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INTRODUCTION 
 
Early restoration of blood flow has been demonstrated 
to bring substantial benefits via salvaging viable tissues 

from ischemic injury [1]. However, rapid reperfusion 
after a certain period of ischemia could paradoxically 
induce detrimental effects including ischemia-
reperfusion injury (IRI), which is known as a major 
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ABSTRACT 
 
Despite decades of formidable exploration, multi-organ ischemia-reperfusion injury (IRI) encountered, 
particularly amongst elderly patients with clinical scenarios, such as age-related arteriosclerotic vascular 
disease, heart surgery and organ transplantation, is still an unsettled conundrum that besets clinicians. Remote 
ischemic conditioning (RIC), delivered via transient, repetitive noninvasive IR interventions to distant organs or 
tissues, is regarded as an innovative approach against IRI. Based on the available evidence, RIC holds the 
potential of affording protection to multiple organs or tissues, which include not only the heart and brain, but 
also others that are likely susceptible to IRI, such as the kidney, lung, liver and skin. Neuronal and humoral 
signaling pathways appear to play requisite roles in the mechanisms of RIC-related beneficial effects, and these 
pathways also display inseparable interactions with each other. So far, several hurdles lying ahead of clinical 
translation that remain to be settled, such as establishment of biomarkers, modification of RIC regimen, and 
deep understanding of underlying minutiae through which RIC exerts its powerful function. As this approach 
has garnered an increasing interest, herein, we aim to encapsulate an overview of the basic concept and 
postulated protective mechanisms of RIC, highlight the main findings from proof-of-concept clinical studies in 
various clinical scenarios, and also to discuss potential obstacles that remain to be conquered. More well 
designed and comprehensive experimental work or clinical trials are warranted in future research to confirm 
whether RIC could be utilized as a non-invasive, inexpensive and efficient adjunct therapeutic intervention 
method for multi-organ protection. 
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cause of organ dysfunction following ischemic events 
[2]. IRI is quite common in clinical settings such as 
thrombolysis after ischemic stroke or myocardial 
infarction secondary to arteriosclerotic vascular 
diseases, cardiac surgery and organ transplantation. 
However, the clinical outcome of the existing 
approaches to control IRI remains unsatisfactory. 
Moreover, as the average human lifespan has markedly 
increased, so has the burden of ageing and age-related 
disorders on the individuals, which often inflict multiple 
organs of the elderly with decreased physiological 
reserve and tissue resilience.  
 
Recently, attention has been focused on an innovative 
approach, termed as ischemic conditioning (IC), 
particularly remote ischemic conditioning (RIC), 
knowing that repetitive, transient and sublethal series of 

IR bursts can trigger endogenous protection and 
tolerance against subsequent ischemic threats [3]. RIC 
may benefit multiple organs of the body at the same 
time. It seems to be a promising non-pharmaceutical 
and non-surgical therapy for preventing and treating 
age-related systemic vascular diseases such as 
combined lesions in the brain, heart and kidney, and 
also arteriosclerosis-induced neurodegenerative 
disorders. 
 
In this regard, this article encapsulates an overview of 
IC on multi-organ protection, including a brief 
developmental history of IC, intervention forms, 
underlying mechanisms and current clinical evidence as 
a promising option to attenuate IRI, (Fig. 1). It also 
discusses some controversies in the latest research in 
this field. 

 
 

Figure 1. Schematic diagram showing the main points pertaining to the study.  
Abbreviations: AIS, acute ischemic stroke; CCI, Chronic cerebral ischemia; SAH, subarachnoid hemorrhage; CEA, carotid 
endarterectomy; CAS, carotid angioplasty and stenting; CSVD, cerebral small vessel disease; TBI, traumatic brain injury; CABG, coronary 
artery bypass graft surgery; SPCI, selective percutaneous coronary intervention; PPCI, primary percutaneous coronary intervention; 
CHF, chronic heart failure; ARD, acute renal dysfunction. 
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RESULTS 
 
Forms of IC 
 
Based on the sites of intervention, IC strategies can be 
classified into two forms, that is, in situ and in remote 
organs or tissues. 
 
IC in situ  
 
IC in situ involves repeated IR intervention applied 
locally to the organ or tissue itself, thus offering 
subsequent protection against IRI-induced lethal injury. 
The concept of IC in situ was first demonstrated by 
Murry et al. in 1986, who reported that 4 cycles of 5-
min occlusion of the circumflex coronary artery 
interspersed with 5-min reperfusion could significantly 
reduce the myocardial infarct size induced by a 
subsequent longer period occlusion of the same vessel 
[4]. A systemic review of the role of IC in situ in 
cardiac surgery summarized data from 22 eligible trials 
with 933 patients, denoting that local IC might be 
associated with substantial reductions in ventricular 
arrhythmia, inotrope requirement, and intensive care 
unit (ICU) stay [5].  
 

Although direct IC has been discovered for decades and 
holds the potential in ameliorating IRI, its clinical 
application is still confronted with great challenges: IC 
in situ requires a direct intervention employed to the 
target tissue/organ, which is impractical or even 
invasive in the cases of IRI of internal organs without 
surgical issues. Therefore, it would be tempting to 
discover a way through which an equivalent extent of 
protection might be brought about without invasive 
intervention on the targeted organs or tissues. 
 
RIC  
 
RIC refers to a brief, repetitive and sublethal IR applied 
to an organ or tissue to induce global endogenous 
tolerance and protect distant (remote) target organs or 
tissues against subsequent prolonged IRI, meaning that 
the protective effect of IC can be induced not only in 
situ directly, but also in distant organs [3].  
 
