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Abstract
Accurate prediction is a fundamental and leading work of the emergency medicine reserve management. Given that the 
emergency medicine reserve demand is affected by various factors during the public health events and thus the observed data 
are composed of different but hard-to-distinguish components, the traditional demand forecasting method is not competent 
for this case. To bridge this gap, this paper proposes the EMD-ELMAN-ARIMA (ELA) model which first utilizes Empiri-
cal Mode Decomposition (EMD) to decompose the original series into various components. The Elman neural network and 
ARIMA models are employed to forecast the identified components and the final forecast values are generated by integrating 
the individual component predictions. For the purpose of validation, an empirical study is carried out based on the influenza 
data of Beijing from 2014 to 2018. The results clearly show the superiority of the proposed ELA algorithm over its two rivals 
including the ARIMA and ELMAN models.
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Introduction

Given that the emergency medicine reserve is one of the stra-
tegic materials to deal with large-scale public health events, 
emergency medicine reserve management plays an impor-
tant roles in building up the emergency response capacity. 
Intuitively, in case of a public health event, the lack of emer-
gency medicines probably wastes valuable rescue time and 
results in much more loss. For example, at the end of 2017 
when the influenza virus was rapidly spreading in several 
regions of China, the specific medicine “Duffy” was out of 
stock due to the unexpected demand surge, e.g., a short-
fall of 310,000 boxes of "Duffy" only in Beijing. However, 

overstocking emergency medicines also leads to some major 
problems like the great stock cost and huge expiration cost. 
Only with the medicine reserve decision based on the accu-
rate demand forecast, can the above problems be effectively 
solved. However, the emergency medicine reserve demand 
is affected by the mixed effects of very complex factors 
like seasonality, response speed, virus transmission rate 
(in case of an epidemic), communication network of the 
people, among others. Consequently, the observed data are 
composed of different but hard-to-distinguish components; 
therefore, the traditional demand forecasting method does 
not work for this case, which presents China Food and Drugs 
Administration (CFDA) an urgent challenge to optimize the 
safety stock of emergency medicine reserve. Motivated by 
the above theoretical as well as practical concerns, this work 
aims to propose a new forecast algorithm of more accuracy 
based on the decomposition-ensemble methodology.

The rest of this paper is organized as follows: “Literature 
review” reviews the latest studies on the medicine demand 
forecasting; “Problem description” systematically expounds 
the problems and corresponding methods; “Model” elabo-
rates the EMD-ELMAN-ARIMA (ELA) model; “Empiri-
cal study” concludes this paper and makes a discuss on the 
future studies.
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Literature review

The most widely applied paradigm of forecasting the med-
icine demand is composed of two phases. The first phase 
predicts the number of infected cases (persons) while the 
second generates the forecast of the quantity of medicine 
demand based on the outcome in the first phase. In terms 
of forecasting the number of the infected cases, system 
dynamics models and statistical models are the two main-
stream approaches to predict the number of patients in 
public health events. The most typical system dynamics 
model is the classic SIR model proposed by Kermack and 
McKendrick, which lays the foundation of infectious dis-
ease dynamics [1]. Since then, infectious disease dynamics 
models have experienced a rapid development, many vari-
ants have emerged, like SEIR model considering epidemic 
latency [2], SIQR model considering isolation term [3], 
etc. System dynamics models considered the evolution law 
and transmission characteristics of public health events, 
but the prediction accuracy of the models depends on the 
predefined epidemic transmission mechanism and the 
parameter settings. Besides, the dynamics of the param-
eters are expressed by linear models, which cannot capture 
the non-linear relationship among factors in the epidemic 
transmission process. Although some studies have tried to 
simulate the individual behavior and social network in the 
system with the help of complex network models, such as 
the random network, small-world network and scale-free 
network [4–6], these models do not apply to the large-scale 
systems subject to high complexity.

