatment (HGU133A compendium) and colorectal cancer

(HGU133plus2.0 compendium) datasets, respectively. Fold change

was used to rank gold standard genes in these panels. SAGAT

performance improvements measured by TPR closely resemble

those measured by AUC (displayed in Figure 5).

Found at: doi:10.1371/journal.pcbi.1000718.s004 (1.55 MB TIF)

Dataset S1 Affymetrix Insulin Resistance data table.

Found at: doi:10.1371/journal.pcbi.1000718.s005 (6.12 MB

TXT)

Dataset S2 Agilent Insulin Resistance data table.

Found at: doi:10.1371/journal.pcbi.1000718.s006 (8.30 MB ZIP)

Dataset S3 Illumina Insulin Resistance data table.

Found at: doi:10.1371/journal.pcbi.1000718.s007 (3.04 MB

TXT)

Acknowledgments

We thank David Heckerman for useful suggestions and comments on the

work.

Author Contributions

Conceived and designed the experiments: BJDJ TM SWC MCC GR PST

RBA. Performed the experiments: BJDJ AD TM SWC MCC. Analyzed

the data: BJDJ. Contributed reagents/materials/analysis tools: GR PST.

Wrote the paper: BJDJ RBA.

References

1. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene

expression patterns with a complementary dna microarray. Science 270: 467–70.

2. Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, et al. (2002) Large-scale analysis
of the human and mouse transcriptomes. Proc Natl Acad Sci U S A 99: 4465–70.

3. IGC (2008) expo (expression project for oncology). URL http://www.intgen.org/

expo.

4. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: Ncbi gene
expression and hybridization array data repository. Nucleic Acids Res 30:

207–10.

5. Ein-Dor L, Zuk O, Domany E (2006) Thousands of samples are needed to

generate a robust gene list for predicting outcome in cancer. Proc Natl Acad

Sci U S A 103: 5923–8.

SAGAT

PLoS Computational Biology | www.ploscompbiol.org 14 March 2010 | Volume 6 | Issue 3 | e1000718



6. Frantz S (2005) An array of problems. Nat Rev Drug Discov 4: 362–3.

7. Miklos GL, Maleszka R (2004) Microarray reality checks in the context of a
complex disease. Nat Biotechnol 22: 615–21.

8. Tan PK, Downey TJ, Spitznagel JEL, Xu P, Fu D, et al. (2003) Evaluation of

gene expression measurements from commercial microarray platforms. Nucleic
Acids Res 31: 5676–84.

9. Aris VM, Cody MJ, Cheng J, Dermody JJ, Soteropoulos P, et al. (2004) Noise
filtering and nonparametric analysis of microarray data underscores discrimi-

nating markers of oral, prostate, lung, ovarian and breast cancer. BMC

Bioinformatics 5: 185.
10. Wille A, Gruissem W, Buhlmann P, Hennig L (2007) Eve (external variance

estimation) increases statistical power for detecting differentially expressed genes.
Plant J 52: 561–569.

11. Kim R, Park P (2004) Improving identification of differentially expressed genes
in microarray studies using information from public databases. Genome Biology

5.

12. Ihmels J, Bergmann S, Barkai N (2004) Defining transcription modules using
large-scale gene expression data. Bioinformatics 20: 1993–2003.

13. Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, et al. (2002) Revealing
modular organization in the yeast transcriptional network. Nat Genet 31: 370–7.

14. Kloster M, Tang C, Wingreen NS (2005) Finding regulatory modules through

large-scale gene-expression data analysis. Bioinformatics 21: 1172–9.
15. Li H, Sun Y, Zhan M (2007) The discovery of transcriptional modules by a two-

stage matrix decomposition approach. Bioinformatics 23: 473–9.
16. Segal E, Friedman N, Koller D, Regev A (2004) A module map showing

conditional activity of expression modules in cancer. Nat Genet 36: 1090–8.
17. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, et al. (2003) Module

networks: identifying regulatory modules and their condition-specific regulators

from gene expression data. Nat Genet 34: 166–76.
18. Yan X, Mehan MR, Huang Y, Waterman MS, Yu PS, et al. (2007) A graph-

based approach to systematically reconstruct human transcriptional regulatory
modules. Bioinformatics 23: i577–86.

19. Daigle JBJ, Altman RB (2008) M-bison: microarray-based integration of data

sources using networks. BMC Bioinformatics 9: 214.
20. Morrison JL, Breitling R, Higham DJ, Gilbert DR (2005) Generank: using

search engine technology for the analysis of microarray experiments. BMC
Bioinformatics 6: 233.