As reported by previous studies, there are three methods 
of RIC intervention based on timing of RIC in relation 
to IRI, including remote ischemic preconditioning 
(RIPreC, initiated before IRI), remote ischemic 
perconditioning (RIPerC, initiated at the moment of  
 

 
 

Figure 2. General illustration of remote ischemic conditioning (RIC). Remote ischemic conditioning, in which transient 
sublethal episodes of ischemia and reperfusion are applied to a limb (upper arm or thigh) or limbs, can be delivered before (remote 
ischemic preconditioning), during (remote ischemic perconditioning) or after (remote ischemic postconditioning) a subsequent and 
potentially lethal ischemic attack. Neuronal, humoral as well as immunological mediators are postulated to exert critical roles in the 
transduction of protective signals generated from limbs and surrounding structures to the targeted organs or tissues. The application of 
RIC has been extended from initially reducing cardiac infarct sizes resulting from acute myocardial infarction to providing protection for 
a diversity of organs or tissues (other than the heart), which are likely susceptible to ischemia-reperfusion injury, such as the brain, 
kidney, lung, liver and skin. 
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ischemia) and remote ischemic postconditioning 
(RIPostC, initiated at reperfusion stage), (Fig. 2) [3].  
 
RIPreC. A landmark study for the breakthrough of IC in 
situ in the possible clinical application was conducted 
by Przyklenk et al. in 1993, who used 4 cycles of 5-min 
IR of the circumflex coronary artery prior to the left 
anterior descending coronary artery (LADCA) 
occlusion to reduce myocardial infarction volume at the 
territory of LADCA in a dog model [6]. This protection 
induced by remote intra-organ preconditioning drew 
forth the notion of RIPreC and inspired further 
investigations to clarify this protective effect. Remote 
inter-organ preconditioning protection was later proved 
by in a rat model in 1996, showing that a short period of 
preconditioning forced upon the renal and mesenteric 
artery reduced the myocardial infarction [7]. A further 
study using rabbits revealed that a combination of 
stimulating the gastrocnemius muscle and restricting 
femoral blood flow could significantly attenuate IRI-
induced cardiac injury, indicating the possibility of 
inducing preconditioning stimulation by using clinically 
more applicable method such as the limb tourniquet or 
other occlusion devices [8]. In 2002, Kharbanda et al. 
carried out two experiments and found that: 3 bouts of 
5-min ischemia/reperfusion induced by human upper 
limb RIPreC could protect the contralateral forearm 
from endothelial IRI, and 4 bouts of 5-min lower limb 
RIPreC could elicit a reduction in the extent of 
myocardial injury against previously sustained 
infarction in a swine model [9]. These findings 
facilitated the translation of RIPreC from experimental 
models to clinical studies. The first successful pilot 
human study was conducted by Cheung et al. in 2006 in 
pediatric patients who underwent repair of congenital 
heart failure [10]. The researchers observed less 
potential myocardial injury in the RIPreC group as 
compared with the control group. Subsequent 
experimental or clinical investigations on RIPreC 
demonstrated valuable potential of ameliorating IRI in 
multiple organs. 
 
RIPerC. Another subtype of RIC is RIPerC, which is 
referred to as the induction of sublethal conditioning 
stimuli during an episode of ischemic attacks. Schmidt 
et al. first demonstrated RIPerC by applying cyclical 
hindlimb IR with a tourniquet in experimental pigs 
during LADCA occlusion, with a satisfactory result 
[11]. In two small clinical trials led by Rentoukas and 
Li, myocardial insults were attenuated among coronary 
artery disease patients who received RIPerC [12, 13]. 
One classic single-center RCT published in 2010 
demonstrated that RIPerC improved myocardial salvage 
in suspected ST segment elevated myocardial infarction 
(STEMI) when it was applied during ambulance 
transport before hospital admission [14].  

RIPostC. The history of RIPostC dates back to the first 
report aiming to investigate the cardioprotection of 
ischemic postconditioning in 2003, showing that brief 
repetitive ischemia before fully establishment of flow in 
a canine model of coronary occlusion-reperfusion could 
attenuate reperfusion-associated myocardial injury [15]. 
Two years later in 2005, Staat et al. reported the first 
clinical trial, that is, postconditioning employed to 
patients undergoing coronary angioplasty for STEMI 
might provide protection to hearts [16]. Subsequent 
publications also demonstrated encouraging outcomes 
of ischemic postconditioning in patients undergoing 
cardiac surgeries, as presented by reduced cardiac 
enzyme levels, morbidity, inotrope scores and the 
duration of ICU stay [17-19].  
 
Selective meta-analyses published up to December 2014 
illustrated the potential salutary effects of 
postconditioning on cardioprotection in subjects with 
STEMI scheduled for percutaneous coronary 
intervention (PCI), although some results might be 
disappointing or even contradictory [20-22]. 
Unfortunately, the largest clinical trial so far 
(DANAMI-3–iPOST) concluded that 4 cycles of IC 
(30-second balloon occlusion followed by 30-second 
perfusion) during PCI failed to reduce the primary 
composite outcome of all-cause death and 
hospitalization due to heart failure in patients with 
STEMI [23]. One explanation for this neutral result is 
the algorithm of IC, which differed from previously 
reported one (4 cycles of 60-second of occlusion 
followed by 60-second of reperfusion).  
 
Protective time window 
 
Murry et al. reported that the positive effect of IC 
diminished or even run out after a few hours, suggesting 
the existence of a time window for the protection [4]. 
Subsequent studies verified the above postulation and 
put forward the theory of two time windows for 
protection: the first one acted rapidly, but dissipated 
within 2-3 h; the second one reoccurred after 12-24 h 
and persisted for up to 3 days [24-27]. Likewise, 
protective time windows were also reported in animal 
studies with ischemic perconditioning, demonstrating 
that the first period occurred immediately after the 
procedure and persisted for 3-6 h; the second period 
reoccurred after 24 h and dissipated within 4 days [28, 
29]. The early or rapid protective phase is believed to be 
related to changes in intracellular kinase signaling 
pathways, especially the post-translational 
modifications of certain proteins. The delayed phase, 
however, is more likely the result of de novo protein 
synthesis from dormant genes involved in stress-
response, inflammation, angiogenesis, and vasomotor 
control.[30, 31] Nonetheless, unlike RIPreC and 
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RIPerC, scant research has elucidated the therapeutic 
windows of RIPostC. An animal study revealed that 
ischemic postconditioning initiated up to 6 h after 
reperfusion could still confer protection against focal 
IRI [32]. Subsequent experimental evidence was 
roughly in agreement with this observation, revealing 
that RIPostC conducted at 6 h after reperfusion could 
robustly reduce cerebral infarct volume and ameliorate 
neurological deficits [33]. 
 
