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Abstract: Simultaneous estimation of thermal properties can be challenging, especially when the
parameters are temperature-dependent. Previous research has shown that by using a complementary
experiment, temperature-dependent thermal conductivity can be estimated using a single experiment.
The objective of this study was to optimize the complementary experiments that can facilitate
the simultaneous estimation of temperature-dependent thermal conductivity and volumetric heat
capacity. A theoretical study was conducted with two experiments in a single trial with the sample
being kept in a cylindrical sample holder, which had a thin film heater in the center. The first
part of the experiment was conducted by keeping the external surface temperature at 50 ◦C for
300 s and allowing the center temperature to equilibrate with the boundary temperature. Then, the
second part of the experiment followed, where the thin film heater was supplied with electrical
power to increase the center temperate to 140 ◦C. Several heating profiles were studied to maximize
the information obtained from the complementary experiments, and the best one was the power
profile with a sinusoidal function. All four parameters of sweet potato puree temperature-dependent
thermal conductivity (0.509 to 0.629 W/mK at 25 ◦C and 140 ◦C, respectively) and volumetric heat
capacity (3.617 × 106 to 4.180 × 106 J/m3K at 25 ◦C and 140 ◦C, respectively) were estimated with
low standard errors.

Keywords: optimal complementary experiments; inverse problems; thermal properties; sensor
design; food processing

1. Introduction

Numerical simulations have played an important role in the development and opti-
mization of the food manufacturing process to minimize trials and related costs. In food
processing, computer simulations of the temperature profile of a product to determine food
safety and quality have been applied for single-phase and multiphase models [1–6]. The
process simulation requires parameters for accurate results. Moreover, the accuracy of the
parameters is critical for a robust simulation of the process. To obtain accurate parameters,
inverse problems of heat and mass transfer models have been used as a reliable and robust
tool. Several researchers have investigated the estimation of thermal properties in different
types of food thermal processes. The parameter estimation procedure and sensitivity anal-
ysis were used for thermophysical properties in bakery products [7,8], drying potato [9],
grape pomace [10], potato puree [11], and low-moisture foods [12,13]. The thermal diffu-
sivity, which is thermal conductivity over volumetric heat capacity, of food was estimated
by performing an experiment with a constant boundary temperature condition in a water
bath or in a retort thermal process [12,14]. However, in order to estimate thermal conduc-
tivity and volumetric heat capacity separately, a constant boundary temperature will not
be sufficient, and a heat flux boundary condition must be used [15,16]. The accuracy of
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process simulation can be further improved by utilizing temperature-dependent thermal
properties [11].

The use of complementary experiments has not been explored much for the esti-
mation of temperature-dependent thermal properties. Complementary experiments are
a combination of multiple experiments in a single trial, which improves the sensitivity
coefficients of the parameters. The idea is to maximize the information that can be gained
from such experiments [17]. The complementary experiment can be conducted in a single
experimental setup, and it provides savings in cost and labor while improving the results.
The correlation between parameters can be minimized to improve the confidence region
of estimated parameters [18]. McMasters et al. 2018 showed that a single analysis can be
conducted from multiple experiments to estimate the thermal conductivity and volumetric
heat capacity.

The Thermal Properties Cell (TPCell) is a device that was developed to measure
temperature-dependent thermal properties of food materials, such as puree and low-
moisture food, using sequential parameter estimation [11,15]. The parameter estimation
using the sequential estimation approach uses the Gauss-minimization method and pro-
vides more insight into the estimated parameters [19]. The special feature of TPCell is that it
can estimate not only temperature-dependent thermal conductivity, but also the volumetric
heat capacity. Due to the unique design of the heating element, it provides rapid heating
up to 140 ◦C in less than a minute with the precise evaluation of temperature-dependent
parameters [15]. A complementary design was used for the estimation of temperature-
dependent thermal parameters, and the authors were able to simultaneously estimate the
volumetric heat capacity along with the temperature-dependent thermal conductivity [20].
With regard to the previous study [20], the first part of the complementary experiment was
a constant boundary temperature up to 50 ◦C, and the second part of the complementary
experiment was to provide heat to the center of the sample through a cartridge heater up
to 140 ◦C. However, it was not possible to estimate the temperature-dependent volumetric
heat capacity due to the low sensitivity coefficient based on the temperature profile. Design
improvements are hence needed to ensure that the temperature-dependent volumetric heat
capacity can be estimated with good accuracy. Hence, the novel approach of a complemen-
tary experimental design was implemented in this study. The objective of this study was to
develop an optimal complementary experimental design to estimate the thermal proper-
ties, including temperature-dependent thermal conductivity and temperature-dependent
volumetric heat capacity, in the temperature range of 20–140 ◦C.