Statistical models generally predict the evolution trend 
of public health events based on the historical observa-
tions. For examples, [7–12] used ARIMA model and its 
variants flexibly to predict the propagation path and the 
number of COVID-19 cases in various countries in the 
world, and achieved a satisfactory forecasting accuracy. 
In the study of influenza incidence prediction, Rao et al. 
collected the data set of a reported influenza epidemic of 
hospitalized children in a certain hospital, identified the 
characteristics of the prevalent influenza virus subtypes 
in different months, seasons, years, and patients’ age, 
and finally used ARIMA model to make the short-term 
prediction [13]. Wu et al. constructed a stochastic forest 
regression model for predicting the weekly incidence of 
influenza-like illness [14]. Furthermore, Tapak et al. made 
a comparative evaluation of different models for predict-
ing influenza outbreaks, the result showed that neural net-
work was better in outbreaks detection, and time series 
models had promising performances [15]. In the study 
of forecasting the incidence of hepatitis B, Wang et al. 
found that ARIMA model showed better forecasting per-
formance than GM(1,1) model [16]. Zheng et al. showed 

that ELMAN model was superior to ARIMA (0,1,1) model 
in predicting the incidence of hepatitis B in Guangxi 
through comparative experiments [17]. In addition, Wei 
et al. announced that the ARIMA-GRNN mixed model 
performs better than the ARIMA model and the GRNN 
model in predicting the incidence of hepatitis [18].

The advantage of the statistical models is that the mod-
els include fewer predefined parameters compared with the 
system dynamics models. However, these kinds of models 
are heavily dependent on the historical data, which explain 
why a statistical prediction model shows inconsistent perfor-
mance in different studies. The “data-driven” nature makes 
the input data dominate the outcome of the statistical mod-
els, namely “garbage in garbage out”. To provide the suited 
input data, it is necessary to decompose the original data 
into different components and select the statistical model 
according to the component characteristics. Empirical Mode 
Decomposition (EMD) provides a way to solve this problem. 
EMD is an analysis and processing method for non-linear 
and non-stationary signals [19] and has been successfully 
applied in a wide range of fields, such as energy, finance, 
agricultural products, hydrometeorology, mechanical fault 
diagnosis, and so on [20–28]. However, the application of 
EMD has not been found in predicting the medicine reserve 
demand in public health events.

There are some studies presenting the whole forecast-
ing process, very few though. These scanty studies include, 
Guo et al. used the BP neural network method to predict the 
population of wounded and deaths in the Yushu earthquakes, 
and then used the safety stock theory to estimate the demand 
for emergency supplies [29]. Zhang et al. constructed a grey 
Verhulst prediction model to predict the number of casual-
ties in the earthquakes, and based on average use require-
ments to determine medical supplies [30]. In addition, Wang 
further explored a continuous interval gray Verhulst model 
to work out the demand for emergency medicines in a same 
mechanism [31]. It can be seen that the existing research 
only focuses on the immediate demand after the disaster 
event, and the long-term reserve demand forecast of special 
emergency medicines for treating public health events has 
not been found yet.

The current related studies on emergency medicine 
reserve demand forecasting present 4 characteristics: (1) a 
majority of studies are focused on forecasting the number of 
cases, only few studies present a complete solution to fore-
casting the emergency medicine reserve demand. (2) Com-
pared with the system dynamics model, the statistical model 
need much less predefined parameters and can capture the 
development trend in the data-driven way. (3) The statistical 
models like ARIMA and neural network have been widely 
used in the research of medicine demand forecasting. How-
ever, the performance is sample-sensitive, namely the fore-
casting accuracy values are different on different samples. 
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(4) Empirical Mode Decomposition has widely been applied 
to improve the calculation accuracy of the single prediction 
models in various fields.

Based on the above-mentioned, this paper proposes the 
EMD-ELMAN-ARIMA (ELA) hybrid forecasting model. 
ELA uses EMD method to decompose the historical data of 
the infected cases into different components, then ARIMA 
and ELMAN neural networks are employed to capture the 
linear and the non-linear components, respectively. Fur-
thermore, based on the projection from the number of the 
infected cases to the medicine reserve demand dominated by 
nature of the public health events (i.e., the average medicine 
demand per person during the public health event), the emer-
gency medicine reserve demand can be obtained. Finally, to 
validate the model, an empirical study is carried out based 
on the actual data of influenza cases during the period from 
2014 to 2018 in Beijing. To the best of our knowledge, this 
paper is the first to apply EMD to the emergency medicine 
reserve demand forecasting.