Proposed mechanism of action 
 
The protective mechanisms of RIC through which the 
protection is transferred to remote targeted organs 
against IRI are quite sophisticated and have not been 
fully explored. Current data reveal that the possible 
underlying mechanisms are correlated with several 

aspects, mainly including neuronal and humoral 
pathways, both of which also display inseparable 
interactions with each other, and the dominant one may 
depend on the applied stimuli and specific 
circumstances [29]. Although most observations have 
thus far been derived from preclinical animal studies 
focusing with cardioprotection, they might shed light on 
the exploration of RIC mechanisms in humans. Here 
below, a precise overview pertaining to some relatively 
important pathways and associated mediators are 
recapitulated, (Fig. 2 and Fig. 3).  
 
Neuronal pathway 
 
The neuronal mechanism has been proposed to play a 
requisite role in RIC, whereby protective signals from 
the periphery limbs can be transferred to ischemic 

 
 

Figure 3. Simplified overview of the protective pathways of Remote Ischemic Conditioning (RIC). eNOS/PKG pathway is 
presented in gray, RISK pathway in yellow and green, and SAFE pathway in purple.  
Abbreviations: RISK, reperfusion injury salvage kinase; SAFE, survivor activating factor enhancement; SDF-1α, stromal cell derived 
factor-1α; IGF-1, insulin like growth factor-1; FGF-2: fibroblast growth factor-2; ANP, atrial natriuretic peptide; BNP, brain natriuretic 
peptide; TNF-α, tumor necrosis factor-α; IL-6, interleukin-6; IL-10, interleukin-10; CXCR4, chemokine 4 receptor; GFR, growth factor 
receptor; A1R, A3R, adenosine receptor A1, A3; δ/κ, δ- and κ- opioid receptor; B2R, bradykinin receptor B2; M3R, muscarinic receptor 
M3; NPR, natriuretic peptide receptor; TNFR, tumor necrosis factor receptor; gp130, glycoprotein 130; KATP, ATP-dependent potassium 
channel; Cx 43, connexin43; MEK1/2, also known as mitogen-activated protein kinase kinase 1/2; Erk1/2, extracellular-regulated 
kinases 1/2; PI3K, phosphatidylinositol-4, 5-bisphosphate3-kinase; PIP3, phos-phatidylinositol-3, 4, 5-biphosphate; PDK, 
phosphatidylinositol kinase; Akt, also known as protein kinase B; P70s6K, p70 ribosomal protein s6 kinase; GSK3β, glycogen synthase 
kinase 3β; HIF-1α, hypoxia inducible factor-1α; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; eNOS, endothelial nitric 
oxide synthase; NO, nitric oxide; sGC, soluble guanylate cyclase; cGMP, cyclic guanine monophosphate; PKG, protein kinase G; PKC, 
protein kinase C; MPTP, mitochondrial permeability transition pore; JKA, Janus kinase; STAT1, STAT3, STAT5, signal transducer and 
activator of transcription 1, 3, 5; ROS, reactive oxygen species; miRNA, microRNA. 
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organs. A growing body of evidence supports this 
neuronal hypothetic notion of RIC. For instance, the use 
of ganglionic blockers such as hexamethonium and 
trimetaphan could abrogate the RIC-mediated 
protection in rat models or humans [7, 27, 34]. 
Cardioprotection induced by ischemic preconditioning 
in remote vessels, such as the femoral, renal, and 
mesenteric arteries has been confirmed in experimental 
studies, while subsequent transection of the 
corresponding nerves was able to blunt this effect, 
suggesting the necessity of afferent nerves for 
protective signaling transduction [35, 36]. In addition, 
pretreatment with afferent nerve blocker-capsaicin 
attenuated or even reversed the beneficial effect of RIC 
in several models, including cerebral, gastric and 
intestinal ischemic models [37-39]. Moreover, spinal 
cord reflexes might also exert essential functions in the 
neuronal pathways, with the supporting evidence that 
transection of the spinal cord at T9-T10 level and 
selective blockage of the spinal opioid receptor with 
naloxone methiodide abolished the RIC effect.[35, 40] 
With regard to the efferent outflow, cardiac studies 
suggested the crucial role of the parasympathetic 
nervous system for cardioprotection provided by RIC 
[41, 42]. Although there is still a lack of evidence 
regarding cerebrovascular diseases, experimental 
studies in the rat stroke model demonstrated that 
stimulation of parasympathetic nerve, especially the 
vagus nerve, could exert a neuroprotective function [43, 
44]. The function of parasympathetic outflow in RIC 
was also demonstrated in a human trial by Enko et al. 
[45].  
 
Humoral pathway 
 
Humoral mediators. The humoral pathway hypothesis 
refers to repeated cycles of IC at a distant site (for 
example at limbs) may stimulate the release of certain 
substances that travel into the blood circulation and then 
reach the prolonged ischemic organs/tissues to produce 
a protective effect [46]. This hypothesis was firstly 
highlighted by a study, which found that the 
cardioprotective effect of ischemic preconditioning 
could be transferred from preconditioned to non-
preconditioned naïve rabbits through whole blood 
transfusion [47]. In a porcine transplant model, a study 
group preconditioned the recipient pigs with limb RIC 
before receiving hearts from brain-dead donors and 
ultimately observed a 57% reduction in postoperative 
cardiac infarct lesions, suggesting that some sort of 
circulating factors after RIC probably mediated the 
cardioprotection, even in the absence of intact neural 
innervation (denervated transplanted hearts) [48]. 
Shimizu et al. later performed several experiments in 
order to investigate the humoral nature of limb RIC and 
its effects on isolated rabbit heart models [11]. The 