2. Materials and Methods
2.1. Sensor Design

The TPCell was created as a benchtop device to analyze the thermal properties of food
products. It consists of four main components: (1) Two thin film heaters, (2) a stainless-steel
base, (3) a stainless-steel sample holder, and (4) sample closure [20]. The performance of a
fast heating and cooling rate can be obtained by the design of the heater on the stainless-
steel base and copper coil around the outer sleeve, as illustrated in Figure 1. Commercially
available sweet potato puree for baby food (Gerber® 2nd foods brand, Florham Park, NJ,
USA) was chosen as a model food sample for simulations in this study. The sweet potato
puree’s moisture content was 84.1%.
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SS1—thickness of hollow stainless-steel cylinder, IH—inner heater, SS2—thickness of stainless-steel
sample holder, Sample—annular space for sample, SS3—thickness of sample holder, OH—outer
heater, R—radial distance from the center of the steel cylinder, with different dimensions:
R1 = 2.48 mm, R2 = 2.98 mm, R3 = 3.37 mm, R4 = 3.87 mm, R5 = 9.32 mm, R6 = 9.83 mm,
R7 = 10.21 mm.

2.2. Mathematical Model

The transient heat conduction in a hollow cylinder presents the system of TPCell with
the following equations:

1
r

∂

∂r

[
kar

∂T
∂r

]
= Ca

∂T
∂t

for 0 < r ≤ R1, t >0, (1)

where ka is the thermal conductivity and Ca is the volumetric heat capacity of air, and R1 is
the inner radius of the hollow cylinder

1
r

∂

∂r

[
ksr

∂T
∂r

]
= Cs

∂T
∂t

for R1 < r ≤ R2, R3 < r ≤ R4, R5< r ≤ R6, t >0, (2)

where ks is the thermal conductivity and Cs is the volumetric heat capacity of stainless steel.
R1 and R2 are the inner and outer radii of the hollow cylinder, respectively. R3 and R4 are
the inner and outer radii of the sample holder’s inside wall, respectively. R5 and R6 are the
inner and outer radii of the sample holder’s outside wall, respectively.

1
r

∂

∂r

[
khr

∂T
∂r

]
+ g0(t) = Ch

∂T
∂t

for R2< r ≤ R3, t >0, (3)

where kh is the thermal conductivity and Ch is the volumetric heat capacity of the thin film
heater. R2 and R3 are the inner and outer radii of the heater, respectively. g0 is the heat
generation term.

1
r

∂

∂r

[
k(T)r

∂T
∂r

]
= C(T)

∂T
∂t

for R4< r ≤ R5, t >0, (4)

where k(T) is the temperature-dependent thermal conductivity and C(T) is the temperature-
dependent volumetric heat capacity of the sample. R4 and R5 are the inner and outer
radii of the sample annular space, respectively. The initial temperature is calculated by
Equation (5):

T(r, 0) = T0, (5)

The boundary condition at R6 is given by Equation (6):

T(R6, t) = TBoundary (t), (6)

where TBoundary (t) is the temperature at the boundary R6.
The thermal conductivity and volumetric heat were analyzed using a linear rela-

tionship with temperature. The finite element method and COMSOL Multiphysics 6.0
(Burlington, MA, USA) were used to assess the 1D model.

2.3. Complementary Design of Experiments

The design of the complementary experiment was based on the power profiles of the
individual heater and temperature measurements at two places as described in Figure 1.
The non-complementary experiment was a simple pulse of power at the center of the
sample. However, with this experiment, it was not sufficient to simultaneously estimate
the temperature-dependent thermal conductivity and volumetric heat capacity [15]. Later,
the experiment was modified to include two experiments using a complementary design
(CD1) with a single inverse analysis [20]. In the first part of the complementary design, the
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outer heater was turned on and maintained at 50 ◦C and the temperature at the center of
the sample (TCenter) started at room temperature and then continuously increased to 50 ◦C
by the heat flux of the outer heater. After TCenter reached 50 ◦C, the inner heater generated
12 W of power for a duration of 120 s. This design enabled the estimation of k1, k2, and C1,
but not C2.