Problem description

A. Characteristics of emergency medicine demand

Before forecasting the emergency medicines reserve 
demand, it is necessary to identify the characteristics of the 
data so as to select the matching forecasting methods. The 
demand for emergency medicines is characterized by sud-
denness, surge, and urgency. First, it is difficult to foresee the 
outbreaks of public health events, especially to accurately 
predict its infection scope and population, so the need for 
emergency medicine that will take on a sudden character. 
Second, the denser population and complex movement of 
people within cities accelerate the spread of epidemic, with 
the spread of online public opinion, the sales of emergency 
medicines will show a stronger surge character. Finally, the 
needs of emergency medicines are also extremely urgent, as 
the availability of emergency medicines cannot be delayed 
after the disease outbreak, the lack of emergency medicines 
reserve tends to fuel social panic, which can lead to more 
serious social problems.

In combination with the above characteristics, it is easy to 
infer that the data on the number of people affected by public 
health events are destined to be strongly non-stable, so the 
traditional time series prediction method, which requires a 

high requirement for data stationarity, will not be too accu-
rate. At the same time, traditional regression analysis meth-
ods are difficult to apply to such issues because of the dif-
ficulty of identifying and quantifying the factors that lead to 
the surge in demand for emergency medicines. In addition, 
considering the rapid population movements, frequent trade 
and commerce, and rapid development of the cities, prema-
ture demand data do not provide much guidance for the cur-
rent forecast results. Therefore, models of emergency medi-
cine reserve requirements also require the ability to handle 
small sample data. To sum up, forecasting the demand for 
emergency medicines is not only a hot academic issue, but 
also a very difficult practical issue.

B. Paradigm of emergency medicine reserve demand fore-
casting

In practice of CFDA, the medicine reserve demand is 
estimated by multiplying the number of suspected cases by 
the effective infections coefficient (i.e., the average medicine 
demand per person). Therefore, this paper proposes a para-
digm of emergency medicine reserve demand forecasting 
(see Fig. 1).

The proposed paradigm proceeds as follows: First, his-
torical data are collected on the actual number of people suf-
fering from public health events in cities. Second, historical 
data are used to forecast the specific number of people suf-
fering from diseases and the trend over the coming period. 
Finally, based on the prediction of the patients, the demand 
for emergency medicine reserve is estimated according to 
the medicine production capacity, reserve demand charac-
teristics, as well as the guidance and recommendations of 
experts, all the mechanisms and relevant factors can be sum-
marized as the demand coefficient of emergency medicine 
� . Denote S the reserve demand of emergency medicines 
and p the predicted value of cases in a public health event, 
the emergency medicines reserve demand can be expressed 
as follows:

The demand coefficient � of treatment medicines is usu-
ally equal to 1, that is, one patient corresponds to one per-
son’s medicine demand. However, in the real storage situa-
tion, the medicine storage units often need to adopt a safer 
demand coefficient bigger than 1, and their values are not 

(1)S = p × �

Fig. 1  Paradigm of emergency 
medicine reserve demand 
forecasting
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the same according to the operation situation of the medicine 
storage enterprises, the instructions of the national medi-
cine regulatory authorities, and the medicines production 
and procurement situation.

Model

Statistical prediction models can classified into three cat-
egories including regression models (e.g., Logistic Regres-
sion, Multiple Regression, etc.), time series models (e.g., 
Exponential Smoothing method, ARIMA, Bayesian VAR, 
etc.), and artificial intelligence models (e.g., Neural Net-
works, Support Vector Machines, etc.). In previous studies, 
the reliable performance of ARIMA and neural network 
models like ELMAN motivates this paper employ them as 
individual models.

A. Autoregressive integrated moving average model

The Autoregressive Integrated Moving Average Model 
(ARIMA) is one of the most frequently used models. The 
ARIMA model is based on the idea of transforming a non-
stable time series into a stable time series x(t) composed of 
the auto-regression of x(t) and the moving average of the 
random term. The mathematical expression is as follows:

where x(t) is the actual number of the cases caused by public 
health events, c is constant, ∅i and �i are the coefficients, 
p and q referred to as autoregressive and moving average, 
respectively.

B. ELMAN neural network model

Neural network models have been proved to be a kind of 
effective prediction models in a wide range of fields [32–34]. 
ELMAN neural network is a specific realization of the feed-
back neural network and shows its power in the prediction 
of influenza epidemics [15]. The network consists of the 
input layer, the hidden layer, the context layer, and the out-
put layer. The functions of the input layer, hidden layer and 
output layer are alike to those of other neuro networks. The 
context layer acts as a time delay operator in the model, link-
ing the previous output value from the hidden layer to the 
next input of the hidden layer, forming an internal feedback 
network. An illustrative structure of ELMAN neural network 
is shown in Fig. 2.

