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Virus-host interactions: new insights from the small RNA world
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Abstract

RNA silencing has a known role in the antiviral responses of plants and insects. Recent evidence,
including the finding that the Tat protein of human immunodeficiency virus (HIV) can suppress
the host’s RNA-silencing pathway and may thus counteract host antiviral RNAs, suggests that
RNA-silencing pathways could also have key roles in mammalian virus-host interactions.
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Over the course of evolution viruses have developed highly

sophisticated mechanisms for interacting with host cells.

Such interactions may involve parasitizing the cellular

machinery to enhance the production of progeny viruses;

budding of virions of the human immunodeficiency virus

(HIV), for example, makes use of the endosomal sorting

complexes (ESCRT complexes) that normally regulate the

formation of the multivesicular bodies of the endosomal

pathway [1]. In addition, many viruses have mechanisms for

disrupting the immune response to viral infection. An

example is the inhibition by the human cytomegalovirus

proteins US2 and US11 of the presentation of antigens by

host MHC class I molecules; this prevents the recognition

and destruction of virus-infected cells by the host immune

system [2]. New research is now beginning to show that the

complex interaction between viruses and host cells also

involves RNA-silencing pathways.

RNA silencing in animal cells is carried out by microRNAs

(miRNAs) and small interfering RNAs (siRNAs) of around

22 nucleotides, which specifically hybridize with target

RNAs to inhibit their expression. Perfect sequence comple-

mentarity between siRNAs and their target sequences results

in the cleavage of target mRNAs by the RNA-induced silenc-

ing complex (RISC), whereas imperfect matches, as typically

observed between miRNAs and their targets, result in

repression of translation [3]. siRNAs are generated from

long double-stranded (ds) RNAs by the Dicer RNase III

enzyme [4]. Maturation of miRNAs first requires the nuclear

processing of their precursor transcripts by the Microproces-

sor complex, which contains Drosha RNase III and a

dsRNA-binding protein, Pasha [3-5]. Dicer and another

dsRNA-binding protein, TRBP, are then required for the

final maturation of miRNAs [3-7].

RNA silencing is critical in plant and animal development

[8,9], and is important for protection against viruses in

plants and insects [9,10], where it is induced by the recogni-

tion of viral dsRNA. It has been unclear whether RNA silenc-

ing has a role in immunity in vertebrates, however, even

though vertebrates do have other sophisticated innate mech-

anisms for responding to viral dsRNA, such as the protein-

kinase-R-dependent antiviral response and the Toll-like

receptor system [11]. Recent studies now show that verte-

brate viruses encode products that interfere with the RNA-

silencing machinery [10], suggesting that RNA silencing may

indeed be important for antiviral responses in vertebrates.

RNA silencing in response to virus infection could be due to

miRNAs encoded by either the virus or the host. Several virus-

encoded miRNAs have now been found, but their relevance to

infection is in most cases unclear. In the first successful search

for virus-derived small RNAs, Pfeffer and co-workers

[12] identified five miRNAs encoded by the herpesvirus



Epstein-Barr virus (EBV), one of which - miR-BART2 - targets

for cleavage the mRNA for EBV DNA polymerase (BALF5).

More recently, computational prediction combined with

cloning has identified additional miRNAs from other her-

pesviruses, although their functions remain unknown [13-

15]. Interestingly, an miRNA has been identified in the

papovavirus simian virus 40 (SV40); it is derived from the

late transcript and targets the transcript of the large T

antigen for cleavage [16]. This does not affect viral replica-

tion, at least in vitro, but may function to limit the expres-

sion of large T antigen. Abrogating this miRNA-mediated

suppression of T antigen increased the recognition of SV40-

infected cells by antigen-specific cytotoxic T cells [16]. The

viral miRNA may thus reduce the susceptibility of the virus

to the host immune system.

Viral small RNAs 
Bennasser and co-workers [17] now report that HIV triggers

the RNA-silencing system to produce a potentially suppres-

sive small RNA, and that the HIV Tat protein interferes

directly with the silencing system to produce a general inhi-

bition of silencing function. During the course of its replica-

tion cycle, HIV generates multiple different spliced RNA

transcripts, many with dsRNA elements that might trigger

an RNA-silencing response within the infected cell. Such

transcripts include the transactivation response (TAR)

element, which is crucial for viral transcription, and the Rev-

response element (RRE), which promotes the expression of

genes from unspliced or partially spliced transcripts [18]. To

determine whether any of these elements are processed by

the host cell’s RNA-silencing machinery so as to limit HIV

infection, Bennasser et al. [17] used an algorithm to scan the

HIV genome for perfect 19-bp hairpin RNA sequences that

could potentially be processed by Dicer. They found that one

such region within the env gene, which encodes the viral

envelope glycoprotein, is indeed expressed during HIV infec-

tion as a 21-nucleotide RNA, a hallmark of Dicer-processed

products. Heterologous overexpression of this small RNA,

which Bennasser et al. call vsiRNA1, was able to knock down

expression of the env gene in cells transfected with HIV

DNA, but only modestly inhibited the production of infec-

tious HIV particles.