21. Wei Z, Li H (2007) A markov random field model for network-based analysis of
genomic data. Bioinformatics 23: 1537–44.

22. Alter O, Brown PO, Botstein D (2000) Singular value decomposition for

genome-wide expression data processing and modeling. Proc Natl Acad Sci U S A
97: 10101–6.

23. Raychaudhuri S, Stuart JM, Altman RB (2000) Principal components analysis to
summarize microarray experiments: application to sporulation time series. Pac

Symp Biocomput. pp 455–66.

24. Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, et al. (2001) Missing
value estimation methods for dna microarrays. Bioinformatics 17: 520–5.

25. Alter O, Brown PO, Botstein D (2003) Generalized singular value decompo-
sition for comparative analysis of genome-scale expression data sets of two

different organisms. Proc Natl Acad Sci U S A 100: 3351–6.
26. Omberg L, Golub GH, Alter O (2007) A tensor higher-order singular value

decomposition for integrative analysis of dna microarray data from different

studies. Proc Natl Acad Sci U S A 104: 18371–6.
27. Horvath S, Dong J (2008) Geometric interpretation of gene coexpression

network analysis. PLoS Comput Biol 4: e1000117.
28. Hibbs MA, Hess DC, Myers CL, Huttenhower C, Li K, et al. (2007) Exploring

the functional landscape of gene expression: directed search of large microarray

compendia. Bioinformatics 23: 2692–2699.
29. Alter O, Golub GH (2004) Integrative analysis of genome-scale data by using

pseudoinverse projection predicts novel correlation between dna replication and
rna transcription. Proc Natl Acad Sci U S A 101: 16577–82.

30. Daily JP, Scanfeld D, Pochet N, Le Roch K, Plouffe D, et al. (2007) Distinct

physiological states of plasmodium falciparum in malaria-infected patients.
Nature 450: 1091–5.

31. Olefsky J, Reaven GM, Farquhar JW (1974) Effects of weight reduction on
obesity. studies of lipid and carbohydrate metabolism in normal and

hyperlipoproteinemic subjects. J Clin Invest 53: 64–76.
32. Rabinowitz D, Zierler KL (1962) Forearm metabolism in obesity and its

response to intra-arterial insulin. characterization of insulin resistance and

evidence for adaptive hyperinsulinism. J Clin Invest 41: 2173–2181.
33. McLaughlin T, Abbasi F, Cheal K, Chu J, Lamendola C, et al. (2003) Use of

metabolic markers to identify overweight individuals who are insulin resistant.
Ann Intern Med 139: 802–809.

34. Ferrannini E, Natali A, Bell P, Cavallo-Perin P, Lalic N, et al. (1997) Insulin

resistance and hypersecretion in obesity. european group for the study of insulin
resistance (egir). J Clin Invest 100: 1166–1173.

35. McLaughlin T, Deng A, Gonzales O, Aillaud M, Yee G, et al. (2008) Insulin
resistance is associated with a modest increase in inflammation in subcutaneous

adipose tissue of moderately obese women. Diabetologia 51: 2303–2308.
36. McLaughlin T, Abbasi F, Lamendola C, Reaven G (2007) Heterogeneity in the

prevalence of risk factors for cardiovascular disease and type 2 diabetes mellitus

in obese individuals: effect of differences in insulin sensitivity. Arch Intern Med
167: 642–648.

37. McLaughlin T, Sherman A, Tsao P, Gonzalez O, Yee G, et al. (2007) Enhanced

proportion of small adipose cells in insulin-resistant vs insulin-sensitive obese

individuals implicates impaired adipogenesis. Diabetologia 50: 1707–1715.

38. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, et al. (2002) Gene

expression correlates of clinical prostate cancer behavior. Cancer Cell 1: 203–9.

39. Smyth GK (2004) Linear models and empirical bayes methods for assessing

differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:

Article3.

40. Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G (2003)

Adiponectin expression from human adipose tissue: relation to obesity, insulin

resistance, and tumor necrosis factor-alpha expression. Diabetes 52: 1779–1785.

41. Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a

simple, yet powerful, new method to detect differentially regulated genes in

replicated microarray experiments. FEBS Lett 573: 83–92.

42. Dudoit S, Shaffer J, Boldrick J (2003) Multiple hypothesis testing in microarray

experiments. Statistical Science 18: 71–103.

43. Romagnani P, Lasagni L, Annunziato F, Serio M, Romagnani S (2004) Cxc

chemokines: the regulatory link between inflammation and angiogenesis. Trends

Immunol 25: 201–209.