To describe the non-linear state space of the ELMAN 
neural network model [35], the definitions can be made as 

(2)

x(t) = c + �
1
xt−1 + �

2
xt−2 +…+ �pxt−p + �t

+ �
1
�t−1 + �

2
�t−2 +…+ �q�t−q

follow: w1
,w2

,w3 are the weights of the three steps of the 
input layer-hidden layer, hidden layer-context layer, and hid-
den layer-output layer, respectively; x(k) is the output of the 
hidden layer and xc(k) is the output of the context layer; 
f (⋅) and g(⋅) are the transfer functions of the hidden layer 
and the output layer, respectively; 0 < 𝜕 < 1 indicates the 
internal feedback gain factor, and the final network output 
is represented by y(k) . The derivation of the relationship of 
the model is as follows:

C. Distinguishing components by EMD

Although the above-mentioned models have seen 
some successful applications in emergency medicine 
demand forecasting studies [36–39], their performances 
are affected by the noise in original data in the prediction 
process. There are many factors that affect the number of 
people affected by a public health event, for example, the 
number of people infected by a specific influenza outbreak 
may be influenced by temperature, moderation, popula-
tion density, mode of transmission, precautions, and other 
factors. Therefore, the original time series tends to com-
prise very complex components, which renders a big chal-
lenge for the forecasting task. Despite that it is proved that 
including the key factors into the model can improve the 
prediction results [40, 41], it is impossible to identify and 
quantify all the factors, consequently some useful compo-
nents cannot be captured by the traditional models and are 
ignored as noise, which lead to unsatisfactory performance 
of the traditional models.

(3)y(k) = g
(
w3x(k)

)

(4)xc(k) = �xc(k − 1) + x(k − 1)

(5)x(k) = f
(
w1u(k − 1) + w2xc(k)

)

Fig. 2  An illustrative Structure of ELMAN Neural Network Model
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To overcome the above problem, inspired by the studies 
[42, 43], this paper uses Empirical Modal Decomposition 
method (EMD) to decompose the original data. EMD is an 
adaptive method suitable for processing non-stationary and 
non-linear series. EMD is totally data-driven and enjoys 
advantages compared to wavelet decomposition owing to 
its non-parametric nature. Out of the original data, a set of 
Intrinsic Mode Functions (IMFs) can be extracted, which 
provides more insight into the dynamics of the data and 
facilitates the forecasting work.

D. The EMD-ELMAN-ARIMA (ELA) model

It is a unanimous agreement in the forecasting field 
that the models, including time series models, economet-
ric models and artificial intelligence methods, should be 

carefully tailored to fit the data characteristics. Given that 
the emergency medicine demand against the public healthy 
events comprise multiple components of different char-
acteristics, a single model is not sufficient. Considering 
some studies have shown the power of combined forecast-
ing models in this case [44, 45], this paper proposes the 
combined model, namely ELA, based on the decomposi-
tion-ensemble methodology, which proceeds as follows: 
First, the time series of the cases (patients) is decomposed 
into different components by EMD. Second, ARIMA and 
ELMAN neural network are employed to predict the com-
ponents, based on which the integrated outcome is gener-
ated to be the sum of the forecasts of the components; 
finally, the prediction of emergency medicines reserve 
demand is obtained by Eq. (1). Figure 3 visually depicts 
the proposed ELA model.

Empirical study

A. Data introduction

With the support of CDFA, we obtained the weekly data 
on historical influenza cases from Beijing Center for Disease 
Prevention and Control (Beijing CDC) during the period of 
01/07/2014 to 25/12/2018. The first 200 observations are 
used to tune the parameters of the models, and the remainder 
21 observations from August to December 2018 are used to 
validate the model.