Key questions regarding the function of HIV vsiRNA1

remain to be addressed. How does its natural expression

level during HIV infection compare with the level required to

inhibit the virus in the overexpression experiments? Is it

generated from a larger precursor in a Drosha-dependent

fashion, as are endogenous miRNAs, or by some other

pathway? As described earlier, some viruses utilize the host’s

RNA-silencing machinery to generate viral miRNAs that reg-

ulate host and viral gene expression during the course of viral

replication. Could the HIV vsiRNA1 provide a similar benefit?

One clear way to address its function might be to mutate

residues that affect the hairpin formation but do not affect

the coding sequence of the env gene, and then determine the

effect of these mutations on the virus. It is indeed possible

that this small viral RNA plays no role in infection at all, but

is simply expressed as a by-product of the conservation of

palindromic sequence in the env gene for other reasons. As

such a palindrome is also found in the simian immunodefi-

ciency virus (SIV), it may be informative to examine the

effect of mutations to the hairpin structure on SIV replica-

tion and pathogenesis in the rhesus macaque. As we discuss

below, Bennasser et al. [17] also found that HIV could sup-

press the host cell’s RNA-silencing machinery. Given this

and the other findings, it seems unlikely that the small RNA

provides significant benefit to the virus. 

Viral interference with host RNA silencing
HIV is not alone in affecting RNA silencing: a number of

plant and animal viruses have recently been shown to sup-

press RNA-silencing pathways. The protein HC-Pro, encoded

by the tobacco etch potyvirus, was the first viral protein iden-

tified as suppressing RNA silencing, but the mechanism of

suppression remains unclear [9]. The tomato bushy stunt

virus (TBSV) protein p19 binds both siRNA and miRNA

duplexes and thus presumably inhibits the assembly of the

RISC effector complex [10]. The vaccinia virus protein E3L,

influenza protein NS1 and the Nodamura virus B2 protein are

proposed to interfere with RNA silencing by sequestering

dsRNAs [19,20]. Viral RNA molecules may also interfere with

the RNA-silencing machinery. The adenoviral noncoding

RNA VA1 inhibits RNA silencing, possibly by blocking the

nuclear export of miRNA precursors by exportin-5 and/or the

processing of miRNAs/siRNAs by Dicer [21].

In the case of HIV, Bennasser et al. [17] noticed that short

hairpin RNAs designed to target the TAR RNA element in

the 5’ end of nascent HIV transcripts were ineffective when

the experiments were carried out in the presence of the HIV

Tat protein. Tat has long been known to play an important

role in HIV replication, by recruiting to TAR the cyclin-

dependent protein kinase Cdk9 and cyclin T1, cellular factors

essential for processive transcription [22]. Strikingly,

expression of Tat was able to inhibit RNA silencing of several

genes, indicating that it acts as a general suppressor of RNA

silencing, rather than being specific for TAR. By mutating

the Tat protein at different sites, the authors [17] were also

able to separate the ability of Tat to inhibit RNA silencing

from its ability to promote HIV transcription, indicating that

these are distinct activities. An HIV mutant encoding a Tat

variant that lacks the ability to suppress RNA silencing repli-

cates only marginally less well than wild-type HIV, but was

significantly more sensitive to inhibition by short hairpin

RNAs targeting the HIV genome. 

How does Tat function to inhibit the host RNA-silencing

machinery? RNA silencing mediated by synthetic siRNAs was

unaffected by Tat, suggesting that Tat acts at a step upstream
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of RISC assembly and function, possibly by directly suppress-

ing Dicer-mediated dsRNA processing (Figure 1). This idea is

supported by the finding that Tat was able to inhibit Dicer

cleavage of substrate RNA in vitro. Perhaps Tat interferes

with the reaction by sequestering the dsRNA substrate or by

interacting with Dicer to inhibit its activity.