In this study, optimal design criteria were used to access several complementary
experimental designs that would enable the simultaneous estimation of k1, k2, and C1, and
C2. The second complementary design (CD2) was designed to keep the center at a constant
temperature once it reached 140 ◦C by tuning the inner heater power with a PID loop.
The third complementary design (CD3) was chosen where the boundary temperature was
modulated using a sine wave with a frequency of 0.05 hertz and an amplitude of 10. The
center temperature was then increased to 140 ◦C by turning on the inner heater. For the
fourth complementary design (CD4), the first part was the same as CD2, but the center
heater was modulated with a sine wave of 0.05 hertz and an amplitude of 2. The CD4
experiment was terminated as soon as the center temperature reached 140 ◦C.

2.4. Optimal Experimental Design

To determine the optimal experimental design, the sensitivity coefficient of a parameter
is first calculated by taking the first derivative of the dependent variable with respect to the
parameter. The mathematical description is given in Equation (7) [19]:

Xi =
dT
di

, (7)

where Xi is the sensitivity coefficient for parameter i, and T is the dependent variable,
which is the temperature in this case. To obtain the scaled sensitivity coefficient (SSC),
the sensitivity coefficient is multiplied by the value of the parameter as shown in the
following equation.

X̂i = i
dT
di

, (8)

The SSC needs to be large compared to the response variable in order to have a precise
estimation of the parameter with low standard errors and smaller confidence intervals.
Furthermore, when there are multiple parameters to be estimated, one SSC cannot be
correlated with another parameter. A high correlation leads to uncertainty in parameters,
and they cannot be estimated simultaneously. In the case of high correlation, the experiment
must be modified, or additional experiments, such as a complementary experiment, must
be added for the simultaneous estimation of the parameters.

Finding optimal experiments is one of the fundamental types of parameter estimation
problems [19]. For the complementary design, it is essential to find which experiment
could perform best for the estimation of the desired parameters. The criterion for optimal
design is based on the minimization of the hyper-volume of the confidence region. For the
evaluation of two or more parameters, an optimal experiment design requires the greatest
determinant value of the sensitivity matrix. Mathematically,

∆ = max
∣∣∣XTX

∣∣∣, (9)

where ∆ is the optimal value and X is the sensitivity [n × p] matrix, with n measurements
and p parameters. The optimality criterion can be described as:

max ∆n = max
∆
np , (10)

For four parameters (p = 4), with n measurements, the equation changes to

∆n =
∆
n4 , (11)
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The ∆ value as a function of time was analyzed and normalized with the maximum
power supply.

2.5. Inverse Problem

The use of a high temperature is common for thermal food processing and the shelf
life of the product. The thermal properties, including specific heat requirements and
thermal conductivity, are typically difficult to determine at high temperatures. The forward
problem is used to calculate the predicted temperature using the initial guess values of the
unknown parameters. The inverse problem can then be used to estimate parameters of
interest from a given experimental temperature profile. The TPCell model was defined by
Equations (1)–(6) using a combination of numerical finite element solutions in COMSOL
and MATLAB® R2022a (Natick, MA, USA). The inverse solution is sensitive to the errors
of the measurement; hence, the accuracy of measurement is important for the accurate
estimation of the parameters. The center temperature of the sample was obtained by
embedding a thermocouple at the center of the inner heater. The initial temperature of
the sample was specified as the equilibrated temperature of the TPCell at the start of the
experiment (25 ◦C).

The sequential estimation of the parameter algorithm was used following Mishra et al.
(2016) [15]. Sequential estimation was achieved by using the matrix inversion and Gauss
minimization function, which can be explained by

S =
[
Y− Ŷ(β)

]T′W
[
Y− Ŷ(β)

]
+ [µ− β]T

′ .
U[µ− β], (12)

where S is the Gauss minimization function, Y is the experimental response variable, Ŷ
is the predicted response, β is the parameter, T′ is the transpose of the matrix, W is the
inverse of the covariance matrix of errors, and µ is the prior information of the parameter.

The extremum of the minimization function can be explained by differentiating the
function with the parameter as represented below,

∇βS = −2
[
∇βŶ(β)

]TW
[
Y− Ŷ(β)

]
− 2[I]

.
U[µ− β], (13)

where I is the identity matrix. The steps of the inverse algorithm are given by
Equations (14)–(19).