Figure 4 visualizes the original data and shows a signifi-
cant increase of the peak level of the reported cases after 

Fig. 3  The model of EMD-ELMAN-ARIMA

Fig. 4  Original data of influenza cases
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2018. According to the experts from Beijing CDC, the main 
reasons are as follows: First, at the end of 2017, a new influ-
enza virus subtype appeared in Beijing, and the population 
did not have immunity to this new virus subtype, resulting 
in an increase in susceptible populations; Second, due to the 
previous media propaganda, including the posts of influenza 
deaths reprinted on the Internet, the public’s awareness of 
the dangers of influenza and the awareness of vigilance have 
increased significantly, resulting in a significant increase in 
the rate of medical treatment and the number of reported 
cases; Third, a new detection technology has been widely 
used in medical institutions in Beijing since 2017, and the 
detection rate and detection rate have been improved. The 
superposition of the three factors led to a significant increase 
in the number of influenza cases reported, but it still did not 
reach the outbreak level.

B. Data processing

Due to the complexity of influenza in megacities, the 
cases of influenza patients tend to be highly volatile and 
unstable. Using the Augmented Dickey–Fuller test, the 
stationarity of the data can be tested. Table 1 lists the test 
results showing that the original series is not stationary, 
which implies that the models for stationary series cannot 
be applied in this case.

This section uses the proposed ELA model to predict 
the influenza cases. First, the data were decomposed by 

EMD using the MATLAB software package. As shown in 
Figs. 5, 6, 7, IMFs and one residual mode were obtained 
after EMD decomposition. The IMF1 has the highest fre-
quency and fluctuating most strongly at random. The fre-
quency decreases when we check the modes from IMF2 to 
the residual series. As shown by [40, 41], data preprocessing 
plays a very important role in forecasting. For higher fore-
casting accuracy, it is necessary to appropriately preprocess 
the data before run the forecasting models, among which, 
matching the IMFs, individually or in combinations, with 
the suited models is a key task.

We tested various combinations of 8 modes by “trial and 
error”. According to the results, the sum of IMF1 to IMF3, 
denoted by x

1
 , fits best the influenza cases data. While the 

sum of IMF4 to the residual series, denoted by x
2
 , simulates 

well the seasonality. Thus, the series of influenza cases is 
decomposed into two subseries x

1
 and x

2
 , and the original 

series x of influenza cases in Beijing can be expressed as 
Eq. (6).

The ELMAN neural network and ARIMA models are 
used to capture the nonlinearity in × 1 and seasonality in × 2, 
respectively (Figs. 8, 9, 10, 11).

C. Forecasting process

The whole forecasting process is composed of 4 steps. 
First, ARIMA model is used to predict the original time 
series. Because the data fluctuate excessively and include 
the growth trend brought by the progress of influenza 
virus detection technology, it is necessary to strip the 
trend items brought by the progress of detection technol-
ogy from the original data before using ARIMA model. 
With the help of Hodrick–Prescott filtering method, the 

(6)x = x
1
+ x

2

Table 1  Stationary test of influenza cases data

Augmented Dickey-Fuller test statistic t Statistic Prob.*
− 0.229754 0.9920

Test critical values: 1% level − 4.003449 –
5% level − 3.431896 –
10% level − 3.139664 –

Fig. 5  IMFs generated by EMD
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original time series is divided into the period term and 
trend term, and the trend term is added to ARIMA model 
as an explanatory variable for model fitting [46].

Fig. 6  Original time series V.S. modes of IMF1-3

Fig. 7  Original time series V.S. modes of IMF4-Res

Fig. 8  Decomposition of original time series by hodrick-prescott filter

Fig. 9  ADF test results of first-order difference in the original time 
series
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Because the original data fluctuate violently, the origi-
nal time series is processed by difference, and the first-
order and second-order difference series are tested by the 
ADF test.

As shown in the above test results, at the significance 
level of 0.05, the null hypothesis is rejected, indicating that 
the second-order difference series of the original influenza 
cases data is stationary. The Box–Jenkins method is used to 
determine the order of the model, and the ARIMA (0,2,4) 
model is obtained on the premise that the residual error 
sequence is a white noise sequence.

Second, in the ELMAN neural network, we used the 
training data set (the blue points in Fig. 12) to estimate the 
network parameters, based on which we obtained the fore-
casts (the red points in Fig. 12).

Third, the ELA model was used to predict the number 
of cases given the two combinations of IMFs, i.e.,x

1
 and x

2
 . 