As Tat acts as a general suppressor of RNA silencing and

inhibits Dicer activity, which is used by both the siRNA and

miRNA pathways, it is conceivable that the host miRNA

pathway might also be inhibited by Tat. The significance of

such inhibition is highlighted by Lecellier et al. [23], who

have shown that an miRNA expressed in human cells

restricts the replication of primate foamy virus (PFV). They

first found that expression of the TBSV silencing suppressor

p19 enhanced PFV replication fivefold. They then mapped

the region of PFV that was being targeted by RNA silencing

and found that it contained a potential target sequence for

the human miRNA miR-32. A locked nucleic acid antisense

oligonucleotide specifically designed to inhibit miR-32

enhanced PFV replication in HeLa cells, indicating that miR-

32 is indeed limiting PFV replication in human cells. Like

HIV, PFV counteracts the RNA-silencing machinery with a

virus-coded protein, Tas, which acts as a broad suppressor of

RNA silencing. The specific mechanism by which Tas sup-

presses silencing is unknown. Interestingly, Lecellier et al.

[23] propose that HIV may be targeted by several host

miRNAs (miR-29b, miR-129, and miR-188). It is possible

that these miRNAs play roles in inhibiting HIV gene expres-

sion and need to be suppressed by Tat. Further work is

needed to dissect the function of host miRNAs in the anti-

HIV response and to determine whether Tat suppresses the

biogenesis and/or function of host miRNAs.

In summary, it now appears that the RNA-silencing pathway

may indeed be important in vertebrate antiviral responses.

In turn, some viruses may employ this pathway for their own

advantage. It will be interesting to understand how viruses

balance the employment (in the case of SV40) and suppres-

sion (in the case of PFV and HIV) of the host RNA-silencing

pathway. Do other viruses that produce dsRNA molecules

avoid triggering the antiviral effects of the host RNA-silenc-

ing system? Some viruses might express general RNA-silenc-

ing suppressors, as HIV does, to counteract host defense.

For others, the dsRNA molecules are perhaps well protected

by other means to avoid exposure to the host RNA-silencing

system. Understanding this may assist in the identification

of drugs that target viral suppressors of RNA silencing. In

the case of HIV, for example, a gene therapy approach using

endogenously generated siRNAs, such as short hairpin

RNAs, to target HIV transcripts might have only limited

effects as a result of suppression by Tat. Indeed, some exper-

iments using short hairpin RNAs to target HIV have indi-

cated that the virus is able to escape their antiviral activity

[5]. Could small drugs be designed to target the ability of Tat

to suppress RNA silencing? Disruption of this activity of Tat

in the HIV genome caused only a mild phenotype in tissue

culture infection, but it will be interesting to see how an SIV

strain with an equivalent mutation fares in the rhesus

macaque model.

Are there host miRNAs that are used by viruses to enhance

their replication? This possibility is raised by the recent dis-

covery that miR-122 plays an important role in facilitating
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Figure 1
Viral suppressors of the mammalian RNA silencing pathway. The diagram
shows the pathway of RNA silencing mediated by miRNAs and siRNAs.
miRNA genes are transcribed as long transcripts in the nucleus, usually by
RNA polymerase II. These long transcripts (pri-mRNAs) with local stem-
loop structure are recognized and processed into miRNA precursors
(pre-miRNAs) of approximately 70 nucleotides by the Microprocessor
complex containing Drosha and Pasha. The highly structured pre-miRNAs
are then exported into the cytoplasm by exportin-5. In the cytoplasm,
pre-miRNAs are recognized and further processed into approximately
22-nucleotide mature miRNA duplexes by the Dicer-TRBP complex.
Dicer also generates approximately 22-nucleotide siRNA duplexes from
long dsRNAs. The miRNA or siRNA duplex is unwound during the
assembly of the RNA-induced silencing complex (RISC) and only one
strand is loaded while the other is degraded. The miRNA or siRNA in the
RISC finds and silences its target mRNAs through sequence-specific
recognition. The viral products that interfere with the pathway are
shown, and the points at which they possibly act on the pathway to inhibit
RNA silencing are indicated by barred lines. NS1, E3L, B2, and Tat are
viral proteins (see text); VA1 is a noncoding adenoviral RNA.
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hepatitis C virus replication [24]. Drugs targeting cellular

miRNAs might be less likely to promote the evolution of viral

‘escape’ mutants. Time will tell whether a better understand-

ing of the RNA-silencing system will have practical benefits

in antiviral therapy.
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