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Abstract

Background: Due to the rapidly expanding body of biomedical literature, biologists require increasingly
sophisticated and efficient systems to help them to search for relevant information. Such systems should account
for the multiple written variants used to represent biomedical concepts, and allow the user to search for specific
pieces of knowledge (or events) involving these concepts, e.g., protein-protein interactions. Such functionality
requires access to detailed information about words used in the biomedical literature. Existing databases and
ontologies often have a specific focus and are oriented towards human use. Consequently, biological knowledge is
dispersed amongst many resources, which often do not attempt to account for the large and frequently changing
set of variants that appear in the literature. Additionally, such resources typically do not provide information about
how terms relate to each other in texts to describe events.

Results: This article provides an overview of the design, construction and evaluation of a large-scale lexical and
conceptual resource for the biomedical domain, the BioLexicon. The resource can be exploited by text mining
tools at several levels, e.g., part-of-speech tagging, recognition of biomedical entities, and the extraction of events
in which they are involved. As such, the BioLexicon must account for real usage of words in biomedical texts. In
particular, the BioLexicon gathers together different types of terms from several existing data resources into a
single, unified repository, and augments them with new term variants automatically extracted from biomedical
literature. Extraction of events is facilitated through the inclusion of biologically pertinent verbs (around which
events are typically organized) together with information about typical patterns of grammatical and semantic
behaviour, which are acquired from domain-specific texts. In order to foster interoperability, the BioLexicon is
modelled using the Lexical Markup Framework, an ISO standard.

Conclusions: The BioLexicon contains over 2.2 M lexical entries and over 1.8 M terminological variants, as well as
over 3.3 M semantic relations, including over 2 M synonymy relations. Its exploitation can benefit both application
developers and users. We demonstrate some such benefits by describing integration of the resource into a
number of different tools, and evaluating improvements in performance that this can bring.

Background
Automatic literature analysis and text mining has devel-
oped into a discipline of bioinformatics research. As the
need for biomedical text mining systems grows [1-3],
the requirement for domain-specific lexical resources [4]
that can aid systems in accurately identifying and

extracting knowledge embedded within texts is becom-
ing stronger.
The identification of knowledge includes, but is not

limited to, the recognition of concepts. Rather, knowl-
edge consists of relationships that hold between these
concepts. Such relationships (or events) may describe,
for example, an interaction between 2 proteins, or the
regulation of a gene by a protein, etc. Within texts,
events are frequently organized around verbs. A text
mining system that allows users to search for events as
well as individual concepts provides the means to locate
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information much more quickly and efficiently than tra-
ditional keyword-based methods. Advocates of systems
that take verbs into account include, notably, Bill Gates,
who has stated that The future of search is verbs (as
reported by E. Dyson at Big Think’s Farsight 2011:
Beyond the Searchbox event [5]).
Since knowledge is expressed by words, text mining

systems can benefit from access to resources that pro-
vide precise information about how words behave in
texts within their domain of operation. Within the bio-
medical field, the recognition of both concepts and
events present their own challenges, which must be con-
sidered during the construction of such a resource.
Concepts are represented in text by biomedical terms.

Inventories of such terms can already be found in a
number of well-established reference data resources,
which are subject to ongoing improvements. These
include the Gene Ontology [6], ChEBI [7,8], BioThe-
saurus [9] and the NCBI taxonomy [10]. However, in
the context of text mining systems, the use of such
resources as an aid to recognizing terms in biomedical
texts presents a number of drawbacks:

• Each resource generally has a different focus. For
example, BioThesaurus covers gene and protein
names, while ChEBI deals with chemical entities of
biological interest. As the resources are not linked
together [11], the coverage of biological terminology
contained within them remains dispersed, making it
difficult to use them in wide-coverage or re-targeta-
ble text mining systems.
• The resources are often completely manually
curated and oriented towards human use [12,13],
meaning that labels for concepts contained within
them deviate from the language used by the scientist
in the scientific literature. This is a barrier for effi-
cient text mining solutions, which need to know pre-
cisely which concepts manifest themselves in texts,
and how. In biomedical texts, terms frequently have
a number of different written forms (called “var-
iants”) [14]. The set of possible variants of a given
term is constantly changing, since new variants are
frequently coined by authors. This makes it difficult
for resources that are completely manually curated
to keep track of all variants that may appear in the
literature. Consequently, determining exactly which
words in a text correspond to biomedical terms, and
moreover, which concepts they represent (in terms
of, e.g., database identifiers such as a UniProt [15]
accession number), is a major challenge, which can-
not be fully supported by existing resources.

In terms of recognising events expressed in biomedical
texts, the challenge presents itself in terms of the

idiosyncratic patterns of behaviour of individual verbs,
which occur in terms of both grammar (i.e., which
terms/phrases in a sentence are linked to the verb, and
how) and semantics (i.e., the meaning/role of each
linked term/phase in relation to the knowledge being
expressed). The ability of a system to extract events
accurately requires access to both types of information.
Until now, only a small number of attempts have been
made to create resources that describe the behaviour of
verbs in biomedical texts, all of which have shortcom-
ings. These shortcomings include being too small scale
to be of practical use (e.g., [16,17]), covering only gram-
matical and not semantic behaviour, and not taking suf-
ficient account of real, observed usage of the verbs
within texts (e.g., [18]).
We have responded to the issues outlined above by

constructing the BioLexicon, which is a standards-com-
pliant, reusable, lexical and conceptual resource that has
been designed to support a range of tasks performed by
biomedical information retrieval and text mining sys-
tems. The main criteria in constructing the lexicon were
as follows:

• It should describe real, observed usage of words in
biomedical texts, in order to facilitate sophisticated
text mining applications.
• It should be a large-scale and wide-coverage
resource, to facilitate its use in a broad spectrum of
tasks applied to biomedical texts.
• It should include a wide range of variants of bio-
medical terms appearing in biomedical literature.
• It should include linguistic information, including
both the grammatical and semantic behaviour of a
range of domain-relevant verbs.

The BioLexicon is intended to be integrated into sys-
tems, in order to facilitate improved or more advanced
behaviour. As such, whilst the direct users of the Bio-
Lexicon will be system developers, the end-users of
implemented systems can be seen as indirect users, in
that they will benefit from the enhanced system func-
tionalities that are provided through the use of the
BioLexicon.
The main purpose of this article is to provide a gen-

eral overview of the BioLexicon, covering four main
areas:

• The design considerations and challenges faced in
building the BioLexicon.
• The methodology employed to build the lexicon in
response to these considerations and challenges.
• Provision of information about the coverage of the
lexicon, and the types of information contained in
typical entries.
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• A description of how the BioLexicon has been
exploited through its integration into a number of
tools relating to biomedical information retrieval and
text mining.

BioLexicon overview
The BioLexicon contains ~2.2 M lexical entries for bio-
medical text mining, with information regarding 4 part-
of-speech (POS) categories, i.e. nouns, verbs, adjectives
and adverbs; each category includes both domain-speci-
fic terms and general language words. The construction
of the lexicon has involved the employment of a range
of methods, both manual and automatic. Automatic
methods have been employed in cases where the very
large scale of the task would make a manual solution
impractical or extremely costly, and where the perfor-
mance of the automated solution is of a sufficiently high
quality.
The construction criteria outlined in the previous sec-

tion have been achieved in a number of ways, including
the following:

• Real, observed usage of words - A large amount
of information about domain-specific words has
been derived directly from corpora of biomedical
texts, to ensure that actual usage is reflected in the
entries of the BioLexicon. General language vocabu-
lary is accounted for in the BioLexicon through the
inclusion of entries from the MedPost dictionary
[19]. Since the vocabulary in this dictionary is drawn
directly from MEDLINE abstracts, it also reflects
real vocabulary usage within biomedical texts.
• Large-scale and wide-ranging coverage - The Med-
Post dictionary contains some 10,000 entries, which
constitute almost 93% of the words appearing in MED-
LINE abstracts. In the BioLexicon, the entries from the
MedPost dictionary are supplemented with terms
extracted from 14 different biomedical resources. Since
each resource has a different focus, as detailed in the
Methods section, the BioLexicon constitutes a unified,
consolidated resource of biomedical terminology.
• Term variants - Terms extracted from existing
resources are augmented with gene and protein
name variants, automatically extracted from 15 mil-
lion MEDLINE records, using text mining methods.
• Linguistic information - The Biolexicon includes
comprehensive information about the behaviour of
verbs. This includes

○ Grammatical information, which has been
automatically acquired from a biomedical text
corpus of 6 million words.
○ Semantic information, which is based on man-
ual annotation of events by biology experts in
677 MEDLINE abstracts.

○ Manually-determined links between grammati-
cal and semantic information.

Care has been taken to ensure that the quality of the
entries in the BioLexicon is as high as possible. Steps
taken in this respect include the following:

• Employment of measures to verify the quality of
entries extracted from existing biomedical resources.
• Use of state-of-the-art text mining tools to perform
automatic processing steps
• Post-filtering of automatically extracted
information.
• Verification of the quality of the manually-pro-
duced annotations from which verbal semantic infor-
mation is derived, through double annotation of a
proportion of the abstracts by different annotators,
and calculation of inter-annotator consistency rates.

The BioLexicon has already been integrated into a
number of different domain-specific tools, i.e. a part-of-
speech tagger, a lemmatizer, an information extraction
system and a fact extraction system. The use of the Bio-
Lexicon within these tools, together with some evalua-
tion data, is provided in the Discussion section. Further
examples of tasks that could be supported by the Bio-
Lexicon include the following:

• Dynamic query term completion during search
input. When the user has started to type into the
search box, suggestions of possible completions of
query terms can be made automatically by the sys-
tem, through reference to BioLexicon entries.
• Detection of protein-protein interactions (PPI) via
co-occurrence. Some PPI detection methods are
based on calculating co-occurrence statistics between
pairs of proteins within, e.g., sentences or abstracts,
e.g. [20]. The BioLexicon can provide support in the
recognition of proteins to facilitate this task.
• Identification of associations between different
types of terms, in a similar way to [21]. Given a
search term, associations can be found by calculating
which other types of terms (e.g. diseases, drugs, etc.)
frequently co-occur with the search term (e.g., in the
same abstract). Finding such associations can be use-
ful in allowing researchers to answer questions such
as Which diseases are relevant to a particular gene?
The BioLexicon can provide support in the recogni-
tion of relevant co-occurring terms, as well as pro-
viding variants of the entered search term, in order
to expand the results returned by the query.