results showed that transferring plasma and dialysate 
(with 15 kDa dialysis membrane) harvested from donor 
rabbits undergoing limb-RIC conferred protection to 
non-preconditioned animals; nonetheless, this 
phenomenon vanished in subjects who were pretreated 
with naloxone, implying the possible participation of 
the opioid receptor pathway. Afterwards, experimental 
studies, specifically those adopting Langendorff 
bioassays, proposed that this protection was attributed 
to unidentified hydrophobic, thermolabile circulating 
proteins with molecular weights ranging from 3.5 to 15-
30 kDa [49, 50]. Notably, the presence of protective 
factors after RIC has also been explored in humans, 
denoting the results as follows: plasma dialysate from 
diabetic patients without periphery neuropathy who 
underwent RIC could confer a cardioprotective effect to 
rabbit hearts suffering IRI, whereas, this effect was 
suppressed in hearts immersed with RIC dialysate from 
diabetic patients concurrent with peripheral neuropathy 
[51]. A recent study reported that total 
subdiaphragmatic vagotomy, gastric vagotomy, and 
selective sectioning of the posterior gastric branch 
abrogated RIC cardioprotection, suggesting the 
potentially crucial role of the posterior gastric branch of 
the vagus nerve in the innervation of circulating factors 
elicited after RIC.[52] Taken together, RIC might 
promote the release of some sort of or multiple 
circulating protective factors that are transferrable 
between species; an intact neural pathway might be 
necessarily required for RIC-induced protection; and an 
tight interaction may exist between the neural and 
humoral pathways, though details need to be further 
elucidated.  
 
Despite the clinical importance, actual identification of 
humoral factors following conditioning response faces 
great challenges and remains ambiguous. Many 
proteomic analyses using plasma harvested from both 
animals and humans undergoing RIC have yielded 
inconsistent or even paradoxical results. A variety of 
circulating factors have been proposed as contributors, 
such as hypoxia inducible factor-1α [53-60], connexin 
43 [61-64], microRNA [65-75], nitric oxide [76-82], 
stromal derived factor-1α [83-86], mammalian target of 
rapamycin [87-89], matrix metalloproteinases [90-94], 
adenosine [95-104], bradykinin [105-108], 
erythropoietin [109], endocannabinoids [110], kallikrein 
[23], and neuroglobin [111], (Fig. 2). Before being put 
into clinical application, these potential biomarkers 
should be reassessed and validated with respect to their 
efficiency, possible mechanism of action, the changing 
mode of genomics and proteomics following different 
conditioning regimens, the time interval that can be 
detected, and compatibility with RIC-mediated 
protection, all of which are intriguing but full of 
challenges.  
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Immuno-inflammatory responses. Emerging evidence 
plunks for the fact that induction of endogenous 
protection via RIC is partially attributed to the 
modulation of immuno-inflammatory responses. 
Konstantinov et al. initially discovered that RIC in 
healthy humans was capable of downregulating 
proinflammatory genes while upregulating anti-
inflammatory genes, around 30 of which were supposed 
to be involved in leucocyte adhesion, chemotaxis, cell 
adherence/migration, apoptosis, TNF-α signaling 
pathway, and Toll-like receptor pathway [112]. Of 
particular interest, transient unilateral hindlimb 
ischemia induced in mice could modify myocardial 
gene expression in response to oxidative stress, 
inflammation and mitochondrial function at both early 
and later phases following the procedure [113]. On the 
one hand, the expressions of proinflammatory genes 
such as Egr-1 and Dusp 1/6 were decreased. On the 
other hand, genes involved in the attenuation of 
oxidative stress response such as HADHSC and 
peroxiredoxin-4 were strengthened, and those with the 
potential of aggravating oxidative injury like PDGFRB 
and Erp57 were suppressed. Particularly, RIC-mediated 
protection was reflected by reduced neutrophil 
activation and leukocyte-endothelium interactions [114, 
115]. However, Albrecht et al. attributed the 
cardioprotection of RIC to increased infiltration of 
neutrophils [59]. Similarly, contradictory results were 
also reported, saying that TNF-α was increased in some 
RIC models and reduced in others [59, 103, 115, 116]. 
It may be difficult to explain these seemingly 
discrepancies about the inflammatory mediators in RIC 
studies at present in that either neutrophils or TNF-α has 
been implicated in providing both protective and 
detrimental effects [117, 118]. Additionally, it may be 
due to limited time points and different experimental 
subjects or protocols designed for detecting these 
mediators. The interactions among diverse signal 
cascades underlying RIC are still obscure. Although IL-
6 is well known as a member of the proinflammatory 
family, ischemic preconditioning has been shown to 
enhance IL-6 expression and inhibition of IL-6 could 
attenuate the early preconditioning effect [119, 120]. 
Importantly, elevation in IL-6 is to some extent 
responsible for the RIC-mediated cardioprotective 
effects [121]. Cai et al. demonstrated for the first time 
that IL-10 upregulation promoted late protection by 
RIC, possibly through the Stat3 signaling pathway 
[122]. A more recent study investigated the effects of 
RIC on certain inflammatory/anti-inflammatory 
mediator profiles and immune cells, together with the 
mechanism underlying RIC-mediated neuroprotection 
[123]. They found that RIC ameliorated the post-stroke 
reduction of peripheral blood CD3(+)CD8(+) T cells 
and CD3(+)/CD161a(+) NKT cells markedly, and 

robustly increased the percentage of 
CD43(+)/CD172a(+) non-inflammatory monocytes. 
RIC alone without subsequent stroke obviously 
promoted plasma IL-6 expression without any impact 
on the concentration of IL-10 and TNF-α. Interestingly, 
elevated TNF-α expression and further enhanced IL-6 
levels were reported in stroke rats subjected to RIC 
pretreatment. These findings suggest that changes in 
immune cells populations and cytokines in circulation 
may be one mechanism contributing to the RIC-
mediated neuroprotection. Moreover, it was also 
demonstrated that the spleen might play a critical role in 
RIC-mediated alterations in the peripheral immune 
system and immunomodulation of the splenic response 
by RIC might create a favorable immune milieu that 
affects the progression of stroke [124]. However, scant 
studies have focused on this area, although more work 
is on the way. 
 
Anti-oxidative stress  
 
An increasing number of researchers have explored the 
association between RIC and anti-oxidative activity, 
suggesting that limb RIC could markedly attenuate IRI 
through downregulating the expression of free radicals 
while upregulating the expression of antioxidant 
proteins. For instance, the level of malondialdehyde 
(MDA), which is frequently used as an indicator to 
assess the extent of oxidative stress, was significantly 
reduced following the application of RIC in 
combination with or without local IC in different animal 
models, such as cerebral, myocardial, hepatic and renal 
ischemic models [125-128]. In addition, RIC showed 
early promise as a protective approach during primary 
PCI in STEMI patients to enhance the antioxidant 
potential (increased levels of glutathione peroxidase, 
superoxide dismutase and total antioxidant capacity) 
and suppress the increased MDA level [129].  
 