44. Curnow SJ, Wloka K, Faint JM, Amft N, Cheung CMG, et al. (2004) Topical

glucocorticoid therapy directly induces up-regulation of functional cxcr4 on

primed t lymphocytes in the aqueous humor of patients with uveitis. J Immunol

172: 7154–7161.

45. Maglott D, Ostell J, Pruitt KD, Tatusova T (2007) Entrez gene: gene-centered

information at ncbi. Nucleic Acids Res 35: D26–31.

46. Thomas DP, Sunters A, Gentry A, Grigoriadis AE (2000) Inhibition of

chondrocyte differentiation in vitro by constitutive and inducible overexpression

of the c-fos proto-oncogene. J Cell Sci 113 (Pt 3): 439–450.

47. Diaz Sanchez-Bustamante C, Kelm JM, Egermann M, Djonov V,

Fussenegger M (2008) Ectopic expression of delta fbj murine osteosarcoma

viral oncogene homolog b mediates transdifferentiation of adipose-like spheroids

into osteo-like microtissues. Tissue Eng Part A 14: 1377–1394.

48. Van Epps-Fung M, Williford J, Wells A, Hardy RW (1997) Fatty acid-induced

insulin resistance in adipocytes. Endocrinology 138: 4338–4345.

49. Vessby B, Gustafsson IB, Tengblad S, Boberg M, Andersson A (2002)

Desaturation and elongation of fatty acids and insulin action. Ann N Y Acad

Sci 967: 183–195.

50. Matsuzaka T, Shimano H, Yahagi N, Kato T, Atsumi A, et al. (2007) Crucial

role of a long-chain fatty acid elongase, elovl6, in obesity-induced insulin

resistance. Nat Med 13: 1193–1202.

51. Menendez JA, Vazquez-Martin A, Ortega FJ, Fernandez-Real JM (2009) Fatty

acid synthase: association with insulin resistance, type 2 diabetes, and cancer.

Clin Chem 55: 425–438.

52. Lee YH, Tokraks S, Pratley RE, Bogardus C, Permana PA (2003) Identification

of differentially expressed genes in skeletal muscle of non-diabetic insulin-

resistant and insulin-sensitive pima indians by differential display pcr.

Diabetologia 46: 1567–1575.

53. Troyanskaya O, Garber M, Brown P, Botstein D, Altman R (2002)

Nonparametric methods for identifying differentially expressed genes in

microarray data. Bioinformatics 18: 1454–1461.

54. Chen R, Morgan AA, Dudley J, Deshpande T, Li L, et al. (2008) Fitsnps: highly

differentially expressed genes are more likely to have variants associated with

disease. Genome Biol 9: R170.

55. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, et al. (2007) The human

disease network. Proc Natl Acad Sci U S A 104: 8685–8690.

56. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays

applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:

5116–21.

57. Ihmels J, Levy R, Barkai N (2004) Principles of transcriptional control in the

metabolic network of saccharomyces cerevisiae. Nat Biotechnol 22: 86–92.

58. Alter O (2007) Genomic signal processing: from matrix algebra to genetic

networks. Methods Mol Biol 377: 17–60.

59. Berrar DP, Dubitzky W, Granzow M (2003) A practical approach to microarray

data analysis. BostonMA: Kluwer Academic Publishers.

60. Tamayo P, Scanfeld D, Ebert BL, Gillette MA, Roberts CWM, et al. (2007)

Metagene projection for cross-platform, cross-species characterization of global

transcriptional states. Proc Natl Acad Sci U S A 104: 5959–64.

61. Miller WR, Larionov AA, Renshaw L, Anderson TJ, White S, et al. (2007)

Changes in breast cancer transcriptional profiles after treatment with the

aromatase inhibitor, letrozole. Pharmacogenet Genomics 17: 813–26.

62. Sabates-Bellver J, Van der Flier LG, de Palo M, Cattaneo E, Maake C, et al.

(2007) Transcriptome profile of human colorectal adenomas. Mol Cancer Res 5:

1263–75.

63. Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) Rocr: visualizing

classifier performance in r. Bioinformatics 21: 3940–1.

64. Greenfield MS, Doberne L, Kraemer F, Tobey T, Reaven G (1981) Assessment

of insulin resistance with the insulin suppression test and the euglycemic clamp.

Diabetes 30: 387–92.

65. Eklund AC, Szallasi Z (2008) Correction of technical bias in clinical microarray

data improves concordance with known biological information. Genome Biol 9:

R26.

SAGAT

PLoS Computational Biology | www.ploscompbiol.org 15 March 2010 | Volume 6 | Issue 3 | e1000718