Ai+1 = PiXT
i+1, (14)

∆i+1 = ∅i+1 + Xi+1 Ai+1, (15)

Ki+1 = Ai+1∆−1
i+1, (16)

ei+1 = Yi+1 − Ŷi+1, (17)

b∗i+1 = b∗i + Ki+1[ei+1 − Xi+1(b∗i − b)], (18)

Pi+1 = Pi − Ki+1Xi+1Pi, (19)

The termination criterion for the parameter can be provided as bk+1
j − bk

j∣∣∣bk
j

∣∣∣+ δ1

 < δ, (20)

where X is the sensitivity matrix, P is the covariance vector matrix of parameters, e is
the error vector, i and j are the index of iteration, and b is the parameter index. To apply
the inverse problem to estimate parameters in this study, several statistical assumptions
were considered: (1) Y = η(X,b) + e where Y is the additive measurement error and η
(regression function) does not contain any random errors; (2) zero mean of measurements,
which can be verified with the residual analysis of the estimated parameters and predicted
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temperature, (3) constant variance of errors, (4) uncorrelated errors, and (5) the error has a
normal distribution.

3. Results and Discussion
3.1. Complementary Design (CD1)

For all the experimental trials, the maximum temperature at the center of the sample
was kept below 140 ◦C. A non-complementary experiment is presented in Figure 2A. The
center temperature of the sample was increased by turning on the center heater at 20 s, and
as a result, the center temperature attained 140 ◦C at the end of 60 s. It is worth noting
that the SSC of thermal conductivity X̂k1 and X̂k2 are large and uncorrelated. However, the
SSC of the volumetric heat capacity X̂C1 and X̂C2 are relatively very small compared to the
total temperature rise of 120 ◦C. In addition, the X̂C1 and X̂k1 are correlated. Due to this
reason, the parameters C1 and C2 could not be estimated with this specific experimental
setup. The complementary design CD1 consisted of two experiments as shown in Figure 2B.
The first experiment was to keep the sample cup at a constant boundary temperature of
50 ◦C and wait for 300 s for the center sample temperature to equilibrate with the boundary
temperature. The second part of the complementary design CD1 was the same as in
Figure 2A, where the center heater power was turned on at 300 s. As shown in Figure 2B,
for the first experiment, before 300 s, it is expected that the X̂k1 is correlated with X̂C1,
and X̂k2 is correlated with X̂C2 due to the constant temperature boundary condition [21].
However, there is a remarkable improvement in X̂C1 for the second experiment (after 300 s),
but the same was not true for X̂C2. Hence, with the complementary design CD1, it is
possible to simultaneously estimate parameters k1, k2, and C1 but not C2. The optimizing
function ∆ value also increased significantly to 2 × 10−2 as compared to 15 × 10−14 for the
non-complementary design, proving that the CD1 design is better.
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Figure 2. Non-complementary experiment (A), and complementary experimental design (B), temper-
ature profile with power input (left), scaled sensitivity coefficients (center), and criteria for optimal
design (right).
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3.2. Constant Temperature Profile in Second Experiment of Complementary Design (CD2)

To further optimize the complementary design, a constant temperature at the center of
the sample was considered for the second experiment (from 300 to 500 s) of complementary
design CD2. As shown in Figure 3, to maintain a constant center temperature, a PID control
was used for the heater power. With this approach, there was a slight improvement in X̂C2,
but still it was not enough to estimate C2 with good accuracy. Nevertheless, the optimality
criteria improved to 1.6 as compared to 2 × 10−2 for the CD1 design. Using CD2 design,
the simultaneous estimation of k1, k2, and C1 will result in better RMSE and parameter
standard errors.
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Figure 3. Center temperature profile with power input (A), scaled sensitivity coefficients (B), and
criteria for optimal design (C) for the CD2 experimental design.

3.3. Sinusoidal Boundary Temperature Profile in First Experiment of the Complementary
Design (CD3)

A sinusoidal function with a frequency of 0.05 and an amplitude of 10 was added to the
boundary temperature profile to explore whether it would improve the optimality criteria.
As observed in Figure 4, the sinusoidal profile did not improve the X̂C2 and it was merely
4% of the 120 ◦C total temperature. In the case of CD3, it would not be able to estimate C2
with good accuracy. In addition, the optimality criteria also remained the same as in CD1.
So, the sinusoidal temperature profile at the sample boundary was discarded as an optimal
design and was not further explored for inverse analysis and parameter estimation.