The complete BioLexicon is available in a relational
database format from the European Language Resources
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Association (catalogue reference T0373: http://catalog.
elra.info/product_info.php?products_id=1113). A part of
the data in the BioLexicon, i.e., the repository of terms
that have been extracted from existing databases (thus
excluding the many other variants found in text, that
are however incorporated in the full BioLexicon), is
freely available for download in XML [22] format from
http://www.ebi.ac.uk/Rebholz-srv/BioLexicon/biolexicon.
html. The content of the BioLexicon can also be queried
using a web interface available at: http://wiki.ilc.cnr.it/
BootStrep/searchPanel.action.
The BioLexicon was developed as part of the BOOT-

Strep project, which had the aim of developing
resources and text mining tools that could boost the
performance of various biomedical application tasks.
Whilst the coverage of the BioLexicon (particularly bio-
medical terms) is intended to be wide enough to allow
it to be used as a general-purpose resource for the bio-
medical literature, gene regulation was chosen as the
domain that would receive a particular focus during the
project. Therefore, special attention has been paid to
ensuring that this domain is covered comprehensively in
the BioLexicon. In line with the focus on gene regula-
tion, another major outcome of the project was the
Gene Regulation Ontology (GRO) [23]. The GRO is a
conceptual model for the domain of gene regulation,
which covers processes that are linked to the regulation
of gene expression, as well as physical entities that are
involved in these processes (such as genes and transcrip-
tion factors). It incorporates other well-established bio-
medical ontologies, such as the Gene Ontology [6] and
the Sequence Ontology [24]. It is listed on the Open
Biomedical Ontologies [25], demonstrating its commit-
ment to adopting developmental best practices, in order
to foster interoperability. Whilst the GRO and BioLexi-
con can function independently of each other, a
mechanism has been provided to link lexical entries in
the BioLexicon to ontological classes in the GRO. The
combined capacity of these resources can facilitate
advanced information extraction and text mining
capabilities.
This article focusses primarily on the two areas of the

lexicon that support the key tasks of automatic biomedi-
cal term extraction and knowledge extraction from text,
namely domain-specific nouns and verbs. We cover
both the acquisition of biomedical terms and their var-
iants, and the acquisition of grammatical and semantic
behaviour of verbs. Particular attention is paid to verbs
for a number of reasons. Firstly, as described above,
they play a crucial role in the development of advanced
search systems that allow pieces of knowledge (i.e.,
events) to be extracted and searched. Secondly, given
the idiosyncratic nature of verb behaviour, and the fact
that both grammatical and semantic information are

required for the accurate extraction of events, the pro-
cess of acquiring information for verbs is more complex
than for terms. Finally, we have applied novel methods
to acquire much of the verbal information.
The remaining part of this section describes the main

design considerations that were taken into account dur-
ing the construction of the BioLexicon. Focussing on
the application areas of automatic biomedical term
extraction and knowledge extraction, the following
points are addressed:

• Existing problems and challenges faced in each
application area.
• A description of how these application areas can
be improved by the availability of enhanced
resources.
• Difficulties faced in creating such enhanced
resources, together with proposed solutions.

Biomedical term extraction
The use of biomedical terms as references to concepts
and entities in biomedical data resources is paramount
for the integration of the literature into the bioinfor-
matics data infrastructure. Knowledge of as many term
variants as possible can be a huge asset to text mining
systems, since searching of biomedical texts can be vastly
improved if all variants of some term are automatically
resolved to the same entity. Importantly, this means that
the biologist does not need to be concerned with the
often impossible task of trying to enumerate all variants
of a particular term as part of their search. Rather, he
only has to enter a single variant of each search term, in
response to which the enhanced information retrieval
system is able to return not only documents that mention
the entered search term, but also those documents con-
taining its known variants. Similarly, a text analysis solu-
tion would suggest only one canonical entity to the
biologist for all alternative variants found in the text.
The problems of discovery, mapping and integration

of new terms and their variants into existing biomedical
resources have constituted a major challenge for biome-
dical text mining systems [26,27]. This task is particu-
larly challenging, due to the potentially large number of
variants, and the range of different forms that these var-
iants can take. Some common types of variant forms are
as follows:

• Orthographical, e.g.,
○ spelling variations (tumour vs. tumor)
○ hyphens/slashes (amino acid vs. amino-acid)
○ case variations (NF-KB vs NF-kb)

• Morphological (e.g. Parkinson disease vs Parkin-
son’s disease)
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• Synonyms (e.g. carcinoma vs. cancer)
• Acronyms (e.g. Interleukin-2 vs. IL-2)
• Structural (e.g. NF-kappa-B inhibitor vs. Inhibitor
of NF-kappa-B)
• Semantic, i.e., variants whose textual form is unre-
lated, but which nevertheless denote the same entity
(Ksp1 protein vs. Ppk20)

Domain-specific nouns
In the BioLexicon, biomedical terms constitute the
major part of the domain-specific nouns. As mentioned
above, these terms have been gathered together from
several existing terminological databases and ontologies,
in an attempt to construct a large-scale and unified
repository of biomedical terms, which is suitable for use
by wide-coverage text mining systems. In order to
reflect more closely the actual occurrence of these terms
in biomedical texts, i.e., to account for the many differ-
ent variants that can appear, Named Entity Recognition
(NER) techniques have been applied to extract addi-
tional variants from 15 million MEDLINE records. This
automatic procedure can be re-run at regular intervals
to ensure that the BioLexicon contains the most up-to-
date terms variants.
NER is a process that recognises Named Entities (NEs)

of interest in text [3], such as genes or proteins in the
biomedical domain. It does this by considering features
of the entities, such as:

• The POS of their constituent words, e.g., noun,
adjective, etc.
• Whether the words start with a capital letter.
• Whether part or all of the candidate term is
already a known term (which requires access to a
repository of biomedical terms).
• Which words occur in the vicinity of the term, etc.

NER is normally carried out either through the appli-
cation of a set of rules or by applying machine learning
techniques to a set of documents in which NEs have
already been manually annotated, in order to determine
the set of features that can most accurately predict the
desired entities of interest in a text.

Biomedical knowledge extraction
As an example of a biomedical event organized around a
verb, consider the following simple sentence:
Fis activates rrnB P1 - Existing terminological

resources may contain sufficient information to identify
Fis and rrnB P1 as relevant terms, and furthermore may
categorise their semantic types as PROTEIN and PRO-
MOTER, respectively. However, such resources generally
lack the detailed information about verbs that would be
required to extract the relationship between these two
terms and their involvement in the same event, namely

the positive regulation of a gene [23,28,29]. Text mining
systems should be able to extract this knowledge in a
structured format, such as the following:

• There is an event of type POSITIVE_REGULA-
TION, organized around the verb activates.
• The event has 2 participants, namely:

○ Fis, which is the causer of the event (we call
this the AGENT of the event).
○ rrnB P1, which is affected by the event (i.e., the
THEME of the event).

Such structured knowledge facilitates advanced, event-
based searching [30,31], which is much more powerful
and specific than simple keyword searching.
Suppose that a biologist wishes to find which promo-

ters are positively regulated by the protein Fis. Using a
simple keyword search, the biologist could enter the
search terms Fis and activate (a verb amongst others
that is frequently used to represent events of positive
regulation in molecular biology). Carrying out the search
in this way presents a number of problems, for example:

• Relevant documents should contain a sentence in
which Fis is grammatically related to the verb acti-
vate (i.e., Fis should be the subject). However, a sim-
ple keyword search does not allow such specific
criteria to be specified. The search may even return
documents in which the two terms occur in separate
sentences. Thus, many irrelevant documents are
likely to appear in the search results.
• Positive regulation events may be organised around
verbs other than activate, e.g. stimulate. As it is dif-
ficult to determine the exact range of verbs that can
describe such events, formulating a query that will
return all relevant events is problematic.

In contrast to keyword searching, event-based search-
ing carries out searches over structured events that have
been extracted from text. This means that it is not
necessary to be concerned about the exact way in which
the event is specified in the text (including the choice of
verbs and the order of the terms in relation to the verb).
As events and their participants are grounded to actual
words in the text, users can still review search results in
the familiar way, i.e., by viewing a snippet of text from
each document containing the relevant event [32].
In order to perform event-based search, users can par-

tially complete a template that specifies constraints
regarding the events to be retrieved. For the search pro-
blem introduced above, the biologist may specify the fol-
lowing semantic constraints, to ensure that the only
documents returned by the search are those containing
events describing promoters that are positively regulated
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by the protein Fis:

• The event type should be POSITIVE_REGULATION.
• The event should have an AGENT, which has the
value Fis and has the type PROTEIN
• The event should have a THEME, with the type
PROMOTER.

Semantic constraints can be specified in more or less
general terms depending on the requirements of the
search, e.g., it is possible to use specific keywords as the
values of event participants, but it is equally possible to
specify more general types, e.g., PROMOTER, which
could correspond to a wide range of possible values.
The semantic event structure above introduces a gen-

eralisation of events and allows for deviation from the
way the events are represented in text. However, in
order to extract instances of events from texts, text
mining systems need to determine how to map from the
textual representation of the event to the more abstract,
structured format on which queries can be performed.
This requires detailed information about the patterns
that can occur in text to describe relationships between
terms.
Verbs are central to many of these event representa-

tion patterns and, in most cases, the semantic event par-
ticipants will be grammatically related to the verb. The
automatic recognition of events thus requires the fol-
lowing to be determined:

• Which verbs describe relevant events.
• For each relevant verb:

○ Grammatical structure - which terms and
other phrases constitute participants of the
event. This is determined by locating those
phrases that have a grammatical relationship to
the verb (e.g., subject or object). Such phrases
are called the arguments of the verb.
○ Semantic structure - how each identified event
participant contributes towards the description
of the event (using semantic roles such as
AGENT and THEME).

As mentioned above, individual verbs have idiosyn-
cratic properties, with differing grammatical and seman-
tic structures. The number of typical grammatical
arguments (e.g. subject and object, as well as other pos-
sible argument types) varies from verb to verb, as does
the typical semantic interpretation of a given argument.
Such properties of individual verbs, which are described
in further detail below in the Domain-specific verbs sub-
section, motivate the need for a large-scale domain-spe-
cific vocabulary resource that includes explicit linguistic
information that can help text mining systems to

determine how terms and concepts are used within
texts [33].
Domain-specific verbs
In the BioLexicon, domain-specific verbs have been
manually selected, based on an examination of biomedi-
cal literature. Since patterns of behaviour are often verb-
specific, it is not possible to predict semantic patterns
based on grammatical patterns. For these reasons, a lexi-
cal resource conceived to support biomedical text
mining applications effectively must include separate
descriptions of both the grammatical and semantic
behaviour for individual verbs, as well as providing the
links between the two types of patterns. The informa-
tion about patterns is represented in a template-like
structure called a frame.
Each verb may have more than one frame, corre-