Autophagy  
 
Recently, several investigations have reported that the 
neuroprotective effects afforded by RIC are closely 
associated with autophagy activation and the attenuation 
of mitochondrial injury following cerebral IRI in rat or 
mice model [130-133]. These findings imply that 
autophagy exerts a pivotal function in RIC-induced 
neuroprotection with the possible involvement of 
AKT/GSK3β, AMPK, and mTOR/p70S6K signaling 
pathways, and AKT-dependent Bcl-2 phosphorylation. 
However, in contrast, studies also demonstrated that 
inhibition of the autophagy process contributed to the 
protection against cerebral ischemia injury in rats 
subjected with ischemic post-conditioning alone or 
combined with RIC [134, 135]. The potential function 
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of autophagy in RIC-induced protection needs to be 
further elucidated. 
 
Improvement of endothelial function and vascular 
remodeling  
 
Endothelial dysfunction is a common finding in patients 
with atherosclerotic artery disease, and associated with 
unfavorable clinical outcomes [136, 137]. Studies have 
shown that repeated RIC stimulus could improve 
endothelial function in healthy individuals [138, 139]. 
More importantly, in patients undergoing invasive 

coronary angiography for stable coronary artery disease, 
long-term, regular RIC has been found to produce 
improvements in both peripheral and coronary artery 
function [140, 141]. The enhanced endothelial function 
may be secondary to circulating mediators activated by 
RIC, such as an increase in endothelial progenitor cells 
and/or vascular endothelial growth factor (VEGF). 
Promoting endothelial cells may release tPA and lower 
the level of PAI in circulation [142]. Other explanations 
such as reduced oxidative stress and inflammation, and 
upregulation of endothelial NOS should be considered 
as well.  

 
 
 

Figure 4. Specific circulating markers for different organ scenarios.  
Abbreviations: AIS, acute ischemic stroke; ASH, acute subarachnoid hemorrhage; sIAS, symptomatic intracranial arterial stenosis; CEA, 
carotid endarterectomy; CAS, carotid angioplasty and stenting; CVSD, cerebral small vessel disease; CABG, coronary artery bypass graft 
surgery; SPCI, selective percutaneous coronary intervention; PPCI, primary percutaneous coronary intervention; CHF, chronic heart 
failure; NSE, neuronal specific enolase; S-100B, S100 calcium binding protein B; GFAP, glial fibrillary acidic protein; AQP-4, aquaporin-4; 
Ngb, Neuroglobin; cTnI, cardiac troponin I; cTnT, cardiac troponin T; CK-MB, creatine kinase-myocardial band; Mb, myoglobin; BNP, 
brain natriuretic protein; TIMP-2, tissue inhibitor of metalloproteinases-2; IGFBP-7, insulin like growth factor-binding protein-7; HMGB-
1, high-mobility group box protein-1; sCr, serum creatinine; NGAL, neutrophil gelatinase-associated lipocalin; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; PaO2/FiO2, partial pressure of oxygen/fraction of inspired oxygen. 
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Experimental and our pilot clinical studies reveal that 
chronic RIC is capable of robustly improving cerebral 
blood flow in chronic cerebral ischemia [143-145]. This 
amelioration is likely by promoting cerebral 
angiogenesis, vascular remodeling and collateral 
formation, as indicated by increased expression of 
CD31, α-SMA, and VEGF-receptor, as well as the 
increase in vessels number and volume (3D 
visualization of cerebrovasculature).  
 
Specific circulating mediators for each organ 
 
Although RIC strategies in different organs/tissues may 
recruit similar signaling transduction molecules, 
variations are still recognized, (Fig. 4). Clarifying the 
role of specific trigger factors for the organ of interest 
could spur further research in this area and facilitate 
clinical implement and pharmacological advancement.  
 
Current clinical evidence of multi-organ protection 
 
A growing number of clinical trials have implied that 
RIC is a promising approach to enable multi-organ 
protection, even though a few studies displayed 
inconsistent results. Details are shown in Fig. 5 and 6, 
Supplemental Fig. 1 and Supplemental Table 1 to 4. 
 
Evidence collected so far with regard to the scenarios of 
target organs are listed below. 
 
Brain 
 
(1) Acute ischemic stroke [146, 147], RIC treatment 
after acute stroke was likely to lower the risk of tissue 
infarction after 1 month, and improve the neurological 
outcome as depicted by a reduction in day 90 median 
National Institutes of Health Stroke Scale (NIHSS) 
score; (2) chronic cerebral ischemia [142, 143, 148, 
149], daily use of bilateral upper limb RIC was safe, 
tolerable, and able to reduce the recurrence of 
stroke/transient ischemic attack (TIA), improve cerebral 
perfusion as well as ameliorate the processes of 
inflammation, coagulation and fibrinolysis; (3) 
subarachnoid hemorrhage [150-155], the feasibility and 
tolerability of RIC were denoted in several proof-of-
concept trials; (4) carotid endarterectomy and stenting 
(CEA and CAS) [156, 157], a trend toward fewer 
saccadic latency deteriorations and a significant 
reduction in the incidence of new DWI lesions were 
observed among patients who received RIC; (5) 
cerebral small-vessel disease [158-160], RIC appeared 
to be effective in retarding cognition decline and 
decreasing white matter lesions; and (6) traumatic brain 
injury [161], it was found that RIC markedly reduced 
the serum levels of neuron-specific enolase (NSE) and 
S-100β. 
 