3.4. Sinusoidal Power Profile in Second Experiment of Complementary Design (CD4)

Another approach of adding a sinusoidal function was implemented for the center
heater power profile. The power was varied, starting at 300 s with a frequency of 0.05 hertz
and an amplitude of 2 (Figure 5). When the center heater powder was turned on, the center
temperature rise was also influenced by the sinusoidal profile. The power was turned off
as the temperature reached 140 ◦C. The SSC, before the 300 s, remained the same as in CD1,
CD2, and CD3. Due to the added sinusoidal function, the sensitivity after 300 s for X̂C2
increased slightly. However, the most significant impact was on the optimizing function
∆ value, where it increased to 14 as compared to 2 × 10−2 for the CD3 design. This is a
remarkable improvement and shows that CD4 can potentially be used for the simultaneous
estimation of all four parameters, k1, k2, C1, and C2.
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Figure 4. Center temperature profile with power input (A), scaled sensitivity coefficients (B), and
criteria for optimal design (C) for the experiment with sinusoidal boundary temperature.
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Figure 5. Center temperature profile with power input (A), scaled sensitivity coefficients (B), and
criteria for optimal design (C) for sinusoidal center heater power profile.

3.5. Impact of High Thermal Conductivity of Heater

The thermal conductivity of the heater is important in designing the device for mea-
suring thermal properties. It was reported that the thermal conductivity of the thin film
heater was 0.01 W/mK due to the various layers and internal contact resistance. If the
construction of the heater can be improved with increased thermal conductivity, it might
help the estimation of the sample’s thermal properties. Hence, to investigate the impact
of the heater’s thermal conductivity, a higher value of 1.0 W/mK was chosen. All other
aspects of the experiment CD4 were the same except for the thermal conductivity of the
heater. The results are shown in Figure 6, and it is evident that there is improvement
in X̂k1, X̂k2, X̂C1, and X̂C2. In addition, there is a 1428% increase (from 7 to 100) in the
optimizing function ∆ value as compared to the lower thermal conductivity case. Hence,
the CD4 design along with the higher thermal conductivity of the heater is the optimal
model and is further considered for the inverse problem analysis for the estimation of the
four parameters (k1, k2, C1, and C2).
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Figure 6. Center temperature profile with power input (A), scaled sensitivity coefficients (B), and
criteria for optimal design (C) for the experiment with high thermal conductivity of heater.

3.6. Parameter Estimation for the Optimal Complementary Design

Based on the optimal complementary design, temperature data were generated to
simulate an experiment. A random error (σ) was added to the simulated temperature
profile using the forward problem solution. The inverse problem’s results are shown in
Figure 7 to validate the results of simulation as presented in the forward problem and
sensitivity coefficient analysis. As a sample food product, sweet potato was chosen for the
thermal property estimation. As shown in Figure 7A, the sample was kept at a constant
boundary temperature of 50 ◦C for 300 s until the center of the sample reached the boundary
temperature. After the first part of the complementary experiment and sample equilibration,
the center heater was turned on to supply a power of 12.9 W with an added sine wave
at a frequency of 0.05 hertz and an amplitude of 4. The impact of adding a sine wave
is visible in the second part of the complementary experiment, where the center sample
temperature rises and follows the patterns of the sinusoidal power input and attains a
maximum temperature of 140 ◦C. The predicted center temperature fits the first part of the
complementary experiment well; however, as described above, it is only possible to estimate
the thermal diffusivity and not the simultaneous estimation of thermal conductivity and
volumetric heat capacity. It is the second part of the complementary experiment that allows
for simultaneous estimation. The predicted center sample temperature also fits for the
second part of the complementary experiment well. Residuals are presented in Figure 7B,
and it can be observed that statistical assumptions of the zero mean and uncorrelated errors
are true, which validates that the inverse problems are good. Based on the zero mean,
uncorrelated errors, and uniformly scattered and normalized residuals, it can be concluded
that the errors are additive in the temperature measurement. The multiplicative errors will
not have constant variance and will be easily observed in Figure 7B.