sponding to different possible patterns of grammatical
and/or semantic behaviour. As frames are abstract speci-
fications that give predictions [34], it may be that, in a
particular sentence, a predicted argument or participant
is not present. There is thus optionality built into
frames. This is useful in helping systems to deal with
common styles of writing in scientific text, in which pas-
sive constructions are often preferred to active ones
[35], e.g., x was activated, where the writer does not
overtly state the AGENT, i.e., who or what was respon-
sible for the action. It is furthermore useful in helping a
system to infer what kind of AGENT would typically be
responsible, when that AGENT is missing. By applying
the predictions (or constraints) specified in frames, a
text mining system can deliver more accurate and com-
plete analyses, by matching a frame specification to
instances in the text [36].
Grammatical argument patterns for verbs
In terms of possible grammatical argument patterns, tran-
sitive verbs such as activate or regulate take direct objects
(The phosphorylated form of enzyme IIAGlc probably acti-
vates adenylate cyclase), whilst intransitive verbs such as
act or compete do not. Some verbs (e.g. show, demon-
strate) permit a that-complement clause (as in The analy-
sis shows that ...), whilst others take an infinitival clause (e.
g. need, act as in Bisulfite acts to inhibit excision repair).
The availability of grammatical information is particu-

larly important in extracting events from sentences con-
taining multiple verbs, when it must be determined
which words and phrases relate to which verbs. As an
example, consider the following sentence, in which there
are 3 verbs describing events (emboldened), each of
which has a different set of participants: IHF may inhi-
bit ompF transcription by altering how OmpR interacts
with the ompF promoter.
Semantic argument patterns for verbs
On the semantic side, variations can occur both in the
patterns of the semantic roles that apply to event
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participants and the types of entities (i.e., NE types) that
constitute the participants. Many verbs include among
their arguments both an AGENT and a THEME. This is
exemplified in the sentence The enzyme can bind a sec-
ond DNA duplex, in which the enzyme and a second
DNA duplex play the semantic roles of the AGENT and
THEME of the binding event, respectively.
In contrast, some verbs do not specify an AGENT at

all, as in the case of the verb accumulate in the sen-
tence, Neither free rRNA nor free r-protein accumulate
in appreciable amounts during balanced growth, in
which the emboldened phrase is affected by the event
expressed by the verb, and thus plays the role of the
THEME.
The above examples demonstrate the lack of consis-

tent correspondence between grammatical and semantic
arguments. Depending on the verb, the grammatical
subject may represent, in semantic terms, the AGENT
or the THEME of the event expressed by it. In contrast,
different grammatical forms can be used to express the
same semantic role. For example, the THEME of an
event can be associated with either the grammatical sub-
ject or object.
Other types of semantic roles are also possible, as in

the sentence Bisulfite acts to inhibit excision repair.
Whilst Bisulfite is clearly the AGENT, it would be
incorrect to say that the underlined argument is the
THEME of the event. Rather, according to our inventory
of semantic roles (described in the Methods section) it
should be labelled as the PURPOSE of the event.
According to the verb in question, a particular event

participant (i.e., having a specific semantic role) can cor-
respond to different NE types. For example, the AGENT
of an event organised around the verb bind is generally
an entity with the NE type PROTEIN, whilst for events
that are organised around the verb encode, the AGENT
is normally an entity with the NE type DNA. The avail-
ability of such information can be useful as a filter when
extracting events, ensuring that only events whose parti-
cipants correspond to the expected NE categories are
stored as relevant events. This is particularly useful in
the case of general language verbs, which, according to
the types of participants involved, may or may not
describe biologically relevant event.
Resources providing grammatical and semantic information
about verbs
For general (i.e., non-specialist) English language,
resources called computational lexicons have been cre-
ated (e.g., [37-39]) that contain the above types of infor-
mation for verbs, thus allowing relationships between
terms and phrases within sentences to be identified
automatically. To some extent, it is possible to employ
these existing resources in text mining systems that
operate in the biomedical domain [40,41]. However, it is

strongly beneficial for text mining systems to have
access to domain-specific counterparts of these general
language resources, for a number of reasons. Firstly,
there are verbs in biomedical texts that are unlikely to
appear in general language computational lexicons, e.g.,
methylate, phosphorylate, etc., either because they are
specific to the domain or they are used infrequently in
the general language domain. Secondly, in contrast,
commonly-occurring verbs whose behaviour is described
in general language resources may have different gram-
matical or semantic properties within the biomedical
domain. For example, the verb activate, when used in
the context of activating a bank account, has a very dif-
ferent meaning and different grammatical patterns to
when it is used in the context of biomedical literature.
In biomedical texts, it is common for verbs to take an

extended number of arguments, as compared to general
language texts, often in the form of adverbs, e.g.,
rapidly, or phrases beginning with prepositions, e.g., in
E. coli. In general language, such phrases are not typi-
cally tightly connected with the verb. However, in the
biomedical domain, there are often stronger connections
to the verb, in that these phrases correspond semanti-
cally to locations, manners, timings, rates and experi-
mental conditions of biomedical events [42]. For
example, when dealing with a mutation elevating expres-
sion in comparison to some wild-type, the rate of that
elevation is highly important to the correct interpreta-
tion of the event. Thus, constructions such as the fol-
lowing are found: X elevated expression of Y by 10-20
fold over Z.
Using information about verbs from resources built for

processing general language texts may thus result in the
text mining system making incorrect analyses or interpre-
tations, or indeed failing to achieve an analysis. Although
some domain-specific extensions to the above resources
have been attempted, i.e., PASBio [16,43] and BioFrame-
Net [17], they are currently very small scale (e.g., PASBio
contains information for only 30 verbs).
To our knowledge, the only existing large-scale com-

putational lexicon specifically developed for the biome-
dical domain is the SPECIALIST lexicon [18] (http://
lexsrv3.nlm.nih.gov/LexSysGroup/Projects/lexicon/cur-
rent/web/index.html), which contains both general
English words and biomedical vocabulary, with a parti-
cular emphasis on medical and health-related vocabu-
lary, extracted from resources such as the UMLS
Metathesaurus [44] and Dorland’s Illustrated Medical
Dictionary. The SPECIALIST lexicon includes gram-
matical patterns for verbs, although it is not based on
real, observed usage in texts, and the number of differ-
ent grammatical patterns that are described is rela-
tively small. In addition, no semantic information for
verbs is included.
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The lack of an existing resource that is suitably tai-
lored to facilitating accurate extraction of events within
the biomedical domain motivated our decision to under-
take our own acquisition of grammatical and semantic
frame information for verbs relevant to the domain.
This procedure was carried out using a combination of
manual and automatic techniques, and using domain-
specific texts to ensure that the behaviour of the verbs
stored in the lexicon reflects the way that they are actu-
ally used within the biomedical literature. These techni-
ques are more fully described in the Methods section
below.
The remainder of this paper is organised as follows.

Firstly, in the Methods section, we describe in detail the
methods by which the different types of entries in the
BioLexicon have been collected and curated, with a par-
ticular focus on the most important features of the lexi-
con, namely the collection of the noun entries
corresponding to biomedical terms, and the acquisition
of grammatical and semantic information relating to
domain-specific verbs. We also briefly describe the
representation model of the lexicon. In the Results and
Discussion section, we present statistics regarding the
entries in the BioLexicon, compare its coverage to some
existing resources, provide some sample entries in the
context of the web interface, and demonstrate the utility
of the lexicon by examining how it has been used to
improve the performance of different text mining pro-
cesses. Finally, in the Conclusions section, we summarise
the main benefits of the BioLexicon to the biomedical
text mining community and introduce some directions
for future work.

Methods
This section describes the main methods that have been
used to create the entries in the BioLexicon. We begin
with a description of how terms and concepts from dis-
parate biological databases, controlled vocabularies and
ontologies have been combined into a single, unified
resource. We then continue by explaining how the
many variants of these terms and concepts have been
accounted for by applying text mining techniques to dis-
cover new variants of gene and protein names appearing
in the literature. We next turn our attention to the
entries in the lexicon corresponding to terminological
verbs. These entries contain both the grammatical and
semantic information that is required by systems aiming
to determine the relationships that hold between con-
cepts mentioned in texts. We explain the semi-auto-
matic methods by which these types of information have
been acquired from domain-specific collections of texts.
Finally, we motivate and describe the model chosen to
represent the BioLexicon, together with some details
regarding its implementation.

Gathering terms used in biomedical texts
The largest category of entries in the BioLexicon is
nouns, which correspond mainly to biomedical terms, e.
g., gene/protein names. These are gathered primarily
from existing databases. However, text mining techni-
ques have also been applied to abstracts extracted from
approximately 15 million MEDLINE records (approxi-
mately 60% of the records have abstracts) to recognise
new term variants and to map them to existing entries
in the lexicon automatically.
Extracting terms from existing databases
Existing biological databases are characterized by a high
coverage of biological entities, and contain terms anno-
tated with widely recognized and interoperable accession
numbers (e.g., UniProt). However, as terms in these
resources are not necessarily intended to reflect the
exact wording found in the scientific literature (for
example, they may be formal concept or classification
labels), some initial filtering of potential terms was
necessary in the construction of the BioLexicon. As an
example, terms referring to proteins identified in the
course of high-throughput experiments such as hypothe-
tical protein were ignored due to their low information
value. Other indications of the discriminatory power of
a term available in the BioLexicon include its frequen-
cies of occurrence in MEDLINE [45] and in the British
National Corpus [46]. These features have proven useful
in identifying potentially polysemous terms (e.g., cases
where a gene name may refer to a number of ortholo-
gous or otherwise homologous genes) during the NER
task [47].
Terms in the BioLexicon are organised according to

semantic category. The choice of semantic categories
can be explained in two ways. Firstly, since one of the
goals of the BioLexicon was to achieve maximum, gen-
eral-purpose coverage of entities appearing in biomedi-
cal texts, common semantic types relevant to the
biology domain were selected, i.e., gene and protein
names, chemicals of biological interest and species
names. Secondly, the inclusion of smaller, more focused
sets for terms such as operon names or sequence ontol-
ogy terms was intended to make the lexicon suitable for
text mining applications dealing with the chosen specia-
list topic of gene regulation. For each semantic category,
the corresponding terms have been extracted from spe-
cific resources, which may be either specialised data-
bases, or particular categories within more general
databases. Table 1 lists the different semantic categories
for terms in the BioLexicon, together with the exact
sources from which the terms within the category have
been drawn. The complete list of sources used is as fol-
lows: Gene Ontology [6], Cell Ontology [48], OMIM
(Online Mendelian Inheritance in Man) [49], ChEBI
[7,8], Enzyme Nomenclature [50], Sequence Ontology
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[24], RegulonDB [51], CORUM [52], Operon Database
(ODB) [53], BioThesaurus [9], the NCBI taxonomy [10],
InterPro [54], TRANSFAC [55] and the IMR - INOH
Protein name/family name Ontology [56].
By far the largest categories of terms are gene and

protein names, which have been gathered from BioThe-
saurus [9]. BioThesaurus consists of several million
records of gene and protein names, extracted from sev-
eral online resources. Although BioThesaurus is extre-
mely comprehensive, and contains useful features, such
as organizing variants of terms into sets of synonyms, it
also contains a certain amount of noise. For example, in
building the BioLexicon, a total of 2,972,035 terms were
identified as nonsense names, which were too general to
be of any practical value. In order to ensure the quality
of entries extracted for inclusion in the BioLexicon, only
the entries from BioThesaurus that could be mapped to
SwissProt entries through a common UniProt accession
number were retained. This is because the SwissProt
section of the UniProt knowledgebase contains manu-
ally-curated protein sequence records.
Textual variants of terms
As explained above, the large number of variant terms
that appear in texts can be a major barrier to text pro-
cessing. Text mining systems should have the ability to
locate all documents or events that mention a particular
entity, regardless of which variants of that term are used
in different documents.
In the existing resources from which terms have been

gathered, known variants are assigned to a unique iden-
tifier (e.g., UniProt accession number). For example, the
following 6 terms extracted from the BioThesaurus all
have the same identifier: (Q8K4R9): Hepatoma up-regu-
lated protein, Hurp, hepatoma up-regulated protein,
discs large homolog 7, “discs, large homolog 7” and Dlg7.