The ELMAN neuro network was used to get the forecasted 
value of x

1
 . Using the AIC rule, ARIMA (4,1,1) was identi-

fied to be the best fit for x
2
 . The final predicted values were 

obtained by summing up 21 predicted values of the x
1
 and x

2
 

in the forecasting horizon from 07/08/2018 to 25/12/2018.

Fourth, after obtaining the prediction results of the num-
ber of influenza patients, it is necessary to estimate the pro-
jection coefficient � from the number of cases to the emer-
gency medicine reserve demand. According to the experts 
from CDFA and Beijing CDC, � is dependent on the treat-
ment course and dosage, and � = 1 would be acceptable by 
rule of thumb in case of the influenza (Fig. 13).

D. Prediction results and analysis

In this paper, Mean Absolute Percentage Error (MAPE) is 
used to evaluate the prediction error. Denote x̂t the predicted 
value and xt the data of the original time series, then MAPE 
is mathematically expressed as follows:

On the one hand, for the prediction results of the number 
of influenza patients, the combined prediction model con-
structed in this paper is superior to the traditional time series 
model and machine learning model alone.

According to Table 2, the forecasting error of the ARIMA 
models reaches 15.31% and 10.62%, the ELMAN neuro net-
work suffers a forecasting error of 7.29%, while the proposed 
ELA model sees a significantly smaller error of 3.87%, 
which implies that the ELA model outperforms the individ-
ual ARIMA and ELMAN models. With � = 1 , we obtained 
the predicted value of the emergency treatment medicines 
for influenza in 2018 as shown in Table 3:

Table 3 shows that the forecast by ELA fits best the actual 
medicine reserve demand, compared with its 3 rivals. It is 
worth noting that the actual medicine reserve for influenza 
in 2018 is less than the forecast, which is consistent with 
the reality according to the administrative of CDFA, saying 
there was a shortage of the medicine reserve for influenza 

(7)MAPE =
1

n

n∑

t=1

|
||||

x̂t − xt

xt

|
||||

Fig. 10  ADF test results of second-order difference in the original 
time series

Fig. 11  Fitting results of ARIMA(0,2,4) model

Fig. 12  The ELMAN model predicts results
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and China started the emergency production at a higher cost 
than in usual. The relief action would have been more effec-
tive if the demand was estimated accurately, which high-
lights the practical value of the ELA model.

Conclusion

Based on the decomposition-ensemble methodology, this 
paper constructs a new combined prediction model based 
on EMD, ARIMA, and ELMAN, namely the ELA model, to 
forecast the emergency medicine reserve demand in response 
to a public health events. This model employs EMD decom-
pose the original series of cases (patients) into different com-
ponents, then reconstructs all the components into several 
combinations to avoid the curse of dimensionality. Subse-
quently ELMAN neuro network and ARIMA are applied to 
the suited combinations by “trial and error” according to the 
characteristics, like linearity and nonlinearity in this study. 
Finally, the forecast of the emergency medicine reserve 

demand is generated with a projection coefficient � by the 
rule of thumb. To validate the model, with the support of 
CFDA and Beijing CDC, an empirical study was carried 
out based on the weekly data of influenza cases in Beijing 
from 07/08/2018 to 25/12/2018. The results clearly show 
the superiority of the proposed ELA model over its rivals, 
which indicates the potential of the ELA model to be a more 
powerful tool for emergency medicine reserve management.

It is notable that although this work promotes better 
understanding of applying the decomposition-ensemble 
paradigm to the emergency medicine reserve forecast work, 
some important issues are left to the future studies. For 
examples, when EMD generates a large scale of components, 
it is infeasible to identify the best combinations by “trial and 
error”. Moreover, there are some optimization problems to 
be solved in the future, like the optimal length of forecast-
ing horizon, the optimal number of individual models to 
be integrated, the optimal size of training set, and so forth.
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Fig. 13  The comparison of three prediction methods

Table 2  Performance 
comparison of different models

Model MAPE (%)

ARIMA-original 15.31
ARIMA-dummy 10.62
ELMAN 7.29
ELA 3.87

Table 3  Model performance Comparison based on Actual Reserve in 
2018

Method Forecasts Actual medicine reserves for 
influenza

ARIMA 75,193 78,940
ELMAN 82,210
ELA 79,283
Number of real cases 80,247

http://creativecommons.org/licenses/by/4.0/
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