To verify if the optimal complementary experiment is suitable for the simultaneous
estimation of temperature-dependent thermal conductivity and volumetric heat capacity,
a series of simulated experiments were carried out. As presented is Table 1, the random
errors (σ = 0, 0.5 and 2) were added to the temperature profile. A sequential estimation
approach was used for parameter estimation where the sample size is not fixed and,
instead, it is sequentially added to the analysis and the outcome is determined. Sequential
estimation is terminated when precision in the estimation is achieved. As shown in
Figure 7C, all the normalized parameters achieved a constant value after 100 s of the
experiment, suggesting the precise estimation of parameters. The estimated parameters
for various random errors are presented in Table 1 along with the parameter standard
error, RMSE, SSE, and confidence intervals. A higher experimental error greatly impacts
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the accuracy of estimated parameters. For example, a σ value of 2 resulted in higher
RMSE, higher SSE, and larger confidence intervals. The most important fact to note here is
that all four parameters (k1, k2, C1, and C2) can be accurately estimated with the optimal
complementary experimental design (CD4).
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Figure 7. Inverse problem analysis and sequential parameter estimation of the optimal complemen-
tary design.

Table 1. Impact of experimental error (σ) on the estimation of temperature-dependent thermal
parameters.

σ Symbol Parameter Standard Error RMSE SSE LCI UCI

0.00

k1 (W/mK) 0.510 0.001 0.000 0.000 0.510 0.510
k2 (W/mK) 0.630 0.001 0.000 0.000 0.630 0.630
C1 (J/m3K) 3.612 × 106 0.003 × 106 0.000 0.000 3.612 × 106 3.612 × 106

C2 (J/m3K) 4.128 × 106 0.027 × 106 0.000 0.000 4.128 × 106 4.128 × 106

0.50

k1 (W/mK) 0.509 0.001 0.743 4190.500 0.506 0.512
k2 (W/mK) 0.629 0.001 0.743 4190.500 0.625 0.632
C1 (J/m3K) 3.617 × 106 0.003 × 106 0.743 4190.500 3.606 × 106 3.629 × 106

C2 (J/m3K) 4.180 × 106 0.027 × 106 0.743 4190.500 4.128 × 106 4.128 × 106

2.00

k1 (W/mK) 0.496 0.001 2.978 67381.000 0.483 0.510
k2 (W/mK) 0.638 0.001 2.978 67381.000 0.625 0.651
C1 (J/m3K) 3.595 × 106 0.003 × 106 2.978 67381.000 3.551 × 106 3.640 × 106

C2 (J/m3K) 4.504 × 106 0.028 × 106 2.978 67381.000 3.854 × 106 5.146 × 106

The thermal conductivity for sweet potato puree presented in Table 1 was in the
same range as the values reported by Mishra et al. [15], 0.518 to 0.548 W/mK at 25 ◦C
and 0.572 to 0.585 W/mK at 140 ◦C. However, in their research, they did not estimate the
volumetric heat capacity of sweet potato puree. Mehta et al. [20] attempted to design the
complementary experiments and were able to simultaneously estimate the temperature-
dependent thermal conductivity and a constant volumetric heat capacity. The estimated
thermal conductivity was reported as 0.516 W/mK at 26 ◦C and 0.798 W/mK at 135 ◦C,
whereas the estimated volumetric heat capacity was 3.520 × 106 J/m3K at 26 ◦C. These
values are in the same range reported in Table 1 Even in the study of Mehta et al., the
temperature-dependent volumetric heat capacity was not estimated due to the non-optimal
design of the complementary experiments. Hence, the novelty of this study was in the
estimation of temperature-dependent volumetric heat capacity, which was found to be in
the range of 3.617 × 106 J/m3K at 25 ◦C to 4.180 × 106 J/m3K at 140 ◦C.
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4. Conclusions and Recommendations

An optimal complementary experimental design was presented for the estimation of
the temperature-dependent thermal conductivity and volumetric heat capacity of sweet
potato puree. Scaled sensitivity coefficients were used to discern if the parameter of
interest can be estimated with accuracy. Several boundary conditions were used, and
experimental designs were presented to investigate the impact of the complementary
design. The results showed that the optimal design was the one where the first part of
the experiment was a constant temperature boundary condition and the second part was
the use of sinusoidal heat flux. Using such a complementary design, the estimation of
two parameters of temperature-dependent thermal conductivity and two parameters of
temperature-dependent volumetric heat capacity was made possible. Hence, the use of the
complementary design was proven to be successful and has the potential for applications
in many areas of food process engineering. One significant application will be in the
processing of particulate aseptic food products where modeling using thermal parameters
is necessary to design the thermal process. The future steps of this study will explore the
manufacturing of a cylindrical, high-conductivity cartridge heater for manufacturing the
device that can simultaneously estimate temperature-dependent thermal properties.
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