The BioLexicon retains such clusters of terms and
builds upon them by finding new variants that appear in
the literature (see next section). These enhanced clusters
allow text mining systems making use of the resource to
resolve any of these variants appearing in text to the
same entity, and thus help to improve search results, no
matter which variant is entered by the user.
Extracting biomedical term variants from text
In the BioLexicon, clusters of gene/protein names
extracted from existing resources are augmented with
further new variants that appear in biomedical texts.
This is an important activity, to ensure that that the
inventory of terms contained within the BioLexicon can
deal with the wide variation of terms that is observed in
biomedical texts. Such variation is particularly prevalent
for gene and protein names, hence our decision to con-
centrate on these. Given the large and rapidly growing
number of biomedical articles, the use of automatic
methods is the most efficient and cost-effective way to
discover a wide range of new term variants. Accordingly,
a combination of different text mining techniques has
been used to augment the BioLexicon with new term
variants. NER is firstly used to locate candidate term
variants in biomedical abstracts. These automatically
extracted terms are assigned probabilities to allow them
to be distinguished from original terms. NER is followed
by a term mapping process, which finds appropriate
term cluster(s) to which a newly discovered term can be
mapped. In order to account for the regular appearance
of new terms variants appearing in the literature, this
automatic procedure can be run at regular intervals on
newly published texts.
Prior to performing the term mapping process, gene/

protein names are firstly automatically sub-clustered,
based on soft string matching techniques, whereby

Table 1 Sources of different types of terms in the BioLexicon

Semantic type Resources Semantic type Resources

Cell Cell ontology Nucleic Acid Region Sequence Ontology (Region)

Cell
Component

Gene Ontology (GO:0005575 cellular component) Operon RegulonDB, ODB

Chemical CHEBI (IMR:0000947 chemical) Organism NCBI Species

Disease OMIM Transcription Factor-Binding-
Site

Sequence Ontology

Enzyme Enzyme Nomenclature Protein BioThesaurus

Gene BioThesaurus Protein Complex Corum database

Ligand IMR - INOH
Protein name/family name ontology

Protein Domain InterPro

Nuclear
Receptor

Gene ontology
(GO:0004879 ligand-dependent nuclear receptor
activity)

Transcription Regulator RegulonDB, TransFac, Gene Ontology
Annotation

Each semantic type included in the BioLexicon is shown, together with resource(s) from which it has been extracted. In the case of large resources containing
several types of terms (e.g., the Gene Ontology), the exact category of the extracted terms within the source resource is shown, together with an identifier for
that category, if available.
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similarity scores are calculated between terms based on
commonalities between their textual forms [57]. This
process is used to recognise several of the types of term
variation listed the Background section, e.g., orthogra-
phical or morphological variations. The same soft string
matching techniques are then applied to perform the
term mapping process. This process involves finding the
most appropriate term sub-cluster(s) to which each
newly-discovered term can be mapped, i.e. the sub-clus-
ter(s) whose members have the highest string similarity
scores to the new term. This allows the newly discov-
ered term to be assigned to the most appropriate Uni-
Prot accession number(s). As the same gene or protein
name may be used for a number of orthologous or
otherwise homogenous genes, a method based on static
dictionary features [47] was developed to allow such
potentially polysemous gene and protein names to be
identified.
We have used an NER tool that employs a hybrid

method [58], combining the use of a dictionary contain-
ing known gene/protein names with a statistical
machine learning method. The dictionary consists of
266,000 entries for general English words extracted from
WordNet [59], together with 1.3 million entries for pro-
tein names, extracted from BioThesaurus [9]. The tool
is available at http://text0.mib.man.ac.uk/~sasaki/boot-
strep/nemine.html.
Text mining techniques are typically evaluated against

‘gold standards’ [60]. We evaluated the NER tool against
the JNLPBA-2004 dataset [61]. This was used in a
shared task in a community evaluation challenge to
compare the performance of NER systems operating in
the biomedical domain. The evaluation of our NER tool
against this dataset resulted in an F-score of 73.78. The
F-score obtained was the second highest obtained for
protein name recognition reported using the JNLPBA-
2004 data set. Comparison with other recent experi-
ments carried out on the same dataset, e.g. [62], demon-
strate that this level of performance represents the state-
of-the-art in protein name recognition. As has already
been acknowledged by challenges such as BioCreAtIvE
[63], automatic recognition of gene and protein names
is a challenging task, due to factors such as extensive
ambiguity, overlap of gene names with general English
terms and complex multi-word terms. This means that
achieving a high performance in NER for these entity
types is a difficult task. One of the major aims of the
BioLexicon was to construct a comprehensive resource
that would help to remedy this situation.
We applied our NER system to abstracts extracted

from approximately 15 million MEDLINE records (2006
release). Gene/protein names identified with a probabil-
ity greater than 0.99 were then selected as candidates
for new gene/protein variants. These candidates were

only be added to the resource if there was sufficient
similarity with an existing term, as determined by the
term mapping process described below.
For efficiency reasons, the term mapping was con-

ducted through term normalization. Since the lexicon
contains about 2 million gene/protein names, straight-
forward similarity calculation of term pairs is not practi-
cal: when an NER component extracts tens of millions
of gene/protein name candidates from the whole of
MEDLINE, the similarity distance of 2 × 1013 pairs of
terms must be calculated. This amount of computation
can however be drastically reduced to 107 normaliza-
tions and index lookups. The normalization steps are as
follows:

1. Create an inverse index that maps normalized
forms to UniProt Accession Numbers.
2. Normalize newly extracted terms.
3. Look up the inverse index to find UniProt Acces-
sion Numbers of the new terms.

In order to normalize the terms, we employed meth-
ods described in [57,64], in which the normalization
rules were automatically generated from BioThesaurus
[9] (where terms are clustered according to UniProt
Accession Numbers). Normalization rules are evaluated
according to ambiguity and variability metrics. Ambigu-
ity quantifies how ambiguous terms in the dictionary
are, on average, based on the number of terms that
share variants with identical spellings. In contrast, varia-
bility quantifies the average number of variant forms of
each term in the dictionary.
As highly ambiguous or variable terms can lead to

impaired performance in mapping tasks, normalization
rules should aim to reduce ambiguity and variability
values as much as possible. In general, a given normali-
zation rule reduces variability, but at the cost of increas-
ing the ambiguity value. Therefore, an ideal
normalization rule would maximize the reduction of the
variability, whilst simultaneously increasing ambiguity as
little as possible. Some examples of simple normalisation
rules are as follows:
• Convert all upper case letters to lower case.
• Remove hyphens that occur within terms.
According to the experimental results reported in [64],

normalization performance using the above method
achieves comparable results to normalization rules that
are hand-crafted by domain experts. Dictionary look-up
experiments were conducted using a dictionary of
human gene/protein names extracted from BioThe-
saurus [9], together with a list of gene/protein name
snippets from the BioCreative II gene normalization task
[65], extracted from MEDLINE abstracts. The automatic
normalisation method achieved a precision of 0.767 and
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a recall of 0.633. This compares favourably with the
manually constructed heuristic rules reported in [66],
which achieved precision and recall values of 0.730 and
0.657, respectively.
For the purposes of the BioLexicon construction, we

generated 1,000 normalization rules, using the gene/pro-
tein names gathered from existing databases as the dic-
tionary for normalization rule generation (given that these
names represented an updated set compared to those of
the BioThesaurus). Terms that could not be mapped to
any accession number were omitted. Further control of
the quality of new term variants was assured by filtering
out highly ambiguous terms - those that were mapped to
more than 10 accession numbers were discarded.

Gathering verbs used in biomedical texts
The verbal entries in the lexicon consist both of those
extracted from the MedPost dictionary [19], as well as a
set of verbs that were manually selected as either highly
relevant or specific to the biomedical domain, based on
an examination of the literature.
Three types of orthographic variants have also been

manually curated for verbs, as follows:

1. British/American spelling variants, e.g. ‘acetylise’/
’acetylize’ or ‘harbour’/’harbor’
2. Hyphenation variants, e.g. ‘co-activate’ and
‘coactivate’
3. A combination of the above, e.g. ‘co-localise’,
‘colocalise’ (British); ‘co-localize’, ‘colocalize’
(American)

A further manual task was to create related entries for
each of these verbs. For example, from the verb absorb,
the entries absorption (noun), absorbent and absorbable
(adjective) and absorbently (adverb) were added to the
lexicon.
For the domain-specific verbs, grammatical and

semantic frame information was acquired using a com-
bination of manual and automatic techniques applied to
a collection of domain-specific texts, thus ensuring that
the behaviour of the verbs stored in the lexicon reflects
observed usage within the literature. It should be noted
that nominalised verbs such as absorption or transcrip-
tion, which appear particularly frequently in biomedical
literature, are also of relevance here. These special types
of noun are so-called because they have verb-like mean-
ings, and also behave in a similar way to verbs, in that
they take arguments. By linking nominalised verbs to
their related verbs in the BioLexicon (i.e., absorb and
transcribe in the case of the above examples), the gram-
matical and semantic information present for verbs can
also help to determine and interpret the arguments of
the nominalised verbs.