Heart 
 
(1) Selective coronary artery bypass surgery (CABG) 
[140, 162-175], the beneficial effect of RIC in patients 
undergoing CABG surgery has been reported in several 
proof-of-concept trials, whereas, two recent large 
prospective, multicenter, double-blinded, randomized, 
controlled clinical trials yielded negative results, 
denoting that RIC failed to influence the incidence of 
major cardiac and cerebral adverse events, myocardial 
or renal injury biomarkers and quality of life; (2) 
selective PCI [176-191], the effect of RIC on patients 
undergoing selective PCI remains uncertain with 
discrepant results, and a large-scale, multicenter clinical 
trial is currently ongoing to explore and verify the 
potential benefits; (3) primary PCI for STEMI [12, 14, 
192-198], data available are in favor of the RIC-
mediated advantageous effect, though larger, well-
designed and adequately powered multicenter studies 
are required to confirm the result; and (4) chronic heart 
failure [199-201], RIC twice daily for a week 
ameliorated coronary microcirculation in patients with 
chronic heart failure without eliciting any adverse 
effects; RIC once daily for four weeks may enhance 
skeletal muscle function and lower blood pressure in a 
compensated state of heart failure, while a general 
improvement of cardiac function was only seen in most 
severely compromised patients with chronic heart 
failure; six-week of twice a day RIC could improve 
cardiac function in patients with stable heart failure.  
 
Kidney 
 
(1) Renal dysfunction after elective coronary 
revascularization [202-211], in general, data available 
showed that RIC decreased the acute renal dysfunction 
incidence in PCI patients but not in CABG, and the 
overall incidence of renal replacement therapy and 
mortality reported in CABG subjects were 
insignificantly rendered by RIC; (2) high risk for acute 
kidney injury in the setting of cardiac surgery [207, 
212], RIC markedly reduced the rate of acute kidney 
injury within the first 3 days after cardiac surgery, and 
the 3-month incidence of composite major adverse 
kidney events, including mortality, renal replacement 
therapy requirement, and renal dysfunction; (3) renal 
transplantation [213-218], the application of RIC in the 
kidney transplantation field yielded conflicting results, 
most of which were neutral; and (4) dialysis-related 
ischemic injury [219], only one small pilot study 
demonstrated that RIC prior to each dialysis practice for 
a month robustly downregulated the cTnT level (at 1 
week and 4 weeks) among patients receiving chronic 
dialysis.  
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Lung 
 
(1) Pulmonary dysfunction following cardiac surgeries 
[10, 220, 221], no significant difference was found in 
the pulmonary variables such as postoperative partial 
pressure of oxygen (PaO2)/fraction of inspired oxygen 
(FiO2) and transpulmonary gradient of inflammatory 
mediators between the RIC and the control groups, 
whereas, the incidence of acute lung injury seemed to 
be reduced by RIC; (2) pulmonary dysfunction 
following repair of abdominal aortic aneurysm [222], 

pulmonary dysfunction was robustly attenuated in the 
RIC patients (higher arterial-alveolar oxygen tension 
ratio and lower severity of the pulmonary injury score); 
(3) lung resection for non-small-cell lung cancer [223, 
224], RIC may afford protection against pulmonary 
injury as presented by improved intraoperative 
oxygenation accompanied with the reduced 
postoperative incidence of acute lung injury; and (4) 
primary graft dysfunction in the setting of lung 
transplantation [225], encouraging outcomes were 
noticed as presented by trends toward a higher level of  

 
 

Figure 5. Clinical trials of remote ischemic conditioning (RIC) on multi-organ protection.  (A) Studies of RIC effects on the 
brain, (B) studies of RIC effects on the kidney, (C) and (D) studies of RIC effects on the heart.  
Abbreviations: CSVD, cerebral small vessel disease; TBI, traumatic brain injury; CEA, carotid endarterectomy; CAS, carotid angioplasty 
and stenting; sIAS, symptomatic intracranial arterial stenosis; SAH, subarachnoid hemorrhage; AIS, acute ischemic stroke; MFV, mean 
flow velocity; MCA, middle cerebral artery; DHI, dizziness handicap inventory; WMLs, white matter lesions; NSE, neuron-specific 
enolase; S-100B, S100 calcium binding protein B; mRS, modified Rankin scale; CBF, cerebral blood flow; GW exp. and methy. change, 
genome-wide expression and methylation change; ICP, intracranial pressure; SPCI, selective percutaneous coronary intervention; CABG, 
coronary artery bypass graft surgery; HD, hemodialysis; DDR, deceased donor renal; DCDR, donation after cardiac death renal; LDR, 
living-donor renal; ARD, acute renal dysfunction; CIN, contrast-induced nephropathy; tCr50, the estimated time to a 50% decrease in 
baseline plasma creatinine; NGAL, neutrophil gelatinase-associated lipocalin; eGFR, estimated glomerular filtration rate; PPCI, primary 
percutaneous coronary intervention; HHF, hospitalization for heart failure; MS, myocardial salvage; MI, myocardial infarction; hs-cTnT, 
high sensitive-cardiac troponin T; hs-cTnI, high sensitive-cardiac troponin I; MACCE, major adverse cardiac and cerebral event; CK, 
creatine kinase; CK-MB, creatine kinase-myocardial band; RF, renal failure. 
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Figure 6. Forest plot with 95% confidence interval for primary or secondary outcomes. (A) Heart: the incidence of 
complication MI in recipients who underwent CABG or PCI in RIC group compared with controls; the post-treatment mRS in cerebral 
infarction treated with RIC compared with controls; (B) Heart: the mortality of recipients who underwent CABG or PCI in RIC group 
compared with controls; (C) Heart: the incidence of complication-stroke in recipients who underwent CABG or PCI in RIC group 
compared with controls; (D) Kidney and Brain: the eGFR in recipients who underwent renal transplantation and the post-treatment 
mRS in cerebral infarction, in RIC group compared with controls.  
Abbreviations: MI, myocardial infarction; CABG, coronary artery bypass graft surgery; PCI, percutaneous coronary intervention; RIC, 
remote ischemic conditioning; eGFR, estimated glomerular filtration rate; mRs, modified Rankin scale. 
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PaO2/ FiO2, a lower primary graft dysfunction severity 
score and a reduced incidence of rejection in RIC 
treated patients.  
 
Liver 
 
(1) Liver injury after cardiac valve replacement surgery 
[221], the levels of total bilirubin, instead of serum 
transaminases and albumin, were lower in the RIC 
group; (2) major liver resection for colorectal liver 
metastasis [226], RIC significantly ameliorated liver 
injury after hepatectomy as presented by decreased 
serum transaminases and higher indocyanine green 
clearance; and (3) liver transplantation [227, 228], a 
single center, randomized clinical trial aiming to 
elucidate RIC-mediated protection in liver transplant 
recipients is underway. 
 