Acquiring grammatical frames for verbs
One of the defining features of the process of extracting
grammatical frames for inclusion in the BioLexicon is
the fact that, according to domain-specific requirements
introduced above and in contrast to many general lan-
guage resources, these frames should account not only
for whatever subjects and objects might occur, but also
adverbial and prepositional phrases that ultimately indi-
cate semantic information such as locations and timings
of biomedical events. Such types of information, as
described in the Background section, are crucial for
proper interpretation and understanding of biomedical
events. This explains why the number of extracted
grammatical frames for the BioLexicon is much higher
than in the SPECIALIST lexicon, which uses a rather
limited set of grammatical patterns derived from general
language usage.
An automatic process was used to acquire the gram-

matical frames for the BioLexicon, based on the results
of applying the Enju deep syntactic parser [67]http://
www-tsujii.is.s.u-tokyo.ac.jp/enju/ to a text collection of
over 6 million words (consisting of both MEDLINE
abstracts on the subject of E. coli, as well as full papers)
in order to obtain a structural analysis of each sentence.
In particular, we used the version of Enju adapted to
biomedical texts [68], which has been shown to perform
with an accuracy of 86.87 F-Score on domain-specific
text (the GENIA Treebank corpus [69]).
Following the application of the Enju parser, sets of

possible grammatical patterns were extracted for each
biologically relevant verb. Each pattern consisted of a
number of different types of information, as follows:
• The grammatical type of each argument (e.g., ARG1

corresponds to the grammatical subject of the verb,
while ARG2 corresponds to the object).
• The type of “filler” for each argument (e.g., noun

phrase)
• The semantic type of the argument, (e.g., PROTEIN,

DNA), if available. This was obtained by applying the
GENIA tagger [70] to the same texts as the Enju parser,
and aligning their outputs.
A filtering step was subsequently applied, in which the

conditional probability of each grammatical pattern,
given the verb, was calculated. Only those patterns
whose probability fell above a certain threshold (> =
0.03) were included as grammatical frames in the Bio-
Lexicon. Given the large number of potential frames
generated, this step was required to filter out “noisy”
frames, i.e., those frames containing grammatical argu-
ments that were not typical for the verb, as well as
those frames resulting from possible errors of either par-
sing or pattern extraction. The exact threshold used was
determined based on careful examination of the results
obtained using different thresholds.
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Below is a simplified example frame, showing only
grammatical types of each argument (arguments are
separated with “#”). This frame accounts for the beha-
viour of the verb control in the sentence The LysR-type
transcriptional regulator CysB controls the repression of
hslJ transcription in Escherichia coli.
ARG1#ARG2#PP-in
In addition to the arguments that represent the sub-

ject and the object of the verb, there is a third argument
that begins with the preposition in. Within the BioLexi-
con, grammatical frames are normalised for the ordering
of arguments within a sentence, as these can vary. For
example, the subject and object order varies according
to whether the passive or active voice is used, and pre-
positional phrases can occur in different positions. To
allow verbs particularly associated with passive voice
usage to be identified, the BioLexicon records the per-
centage of times that the verb occurs in the passive
voice within the corpus. The frame shown above would
account for all of the following sentences:

1. The LysR-type transcriptional regulator CysB con-
trols the repression of hslJ transcription in Escheri-
chia coli.
2. In Escherichia coli, the LysR-type transcriptional
regulator CysB controls the repression of hslJ
transcription.
3. The repression of hslJ transcription is controlled by
the LysR-type transcriptional regulator CysB in
Escherichia coli.

The inclusion within grammatical frames of specific
prepositions that occur at the beginning of particular
arguments can be important in linking grammatical and
semantic frames. Sometimes, a verb may occur with
multiple arguments, each beginning with a preposition.
Different types of prepositions typically distinguish dif-
ferent semantic roles, as illustrated in the following sen-
tence: A promoter has been identified that directs relA
gene transcription towards the pyrG gene in a counter-
clockwise direction on the E. Coli chromosome. Here, the
verb directs occurs with 3 arguments beginning with dif-
ferent prepositions, i.e., towards, in and on, each of
which corresponds to a different semantic role in the
event, namely DESTINATION, MANNER and LOCA-
TION (see next section for more details on these
semantic roles).
The BioLexicon thus includes a range of detailed

information about the domain-specific grammatical
behaviour of verbs, which, if accessed by parsers, can
help to drive the process of determining the most
appropriate grammatical analysis. Features such as typi-
cal fillers for arguments, in terms of both grammar and
semantics (i.e. NE types), can allow sophisticated

constraints to be applied during the parsing process.
The inclusion of important modifier phrases as part of
the grammatical frames can help parsers to ensure that
all phrases relevant to the correct interpretation of an
event are correctly identified. These may include, for
example, phrases that describe the location or environ-
mental conditions of the event. Determining how such
phrases are to be interpreted is the job of the semantic
frames, which are described in the next section.
Acquiring semantic event frames for verbs
Although grammatical parsers such as Enju have
reached an appropriately mature level, the same cannot
be said for semantic parsers. This meant that a fully
automatic process, such as the one described for gram-
matical frame acquisition, could not be applied to the
acquisition of semantic frames for the BioLexicon.
Instead, semantic information about verbs was extracted
from a corpus of 677 MEDLINE abstracts on the subject
of gene regulation, which had been manually annotated
(i.e., in a markup language) with information about
semantic events relating to gene regulation by a group
of domain experts [71]. A further corpus of 240
abstracts (GREC) was annotated with instances of
events, for the purposes of evaluating event extraction
systems making use of the BioLexicon [72].
Annotation was carried out for both verbs and nomina-

lised verbs (e.g., regulation) that describe events relating to
gene regulation. For each such verb or nominalised verb,
the semantic arguments of the event occurring within the
same sentence were labelled with both semantic roles and
NE types. A proportion of the abstracts was annotated by
more than one annotator, in order to evaluate the consis-
tency of the annotations produced. For the assignment of
semantic roles, inter-annotator agreement (i.e. consistency
between annotators) of up to 0.89 was achieved (maxi-
mum = 1.00). As an aside, a ‘perfect score’ remains elusive
- illustrating neatly that consensus of expert judgement is
hard to achieve and that some degree of uncertainty is
only to be expected within science [73].
The type of annotation undertaken is exemplified

below for the sentence Fis activates rrnB P1. The event
is centred on the verb activates and 2 semantic argu-
ments have been annotated, i.e. Fis as the AGENT and
rrnB P1 as the THEME.

[Agent ProteinFis][Eventactivates][Theme DNArrnB P1]

The assignment of NE types (e.g. Protein, DNA) to
biomedical entities or processes from a domain-specific
taxonomy can further help in mapping between gram-
mar and semantics, in that restrictions can be placed on
the categories of NEs that can constitute a particular
type of semantic argument. The NE taxonomy used for
annotation is summarised in Table 2.
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A set of 13 event-independent semantic roles [71] was
used, including both domain-independent and domain-
dependent roles. This set of roles (documented in Table
3), which has been tailored to the biomedical domain in
consultation with subject experts, is intended to provide
a general characterisation of the meaning of each argu-
ment, independent of the verb being used. Some of the
roles are based on those used within general language
resources (e.g., [38]) and are widely traceable across all
domains; others are either domain-specific (namely
CONDITION and MANNER) or particularly important
for the precise definition of complex biological relations,
even though not necessarily specific to the field (e.g.,
LOCATION and TEMPORAL).
Based on the semantic event annotations added to the

MEDLINE abstracts, a set of verb-specific semantic
frames was extracted for inclusion in the BioLexicon.
An example event frame, corresponding to the semantic
behaviour of the example sentence above involving the
verb activate, is as follows:
activate(Agent=>Protein,Theme=>DNA)
For each semantic role, an NE type is used to charac-

terise its possible instantiations, if available.
Linking grammatical and semantic frames
In the majority of cases, arguments in semantic frames will
have corresponding counterparts in grammatical frames.
Given the high level of accuracy of grammatical parsing,
the most straightforward way to determine the semantic
interpretation of an event is to firstly determine its gram-
matical arguments, and then to map these to their semantic
counterparts. As has been explained in the Background sec-
tion, amongst different verbs, there is no consistent seman-
tic interpretation of a given grammatical argument type.
For this reason, the BioLexicon must indicate the exact cor-
respondences between grammatical and semantic argu-
ments for each different verb. Such correspondences were
identified via a manual linking process [36]. The linking
process was defined by simultaneously taking into account
both general and verb-specific information, as follows:

a) general linguistic constraints regarding the align-
ment of hierarchies of semantic roles and

grammatical functions. Given a semantic role hierar-
chy (agent > theme ...) and a grammatical functions
hierarchy (subject > object ...), the mapping usually
proceeds from left to right;
b) a list of ‘prototypic’ grammatical realisations of
semantic arguments, as specified in the annotation
guidelines followed by annotators during the manual
annotation of events (provided in [74]). For example,
the AGENT semantic role is typically realised as the
grammatical subject of a verb, whilst the INSTRU-
MENT role typically occurs in a prepositional phrase
headed by one of the following prepositions: with,
through, using, via or by.
c) general language repositories of individual seman-
tic frames containing both syntactic and semantic
information.

Different types of mapping were performed, depending
on whether or not the grammatical and semantic frames
contained the same number of arguments. Possible
cases were as follows (where “>“ separates the semantic
role and its corresponding grammatical argument, and
“#” separates different arguments).

• Each semantic argument is mapped to a single
grammatical argument, e.g., AGENT > ARG1#TH-
EME > ARG2. Many sentences with verbs that
describe biological processes, having both a subject
and an object, would fit this mapping, e.g., The narL
gene product activates the nitrate reductase operon.
• The grammatical frame contains more slots than
the corresponding semantic frame, e.g., 0 >
ARG1#THEME > ARG2#DESTINATION > PP-into.
In this mapping, there is no semantic argument that
corresponds to the grammatical subject in the gram-
matical frame. This is typically the case of event
frames which do not contain explicit mention of an
AGENT role. Such cases apply most frequently to
passive sentences such as The wild-type pcnB gene
was cloned into a low-copy number.
• The semantic frame contains more slots than the
corresponding grammatical frame, e.g. AGENT >

Table 2 Top level NE categories

NE class Definition

DNA Entities chiefly composed of nucleic acids and their structural or positional references. This includes the physical structure of all
DNA-based entities and the functional roles associated with regions thereof.

PROTEIN Entities chiefly composed of amino acids and their positional references. This includes the physical structure and functional roles
associated with each type.

EXPERIMENTAL Both physical and methodological entities, either used, consumed or required for a reaction to take place.

ORGANISMS Entities representing individuals or collections of living things and their component parts.

PROCESSES A set of event classes used to label biological processes described in text.

The NE taxonomy used during event annotation is organised into 5 top-level classes, each of which contains a hierarchically structured set of more specific
terms. Annotators were instructed to assign the most specific term possible. The general definition of each top-level class is shown in the table.
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ARG1#THEME > ARG2#LOCATION > PP-in#CON-
DITION > 0. In this mapping, there is no grammati-
cal argument to which the semantic CONDITION
argument can be mapped. There are two possible
explanations for this. Firstly, semantic annotation
was carried out by biologists without specialist lin-
guistic knowledge. Therefore, semantic annotation
was not guided or constrained by the syntactic struc-
ture of he sentence in which the event was con-
tained. This means that annotators sometimes
identified semantic arguments that were not gram-
matically related to the verb. Secondly, grammatical
parser errors may mean that the grammatical argu-
ment corresponding to the CONDITION was not
recognised by the parser.

BioLexicon representation model
Since one of the main aims of the BioLexicon is to fos-
ter semantic interoperability of systems in the biomedi-
cal community, the ISO (International Organization for
Standardization) standard Lexical Markup Framework
(LMF) was chosen as the reference meta-model for the
structure of the BioLexicon [75]. The LMF, together
with linguistic constants used for lexical description
(called data categories), provides a common, flexible
representation of lexical objects that allows for the

encoding of detailed linguistic information. This is parti-
cularly important in representing the kinds of grammati-
cal and semantic information that have been acquired
for biologically relevant verbs [76], as described above.
Finally, the model allows term entries in the BioLexicon
to be linked to classes in the GRO [23], which was
developed in parallel with the BioLexicon, in order to
further facilitate knowledge extraction within the
domain.
The BioLexicon is modelled on an XML Document

Type Definition (DTD) based on the LMF standard: it
implements the core ISO model plus objects taken from
the Natural Language Processing (NLP) extensions for
morphology, syntax (grammar) and (lexical) semantics.
The BioLexicon model, therefore, consists of a subset of
the lexical modules and lexical classes of the LMF stan-
dard. In particular, it consists of a number of indepen-
dent lexical objects (or classes) and a set of Data
Categories (DCs), i.e., attribute-value pairs, which repre-
sent the main building blocks of lexical representation,
especially tuned to the design goals of the lexicon.
DCs are a fundamental component of lexical descrip-

tion, which ensure the standardisation of the resource.
They represent pieces of linguistic content that are not
part of the model proper, but are used to describe the
various instances of its objects. The set of DCs used in
the BioLexicon consists of both categories drawn from

Table 3 Semantic roles

Role Name Description Example ([...] = semantic argument, small capitals = focussed verb)

AGENT Drives/instigates event [The narL gene product] ACTIVATES the nitrate reductase operon

THEME a) Affected by/results from event
b) Focus of events describing states

[recA protein] was INDUCED by UV radiation
[The FNR protein] RESEMBLES CRP

MANNER Method/way in which event is
carried out

cpxA gene INCREASES the levels of csgA transcription by [dephosphorylation] of CpxR

INSTRUMENT Used to carry out event EnvZ FUNCTIONS through [OmpR] to control NP porin gene expression in E. Coli.

LOCATION Where complete event takes place Phosphorylation of OmpR MODULATES expression of the ompF and ompC genes in
[Escherichia coli]

SOURCE Start point of event A transducing lambda phage was ISOLATED from [a strain] harboring a glpD’’lacZ fusion

DESTINATION End point of event Transcription is activated by BINDING of the cyclic AMP (cAMP)-cAMP receptor protein (CRP)
complex to [a CRP binding site]

TEMPORAL Situates event in time/w.r.t. another
event

The Alp protease activity is DETECTED in cells [after introduction] of plasmids

CONDITION Environmental conditions/changes
in conditions

Strains carrying a mutation in the crp structural gene fail to REPRESS ODC and ADC activities
in response to [increased cAMP]

RATE Change of level or rate marR mutations ELEVATED inaA expression by [10- to 20-fold] over that of the wild-type.

DESCRIPTIVE-
AGENT

Descriptive information about
AGENT of event

HyfR ACTS as [a formate-dependent regulator]

DESCRIPTIVE-
THEME

Descriptive information about
THEME of event

The FNR protein RESEMBLES [CRP].

PURPOSE Purpose/reason for the event
occurring

The fusion strains were USED [to study] the regulation of the cysB gene

For each semantic role, a brief description is given, together with an example sentence containing an instance of the role. In the example sentences, the verb on
which the event is centred is indicated using small capitals, whilst the event argument corresponding to the appropriate semantic role is indicated within square
brackets.
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the standard sets of the ISO Data Category Registry
[77,78], and categories created specifically for the bio-
medical domain. In doing this, we also aim at establish-
ing a standard set of Data Categories for this domain.
Examples of ISO data categories are partOfSpeech and
writtenForm, whilst SourceDC and confidenceScore are
examples of DCs specifically created for use by the bio-
medical domain on the basis of expert requirements.
SourceDC, for instance, is used to encode the original
source (be it a database or a corpus) from which a term
has been extracted; confidenceScore, meanwhile, is a spe-
cial feature used to encode the confidence value
assigned to term variants and subcategorisation informa-
tion by the learning methods applied to acquire such
information from texts.
Automatic population of the BioLexicon database
The conceptual model described above has been imple-
mented as a relational database. A key property and an
innovation of the BioLexicon Database (BLDB) is that it
comes equipped with automatic loading procedures for
its population. The BLDB consists of two modules: a
MySQL database [79], and a Java [80] software compo-
nent for the automatic population of the database. The
BioLexicon data is encoded in an XML interchange for-
mat (XIF), which is fundamental to the automatic popu-
lation of the BLDB. The XIF data is read by the Java
procedures in order to parse, read and load data into
the BLDB. The XIF is a simplified version of the Bio-
Lexicon DTD, which accommodates the needs of data
providers and facilitates the automatic uploading of the
database. It therefore facilitates standardization of the
data extracted from the different terminological
resources and from texts (via text mining techniques)
and allows both the uploading procedures and the
BLDB to remain independent from native data formats.
The database is structured into three logically distinct
layers:

1. The ‘dictionary layer’ contains tables used in the
initial handling of the XIF and rules that automati-
cally build SQL instructions to populate target
tables;
2. The ‘staging layer’ is a set of hybrid tables for
volatile data; i.e. tables that exist only for a specific
purpose in the BioLexicon creation process, but
which can be truncated (cleared) after data they con-
tain have been read.
3. The ‘target layer’ contains the actual BioLexicon
tables, i.e. tables that directly instantiate the BioLexi-
con DTD and contain the final data.

The separation between target tables (the BioLexicon
proper) and ‘operational’ tables allows for the optimiza-
tion of data uploading into the BLDB and ensures easy

extendibility both of the database and of the uploading
procedures.

Results
In this section, we firstly provide some statistics regard-
ing the coverage of the BioLexicon, and compare this
coverage to other resources. Subsequently, we show and
explain some sample entries from the BioLexicon, in the
context of the web interface.

BioLexicon coverage
The distribution of the ~2.2 M entries in BioLexicon
amongst the 4 part of speech categories is as follows:

• Noun - 2,231,574 entries
• Adjective - 3,428 entries
• Verb - 1,154 entries
• Adverb - 550 entries

In the sections below, further statistical details are
provided about the entries within the Noun and Verb
categories.
Noun coverage
The vast majority of the entries in the BioLexicon
belong to the Noun category, with most of these entries
having been either extracted from existing databases/
ontologies or from MEDLINE abstracts using text
mining techniques. Table 4 classifies these entries
according to the type of entity that they represent.
Whilst the majority of the term variants were also

extracted from databases and ontologies, 70,105 new
variants of gene/protein names were extracted from
texts (i.e. abstracts extracted from approximately 15 mil-
lion MEDLINE records) using the text mining techni-
ques described in the Methods section. The large
numbers of variants that appear only in texts but not in
existing databases provide evidence of the frequency
with which new term variants are attested in articles,
and thus that automatic text mining methods such as
those described are an essential step for improving the
coverage of the BioLexicon, and hence enhancing the
performance of text mining systems that make use of it.
Verb coverage
Several statistics regarding the verbal entries in the Bio-
Lexicon are shown in Table 5. Most of the work for
verbs has concentrated on generating information relat-
ing to the 658 domain-specific verbs that were manually
identified. Due to the differing sizes of the text collec-
tions used to obtain the grammatical and semantic
information about domain-specific verbs, semantic
information is not currently available for every such
verb recorded in the lexicon. Whilst grammatical infor-
mation has been generated for all 658 domain-specific
verbs, there are currently 168 of these verbs for which
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semantic information is additionally available. It is from
this subset of verbs that the 668 links between the
grammatical and semantic frames were manually
created.
Comparison of coverage to other lexical resources
The coverage of the BioLexicon has been evaluated with
respect to existing comparable resources, i.e., WordNet
[59] and the SPECIALIST lexicon [18]. WordNet is a
large lexical database of English, which contains some
domain-specific terms. The SPECIALIST lexicon, which
was introduced above, is targeted at the biomedical
domain, and includes both words related to this domain,
and well as general English words. Figures 1 and 2 com-
pare the coverage of these 2 resources with the BioLexi-
con, in terms of both the number of terms covered
(categorized according to parts-of-speech), as well as the
derivational relations from verbs that are covered. These
relations consist of nominalizations (e.g., transcribe
(verb) -> transcription (noun)), adjectival derivations (e.
g., transcribe (verb) -> transcriptional (adjective)) and
adverbial derivations (e.g., transcribe (verb) -> transcrip-
tionally (adverb)).
The figures show that, generally, there are a large

number of words in the BioLexicon that are not cov-
ered by the other resources. For WordNet, this is to be
expected, since it is not specifically targeted at the bio-
medical domain. The differences in the coverage of the
SPECIALIST lexicon and the BioLexicon can be partly

explained by the fact that the BioLexicon contains
vocabulary from areas that are not specifically targeted
by the SPECIALIST lexicon, e.g., molecular biology. It
is only in the category of verbs that the SPECIALIST
lexicon covers most of the entries present in the Bio-
Lexicon. However, as explained in the Methods section,
the BioLexicon provides more detailed and domain-
specific information about the syntactic properties of
verbs than is provided in the SPECIALIST lexicon.
The BioLexicon also deals with semantic aspects of
verb behaviour, which are absent from the SPECIA-
LIST lexicon.
Many of the derivational forms covered by the BioLex-

icon are also missing from the other resources. In this
respect, WordNet has a higher coverage than the SPE-
CIALIST lexicon, due to its emphasis on providing sys-
tematic links between words. So, for example, the
derivation retroregulate -> retroregulation is present in
WordNet, as well as the BioLexicon. However, since the
coverage of domain-specific words in WordNet is not
extensive, it is not possible for the coverage of biology-
specific derivations to be very high. In the SPECIALIST
lexicon, it appears that derivations are not dealt with in
a similarly systematic way. Although some nominaliza-
tions of verbs are present, the opposite is not always
true. For example, the nominalization retro-regulator is
present in the SPECIALIST lexicon, but the verb retro-
regulate is not included.

Table 4 Numbers of different types of terms in the BioLexicon

Semantic Type No. of Entries No. of Variants Semantic Type No. of Entries No. of Variants

Gene/Protein 1,640,608 1,408,312 Diseases 19,457 11,314

Chemicals 19,637 77,475 Molecular Roles 8,850 29,831

Organisms 482,992 182,610 Cell 842 512

Enzymes 4,016 4,164 Transcription Factors 160 129

Protein Domains 16,940 15,412 Operons 2,672 368

Protein Complex 2,104 418 Sequences 1,431 741

For each type entity, the total number of entries is shown, together with the total number of variant terms identified.