Gastrointestinal Organs 
 
(1) Intestinal injury after open infrarenal abdominal 
aortic aneurysm repair surgery [222], one small 
randomized trial assessed the potential use of RIC in GI 
protection, illustrating that transient RIC substantially 
reduced the intestinal injury in patients undergoing open 
infrarenal abdominal aortic aneurysm repair surgery. 
 
Skin 
 
(1) Cutaneous microcirculation in healthy volunteers 
[229-231], RIC may have a great potential in improving 
blood perfusion and alleviating soft tissue injury due to 
accidental or operative trauma and plastic versus 
reconstructive surgery. 
 
RIC and ageing 
 
As the average human lifespan has increased markedly 
over the past decades, the mounting incidence of 
ageing-related disorders in the elderly, and the related 
economic and social burden, impel scientists to develop 
novel strategies to slow down or prevent these 
disorders, alleviating the suffering at the end of life. 
 
Decreased physiological reserve and tissue resilience 
are characteristics of biological ageing, which render 
the human system more susceptible to pathological 
threats. Given the fact that elderly patients usually have 
at least two afflicted organs or tissues, therapeutic 
approaches with systemic actions (inducing protective 
responses in a wide range of organs and tissues) are 
warranted. In addition to the efficacy, safety and 
compliance issues are of great importance in an ageing 
population. The emerging area of RIC builds upon this 
foundation. The capability of this non-pharmaceutical 

and non-surgical intervention to protect vital organs 
simultaneously by enhancing the body’s powers to 
adapt to pathological threats could provide a safe, less 
burdensome, minimally-invasive way for ageing-related 
disorders. Currently, RIC is being evaluated in a variety 
of clinical settings such as cerebrovascular disease, 
coronary artery disease and renal injury that 
predominantly influence the older population. 
 
Challenges and promising  
 
To date, regarding the safety and tolerability of the 
methodology, no RIC-associated adverse events have 
been reported in the published clinical studies. Although 
the prospect of clinical transformation of RIC on multi-
organ protection is promising, challenges still exist. The 
controversial findings raise the question “Can RIC have 
impact on clinical outcomes in patients under different 
clinical conditions?” To the best of our knowledge, a 
number of factors should be reconsidered thoroughly in 
the future work.  
 
For instance, although previous experimental work has 
implied that the number and duration of IR cycles might 
affect the efficacy of RIC, there is a paucity of clinical 
data comparing the effectiveness of different RIC 
protocols, and no convincing evidence of the most 
favorable conditioning strategy has been established 
[232]. Notably, the ideal regimen for limb RIC may 
vary on the basis of clinical scenarios where they work 
best. Hence, optimizing the RIC regimens for different 
clinical settings are pivotal issues waiting to be 
addressed.  
 
Establishment of biomarkers has been considered as a 
paramount step for translating RIC from preliminary 
data into real clinical practice. Many hurdles still lie 
ahead to screen and discover the appropriate set of 
biomarkers in order to accurately evaluate the clinical 
efficacy of RIC. The investigations of a wider panel and 
combination use of genomics, proteomics and imaging 
markers are warranted. For instance, it was reported that 
more than 150 genes including apoptosis, cell survival, 
and immunity-related genes were differentially 
expressed in healthy subjects who were preconditioned 
with repetitive arm ischemia [112]. Following this, a 
pilot study exploring genome-wide expression and 
methylation changes in patients with aneurysmal 
subarachnoid hemorrhage revealed that a group of 
genes in cell cycle, defense, and inflammatory 
responses were rendered by RIC [154]. Novel 
techniques such as gene chip, serial analysis of gene 
expression and genome-wide expression studies may 
largely facilitate understanding of the conditioning 
response [114]. 
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Essentially, the potential applications of RIC are 
numerous and may be extended far more than 
aforementioned clinical settings. Fox example, RIC has 
been found to reduce the severity of acute mountain 
sickness symptoms, enhance the exercise performance 
and benefit patients with diabetic foot ulcer [233-237]. 
On an additional note, animal studies have highlighted 
the potential of limb RIC in diverse retinal disorders 
such as promoting retinal ganglion cell survival after 
optic nerve transection and affording protection to 
retinal photoreceptors against bright light- or IRI-
induced photoreceptor degeneration [238-240]. 
Knowing that the proposed mechanisms of RIC involve 
modulation of multiple pathways that cover 
inflammatory response, apoptosis, and oxidative stress, 
its therapeutic potential is believed to be able to expand 
to some non-ischemic inflammatory diseases with at 
least partially similar pathophysiological processes such 
as inflammatory bowel disease, acute pancreatitis, and 
connective tissue disorders. In addition, evidence 
available suggests that long-term RIC is capable of 
promoting improvement of the vascular function (such 
as improvement of local and systemic endothelial 
function, and microcirculation), which may be related to 
lower risks of future cerebro- and cardiovascular 
adverse events [138, 139]. As the application of RIC in 
these probable candidates is still in infancy, the 
feasibility will be determined in more rigorously 
designed experimental and clinical studies.  
 
There are conceivably a number of existing and 
potential stakeholders when it comes to the 
extrapolation of RIC from test bench to bedside. One of 
the major explanations for these discrepancies lies in the 
impact of comorbidities on the ischemic tissues or 
organs in response to the benefits from IC. Animals 
used in experimental studies are mainly juvenile, 
genetically homogenous, housed in similar living 
environments with the same diets, and carried with 
limited comorbidities. Nevertheless, a significant 
challenge in clinical trials is that enrolled individuals 
are more aged with large comorbidities and 
polypharmacy. In fact, sets of comorbidities including 
ageing, hypercholesterolemia, hypertension, diabetes, 
and chronic kidney disease have been found to inhibit 
or abolish the potency of IC according to previous 
experimental findings. It seems that concomitant 
medications including volatile anesthetics such as 
propofol and isoflurane, opioids, statins, anti-platelets, 
ACEI, beta-blockers, nitrates and hypoglycemic agents 
such as pioglitazone and glimepiride might either 
abrogate or restore the beneficial effects afforded by IC 
[167, 241-246]. One primary concern in treating 
patients with acute ischemic cerebro- or cardiovascular 