Table 5 Verb statistics

Domain-specific verbs General language verbs (from MedPost dictionary)

Total number 658 496

Inflected forms 15,274 (all verbs)

Related entries (nouns, adjectives, adverbs) 2,764 -

Grammatical frames 1,760

Semantic event frames 856 -

Grammatical-semantic mappings 668 -

Total verbs with syntactic and semantic frames 168 -

Most information is concerned with the 658 domain-specific verbs, including the curation of related entries, and the production of grammatical and semantic
information. Each verb may have several grammatical or semantic frames associated with it, due to the different patterns of arguments that can occur with each
verb. This explains why the number of grammatical frames, semantic event frames and grammatical-semantic links is higher than the total number of domain-
specific verbs.
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We can thus conclude that the BioLexicon constitutes
a text mining resource that complements both WordNet
and the SPECIALIST lexicon, in that it contains a large
number of vocabulary items that are not covered by the
other 2 resources, in addition to a large number of deri-
vationally-related words.
Evaluation of coverage against gold standard data
As a further means to determine the coverage of the
terminology in the BioLexicon, we have evaluated the
extent to which biomedical named entities annotated in
a gold standard corpus are found in the BioLexicon. In
order to perform the evaluation, we compared the per-
formance of two dictionary-based POS taggers in recog-
nising protein names in the JNLPBA-2004 training
dataset [61]. Using such taggers, words and word
sequences that correspond to terms in the dictionaries

are treated as a single, complete unit, and flagged as
corresponding to biomedical terms, through the assign-
ment of a tag such as NN-BIOMED. Since the POS tag
NN corresponds to a noun, NN-BIOMED is used denote
a biomedical noun or term. The advantage of using dic-
tionary-based taggers can be appreciated when consider-
ing a protein name such as met protooncogene precursor.
As met is also the past tense of the verb meet, a POS
tagger without domain-specific knowledge is likely to
make tagging errors.
The two dictionary-based taggers used are the BLTag-

ger [81], which makes use of information in the BioLexi-
con, and a tagger which was built during the
development of our NER tool [58], and whose dictionary
makes use of protein names extracted from the BioThe-
saurus (we will refer to this as the BT-Tagger). The per-
formance of the two taggers in recognizing protein
names in the JNLPBA-2004 test dataset is shown in
Table 6.
The table shows that the BLTagger performs consider-

ably better than the BT-Tagger, with more than a 7.5%
increase in the correct recognition of full protein names.
With the BLTagger, the discrepancies between the cases
where the tagger correctly recognized the full protein
name and those where only one of the boundaries (left
or right) was correct are smaller than the discrepancies
achieved by the BT-Tagger.
As will be recalled, the inventory of proteins contained

within the BioLexicon is largely based on those in
BioThesaurus, but with two main differences:
1. Steps were taken to remove potential noise from

the BioThesaurus
2. Protein name variants were extracted from the lit-

erature using text-mining techniques.
Our results clearly demonstrate that the BioLexicon

has improved coverage of protein names, compared to
BioThesaurus. The results also suggest that entries in
the BioLexicon are more likely than those in

Figure 1 Word and relation coverage (%) of BioLexicon entries,
compared to WordNet. The percentages shown correspond to the
proportion of entries or relations occurring in the BioLexicon that
also occur in WordNet.

Figure 2 Word and relation coverage (%) of BioLexicon entries,
compared to the SPECIALIST Lexicon. The percentages shown
correspond to the proportion of entries or relations occurring in the
BioLexicon that also occur in the SPECIALIST Lexicon.

Table 6 Evaluation of BioLexicon Coverage on JNLPBA-
2004 dataset

BLTagger BT-Tagger

Full 55.54 47.96

Left 56.72 55.72

Right 59.24 55.63

The table compares the performance of two dictionary-based POS taggers,
the BLTagger and the BT-Tagger, in recognising protein names in the JNLPBA-
2004 test dataset. For each tagger, F-scores are reported in terms of full
matches (i.e., the sequence of words identified as a biomedical noun by the
tagger matches exactly the text span annotated as a protein in the JNLPBA-
2004 training dataset) as well as right and left boundary matches (i.e., the
sequence of words identified as a biomedical noun by the tagger matches
either the left or right boundary of the corresponding annotation in the
JNLPBA-2004 training data).
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BioThesaurus to correspond to complete protein names
encountered in biomedical documents.
It should be understood that looking up names of bio-

medical terms in the BioLexicon should not be seen as
an alternative to the training of NER systems. As
reported in [58], the results of simple dictionary-based
recognition of protein names (using the BT-Tagger) can
be increased by over 25% if an NER system is trained to
take into account not only dictionary-based information,
but also other features in the surrounding text. There-
fore, incorporating a better coverage lexical resource
such as the BioLexicon into NER systems has the poten-
tial to further increase their performance.

Sample entries
This section aims to provide more specific examples of
the types of information that are available in the BioLex-
icon. For ease of understanding, this explanation is
facilitated through the provision of a number of screen-
shots from the BioLexicon web access interface. It
should, however, be noted that the interface is provided
for human interpretation of the information within the
lexicon. As such, these illustrative screenshots cannot
do full justice to the underlying complex and sophisti-
cated of the information available in the BioLexicon web
interface. Normally, an application would access the Bio-
Lexicon database programmatically via an API or web
services.
Sample verb entry
Figures 3, 4, and 5 show screenshots of different types of
information that is stored in the BioLexicon for the verb
transcribe. Figure 3 displays some of the grammatical
information available for the verb, whilst Figure 4 dis-
plays some of the information that is provided regarding
the semantic side of the verb’s behaviour. Figure 5 dis-
plays information regarding the linking between gram-
matical and semantic behaviours.
The third table in Figure 3 displays the possible com-

plete grammatical patterns that can occur with tran-
scribe. All of these contain ARG1 and ARG2
(corresponding to the grammatical subject and object of
the verb, respectively), possibly accompanied by a phrase
beginning with a preposition (either from, in or as).
Examples are as follows:

• Short RNAs are transcribed from repressed poly-
comb target genes.
• When transcribed in the presence of RNase A...
• The ribosomal spacer in Xenopus laevis is tran-
scribed as part of the primary ribosomal RNA.

For each grammatical pattern, two statistics are pro-
vided: firstly, the probability of each pattern, given the
verb. The most likely pattern for the verb is for only

ARG1 and ARG2 to be present, with a probability of
0.60. This pattern is over 3 times more likely to appear
than the pattern in which a PP-from is present (i.e., a
prepositional phrase beginning with from). The second
statistic provides the probability that the verb will occur
in the passive voice, as in all of the examples provided
above. From this table, it can be seen that the pattern
involving PP-as almost always occurs in the passive
voice (95% of the time). However, when only ARG1 and
ARG2 are present, it is more common for the active
voice to be used, as in RNA pol II transcribes mRNA
and the small nuclear RNA (snRNA). Also provided, but
not shown in the figure, is information about the form
that each type of grammatical argument can take (e.g.,
noun phrase).
The fourth table in Figure 3 provides another statisti-

cal measure, the log likelihood (ll), for each possible
grammatical argument that can occur with the verb.
This measure attempts to quantify how strongly asso-
ciated each argument is with the verb. It is intended to
complement the probability information provided in the
third table, to allow more informed decisions to be
made when analyzing the grammatical structure of a
sentence, e.g., to determine how likely it is that particu-
lar phrases that occur in the same sentence as the verb
should actually be attached to the verb.
In Figure 4, the left hand column of the table at the

top of the figure displays the different patterns of
semantic roles that can occur with the verb. The right-
hand column provides possible “fillers” for these roles,
in terms of NE categories. For example, in the pattern
involving an Agent and a Theme, it is probable that the
Agent will be NE of type Protein, whilst the Theme will
be an NE of type DNA.
The second table in Figure 4 shows correspondences

between semantic and grammatical frames. So, for
example, the fourth line in the table shows that the
semantic frame transcribe#Agent#Theme#Source (i.e., the
frame with three semantic arguments with the roles of
Agent, Theme and Source) is grammatically realized in
texts though the pattern Arg1#Arg2#PP-from#, i.e., a
pattern consisting of a subject, an object and a PP-from
(but not necessarily occurring in that order in the text).
As described in the Methods section, there is no consis-
tent correspondence between syntactic argument types
and semantic roles. Therefore, a different part of the
table (shown in Figure 5) provides correspondences
between individual semantic and grammatical argu-
ments. If we consider the first line of this table, this
shows that the Agent semantic argument within the
semantic frame transcribe#Agent#Theme corresponds
grammatically to Arg1 in the grammatical frame
Arg1#Arg2#, i.e., the Agent role in an event describing a
transcription will normally correspond to the subject of
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the verb. Similarly, line 5 of the table tells us that a PP-
from phrase that is grammatically associated with the
verb will play the semantic role of Source, i.e., the loca-
tion from which the transcription took place, as exem-
plified in the following sentence: Short RNAs are
transcribed from repressed polycomb target genes.
Sample noun entry
Information from the entry for Interleukin-1 receptor
type I precursor is shown in Figures 6 and 7. In Figure
6, the ids of the term in different source databases are
shown. Figure 7 displays the textual variants of the term
that are stored in the BioLexicon, drawn either from
one of the source databases, or else through the applica-
tion of the automatic text mining methods. The bottom
table in the figure displays the variants that have been

automatically extracted from texts, and automatically
mapped as variants according to string similarities, as
described in the Methods section. The scores provided
correspond to the confidence with which the mapping
has been made.

Discussion
Text mining systems that exploit the BioLexicon can
gain help with a number of key steps in the processing
of biology texts, i.e.:

1. Domain-specific POS tagging.
2. Domain-specific lemmatisation (i.e., finding the
base forms of words, such as singular forms of
nouns, or infinitive forms of verbs).

Figure 3 Grammatical information provided for the verb transcribe. The first table displays the different possible inflections of the verb (e.g.,
different tenses), whilst the second table shows words belonging to different parts of speech that are derived from the verb (e.g., the noun
transcriber and the adjective transcribable). The third and fourth tables provide syntactic (grammatical) information about the behaviour of the
verb.
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3. Mapping from textual variants of terms/named
entities to an appropriate accession number from
the reference data resource.
4. Identification of key terminological verbs.
5. Identification of which terms/NEs stand in key
grammatical relationships to the identified verbs.
6. Identification, via frame linking, of the semantic
roles that the terms/NEs in these grammatical rela-
tionships are playing.
7. Establishment of the existence of particular types
of semantic event in a text, with their participants
being grounded, via frame linking, in the actual
words of the text, allowing the scientist to then ‘see
the evidence’ for some proposed event instance.

In the Results section, we have already introduced the
BLTagger, which can be used to carry out domain-speci-
fic POS tagging. In this section, we provide further

examples of how the BioLexicon can be exploited in
some of the steps described above.

Using the BioLexicon for lemmatisation of biomedical
text
The BioLemmatizer [82] has been developed to perform
lemmatisation on biomedical text. It consists of two
parts - a lexicon that covers inflected word forms and
their corresponding lemmas in both the general English
and biological domains, and a set of rules that express
morphological transformations, in order to handle
words that are not present in the lexicon. BioLemmati-
zer’s lexicon augments MorphAdorner’s lemmatisation
lexicon for general English [83] with information speci-
fic to the biomedical domain, extracted from both the
BioLexicon and GENIA lexical resources [70].
In [82], the performance of BioLemmatizer on the

CRAFT corpus development set [84] is compared with 8

Figure 4 Semantic information provided for the verb transcribe. The top table provides information about the different patterns of semantic
roles that can occur with the verb, whilst the bottom table shows correspondences between grammatical and semantic frames.
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other tools that perform lemmatisation. All 9 tools
agreed on the lemmatisation of about 71% of the 6,775
unique token in the corpus. For the remaining 29% of
the corpus, BioLemmatizer significantly outperformed
the other tools, achieving an F-score of 96.37. The other
tools ranged from 50.60 to 81.90 F-score, with MorphA-
dorner constituting the second-best tool.
A further set of experiments evaluated the component

parts of BioLemmatizer on the same 29% of the corpus.
Using MorphAdorner lexicon as the only resource for
lemmatisation resulted in an F-Score of 53.52,

demonstrating that general-language resources alone are
not sufficient to perform accurate lemmatisation of bio-
medical texts. Augmenting the MorphAdorner lexicon
with information from the BioLexicon resulted in a sig-
nificant increase in performance, to 64.43 F-score.