accident is the inevitable healthcare transport delay, 
which is believed to be closely associated with 
unfavorable clinical outcomes. A single center clinical 
study reported that RIC conducted during transportation 
to the hospital lessened the prejudicious effect of 
transport delay on myocardial salvage in STEMI 
patients undergoing primary PCI, and this 
cardioprotective effect was more marked in those with 
extended delay (healthcare system delay > 120 min) 
[247]. Moreover, the location and severity of infarcts, 
and the coronary collateral circulation’s ability may also 
play a potential role for mediating the effect of RIC 
[248]. A better realization regarding the limitations of 
current experimental or clinical design together with the 
way through which comorbidities, medications and 
other factors affect the efficacy of RIC will facilitate the 
selection of beneficial population, help understanding 
the underlying mechanisms and optimize the RIC 
regimen. 
 
Intriguingly, pharmacological manipulation targeting 
the signaling cascades and related molecular 
participants that can modulate the endogenous 
mechanisms of RIC is an emerging notion with 
substantial clinical value. Figuring out common 
mechanisms of protection afforded by IC and some 
pharmacological agents in a given clinical set-up may 
facilitate the development of novel approaches against 
deleterious effects such as IRI. In addition, the presence 
of time windows during which the signaling cascades in 
responsive to IRI are engaged might affect not only the 
effectiveness of IC but medical interventions that target 
perpetrators of reperfusion injury. Clearly, research 
should be continue for the sake of identifying 
pharmacological mimetic candidates that are safe and 
efficacious, verifying time window for conditioning, 
and further delineating the mechanism behind as well as 
human genetic and proteomic responses to conditioning. 
 
Summary and future direction  
 
RIC is an innovative therapeutic strategy, whereby 
transient, repetitive, sublethal ischemic exposure to a 
particular tissue or organ is able to confer systemic 
protection to distant susceptible organs or tissues 
against subsequent IRI.   
 
The application of RIC is simple and non-invasive, and 
has been extended from the arena of initial cardiac 
protection to a number of other organs such as the brain, 
kidney, lung and liver. The feature of multi-organ 
protection is quite significant since it allows RIC to a 
variety of clinical settings in which organs or tissues are 
vulnerable to acute IRI. It is hopeful that future well-
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designed clinical trials with adequate size and power 
will turn RIC into a routine clinical practice for either 
prevention or attenuation of disorders in more extensive 
scenarios than currently expected.  
 
Key points 
 
In this study, we provided an overview of the basic 
concept and proposed protective mechanisms of remote 
ischemic conditioning (RIC). In addition, we 
comprehensively reviewed and summarized the clinical 
studies of RIC in multi-organ protection published so 
far. Potential obstacles, which may retard the clinical 
translation of RIC, were discussed as well. We found 
that: 
 
Proof-of-concept clinical studies demonstrated benefits 
with RIC as an adjuvant to thrombolysis, mechanical 
thrombectomy or primary angioplasty in patients with 
acute cerebro- or cardiovascular attack, such as 
ischemic stroke and acute myocardial infarction; in light 
of advantages including simplicity, low expenditure and 
safety, RIC may be an ideal intervention to be employed 
during the transportation to qualified stroke or chest 
pain centers, and before and/or after intrahospital 
treatment.  
 
Long-term, repeated use of RIC has the potential to 
improve vascular endothelial function and enhance 
tissue perfusion, whereby decreasing the incidence or 
recurrence of unfavorable clinical endpoints in diverse 
clinical settings, such as chronic cerebral ischemia and 
chronic heart failure. 
 
Although two large, multicenter, randomized clinical 
trials of RIC in coronary artery bypass graft surgery 
yielded negative outcomes, factors including patient 
selection, RIC protocol and potential confounders 
should be further explored before reaching a final 
conclusion. 
 
Regarding the multi-organ protection feature, RIC 
seems to be a promising non-pharmaceutical and non-
surgical approach for preventing and treating systemic 
vascular diseases, which can inflict multiple systems 
simultaneously. As multi-organ ischemia-reperfusion 
injury, particularly amongst elderly patients with 
clinical scenarios such as atherosclerotic vascular 
disease, heart surgery and organ transplantation, is one 
of the most common real-world situations that besets 
clinicians, the authors believe that this paper will 
certainly arouse a wide interest from medical workers in 
both tertiary and community-based medical facilities. 

Future experimental or clinical work should focus on 
addressing the issues that may influence the translation 
of RIC from test bench to bedside, such as identifying 
the protective mechanism underlying ischemic 
conditioning, optimizing the conditioning regimen, 
establishing biomarkers to accurately evaluate the 
efficacy of RIC, and figuring out the impact of potential 
comorbidities, medications and other factors on RIC. 
 
METHODS 
 
We searched PubMed and EMBASE to identify 
randomized controlled trials (RCTs), meta-analyses, 
observational studies and systematic reviews that 
published between 1986 and 2018, via key words of 
‘remote ischemic conditioning’, ‘remote ischemic 
preconditioning’, ‘remote ischemic perconditioning’, 
‘remote ischemic postconditioning’ etc. We 
subsequently reviewed references of the retrieved 
articles for additional reports. Meta-analyses and 
systematic reviews were prioritized; case series and 
reports were included only for interventions for which 
RCTs were not available. Some data from prospective 
clinical trials were processed using RevMan5.0 
software provided by Cochrane collaboration and 
transformed via relevant formulas. 
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Supplemental Figure 1. Clinical Trials of Remote Ischemic Conditioning (RIC) on other organs. 
Abbreviations: AAA, abdominal aortic aneurysm; rHb, relative hemoglobin content; StO2, oxygen saturation; VFP, venous filling pressure; 
ALT, alanine aminotransferase; AST, aspartate aminotransferase; ICGc, indocyanine green clearance; PaO2/FiO2, partial pressure of 
oxygen/fraction of inspired oxygen; PGD, primary graft dysfunction; ALI, acute lung injury; RI, respiratory index; PIS, pulmonary injury 
severity. 
 