Using the BioLexicon in information retrieval
Information Retrieval (IR) is the process of retrieving
documents that are relevant to a user’s query. It is both
a component in standard text mining processes and also
an activity in its own right for the human seeking to

Figure 5 Grammatical-semantic linking information between individual arguments for the verb transcribe. Each row represents a link
between a semantic argument (shown before the underscore in the SemArg column) and a grammatical argument (shown before the
underscore in the SynArg column), in the context of a particular pair of linked semantic and grammatical frames, which are shown after the
underscores.

Figure 6 Source database id information for the term Interleukin-1 receptor type I precursor. There is a corresponding entry in both the
NCBI species name database and the UniProt database.
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satisfy an information need. In searching for biomedical
documents, it is often the case that queries contain long
multiword technical terms that should be handled as
single expressions. As the BioLexicon contains such
complex terms, it should be able to help in such
situations.
In order to test this hypothesis, we conducted evalua-

tion experiments on the Text Retrieval and Evaluation
Conference (TREC) 2007 Genomics Track (http://ir.
ohsu.edu/genomics/) ‘gold standard’ data [4] and calcu-
lated the document mean average precision (MAP) in
accordance with TREC specifications. This measure is to
be interpreted as follows: any document identifier that
has a passage associated with a topic identifier in the set
of gold standard passages is considered a relevant docu-
ment for that topic. (The goal of the TREC 2007 Geno-
mics Track was to generate a ranked list of passages for
36 questions that relate to biological events and
processes).
We performed a set of experiments (as reported in

[4]) in which query terms were formulated both with
and without the use of information from the BioLexi-
con. All experiments involved initial pre-processing of
the free-text queries to remove information-free words

(called stopwords) such as the or of. Following this step,
lists of query terms were formulated. As an example, let
us consider a query that contains the words T-cell
growth factors. The following query terms were com-
puted:

• All uni-grams (i.e., single tokens, e.g., T-cell), bi-
grams (i.e., sequences of 2 words, e.g., T-cell growth)
and tri-grams (i.e., sequences of 3 words, e.g., T-cell
growth factors) were extracted from the queries.
• Terms within the query corresponding to entries in
the BioLexicon.( e.g., T-cell growth factors) were
determined.

Experiments involved the formulation of different IR
queries. These contained various sets of query terms
corresponding to different combinations of all uni-
grams, bi-grams and tri-grams in the free-text query,
both with and without the addition of terms present
within the BioLexicon. Without information from the
BioLexicon, the best results were achieved when only
word uni-grams were submitted as query terms, which
resulted in a document MAP of 0.2744. Adding bi-
grams and tri-grams to the list of query terms

Figure 7 Variants of the term Interleukin-1 receptor type I precursor. The top table shows all variants of the term stored in the BioLexicon,
together with the type of variant (e.g. orthographic). The entries in the bottom table correspond to those entries that have been automatically
extracted from texts, together with confidence scores.
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significantly degraded performance. For example, sub-
mitting queries containing both uni-grams and bi-grams
found in the query reduced the document MAP score
to 0.2257. However, performance of the system was
enhanced by adding BioLexicon terms to the list of uni-
grams. In this case, the document MAP score increased
to 0.2763. The same experiment was conducted using
terms found in the SPECIALIST Lexicon instead of the
BioLexicon, which resulted in a lower document MAP
score of 0.2759. These results demonstrate that the use
of technical terms contained within the BioLexicon can
effectively improve genomics IR performance.
There were 27 groups that participated in the TREC

2007 Genomics Track. According to assessment using
the document MAP measure, the results achieved by
the top 6 systems are shown in Table 7. The relative
performance of our system (using the configuration with
uni-grams and BioLexicon terms) is also indicated in
the table. From the table, it can be seen that our system
performs with comparable accuracy to the 5th ranked
system, and better than the 6th ranked system. Although
the differences between the performances of these 3 sys-
tems are small, this can equally be said of all systems in
the top ranking set. Due to the many differences in
approaches and features used, leading to roughly com-
parable results, it is difficult to determine whether these
small differences in performance are statistically signifi-
cant [85].
It should be noted that the experiments are quite sim-

ple, and have the aim only of demonstrating that adding
technical terms from the BioLexicon to other query
terms can improve genomics IR performance. Whilst
the addition of the BioLexicon terms results only in a
small improvement over the use of uni-grams alone, the
small differences between the performances of other sys-
tems mean that any method that can improve perfor-
mance should be taken seriously. Whilst there were
systems that performed slightly better than the

BioLexicon-based system, they made use of other exter-
nal resources such as thesauri and ontologies. Therefore,
a method that combines the use of the BioLexicon with
other external resources may further enhance perfor-
mance, and is worthy of further investigation.

Using the BioLexicon in information extraction
Whilst IR retrieves relevant documents, Information
Extraction (IE) [86] processes the documents themselves
to locate and structure important pieces of knowledge
(i.e., events) contained within them. Within a text
mining system, IR can be followed by IE, i.e., once rele-
vant documents have been located, they can be further
processed to extract relevant knowledge from them.
We have chosen to exploit the BioLexicon within a

challenging IE context, namely that of full parsing, as
part of the UKPubMedCentral (UKPMC) text mining
services (http://ukpmc.ac.uk/), to locate and extract facts
related to the biology domain. Searching for facts within
the UKPMC document set is based on indexing three
types of information:

1. Deep parsing results (predicate-argument struc-
tures) from the Enju parser applied to full papers
from the PubMedCentral repository
2. NER results, which are obtained from a tool that
is based on the one used to locate candidate term
variants for inclusion in the BioLexicon [58], but
augmented with additional information from exter-
nal databases to facilitate the recognition of not only
gene and protein names but also other types of enti-
ties including diseases, drugs, and metabolites [87].
3. Information about verb relations in the biology
domain and their co-occurrence with different pat-
terns of arguments and modifiers. This information
is extracted from the BioLexicon.

The BioLexicon is used as the keystone of an IE
method applied to the UKPMC collection. In practice,
there are three components in the fact extraction pro-
cess. Firstly, grammatical arguments of verbs in the
texts are located through the application of the Enju
parser. Only those verbs that are included in the Bio-
Lexicon are considered as potential textual “anchors” of
events. This seems a sensible first filtering step, given
that that BioLexicon is specifically designed to include
only domain-specific and domain-relevant verbs, which
could potentially describe biomedical events. These can-
didate events are further narrowed down by selecting
only those events in which an NE relevant to the
domain is involved in one of the arguments associated
with the verb, as it is to be expected that biomedical
events will count amongst their participants at least one
biologically relevant entity. As a final test, the

Table 7 TREC Genomics track 2007 system performance

System Document MAP

NLMinter (1st) 0.3286

NLMfusion (2nd) 0.3105

MuMshFd (3rd) 0.2906

MuMshFdRsc (4th) 0.2880

UniNE1 (5th) 0.2777

BioLex 0.2763

UniNE3 (6th) 0.2710

The table shows the performances of the top 6 systems (in terms of
Document MAP scores) taking part in the TREC Genomics track 2007, together
with the performance of our system (configured to use uni-grams and
BioLexicon terms as query terms) when applied to the same data. The
rankings of the systems taking part in the original challenge are shown in
brackets.
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grammatical argument pattern of the verb should match
one of the predicted patterns in the BioLexicon.
Whilst the primary use of the BioLexicon information

in this context is as a filter, it also has a boosting effect
on the range of facts to be considered. This is because
modifier phrases (e.g., those which begin with preposi-
tions) are explored, which would not be considered
without its input. Where these modifier phrases contain
recognised NEs, this can provide enough evidence for
the extraction of a fact that would not otherwise be
recorded. Consider the following example:
The pXPC3 plasmid codes for an XPC cDNA that is

truncated by 160 bp from the N terminus compared with
the wild-type XPC cDNA
Although the Enju parse result treats code as an

intransitive verb (i.e., without a grammatical object), the
information present in the BioLexicon allows the
THEME role to be assigned to the prepositional phrase
beginning with for.
The application of the fact extraction method

described above to the UKPMC corpus is ongoing work,
given that the corpus itself is expanding year on year,
and currently contains 1.8 M research papers. However,
we are able to provide a substantive evaluation based on
a sample of the corpus. This evaluation is based on a
current version of the fact extraction process, applied to
publications from three different years, i.e., 2001, 2002
and 2004. The total number of documents processed for
these 3 years numbers approximately 80,000, containing
42,778,689 instances of verbs, of which 26,861,273
(62.8%) are lexical (i.e. non-auxiliary) verbs.
Statistics regarding the evaluation are shown in Table

8. Firstly, by eliminating verbs that are not present in
the BioLexicon, between 61.5% and 64.8% of the original
set of lexical verbs remain (according to year). This
illustrates the initial filtering effect of the BioLexicon.
Following application of the additional NE-based and
grammatical filters, between 17.7% and 27.5% of the
total number of verbs that were found in the BioLexicon
remain. The strongest of the two filters applied to the
remaining verbs is the NE-based filter. According to the
year, between 69.9% and 80.2% of verbs appearing in
BioLexicon do not any contain NEs within their argu-
ments. These results suggest that many instances of
verbs that match BioLexicon entries do not describe
biomedical events, and hence the application of such a
filter is important to ensure that only verbs that describe
relevant facts are extracted. As future work, we plan to
investigate whether the NE selectional restrictions speci-
fied for particular arguments within BioLexicon seman-
tic frames could complement this filtering process.
The filter that removes those verbs whose grammatical

frames do not match those specified in the BioLexicon
generally only removes a small number of verbs

(consistent across the different years at just over 2%).
This result demonstrates that domain-specific verbs
behave largely as specified in the BioLexicon, thus pro-
viding strong evidence that it is a reliable resource to
aid in the grammatical processing of biomedical texts.
A further interesting statistic concerns the number of

facts extracted that have arguments corresponding to
prepositional phrases. Such facts constitute up to 20% of
the total facts extracted. This demonstrates the boosting
effect achieved by using the domain-specific grammati-
cal patterns in the BioLexicon. Without this informa-
tion, these arguments, which are often vital for the
correct interpretation of the event, would not have been
identified.
These preliminary results provide compelling evidence

that the grammatical information provided in the Bio-
Lexicon can complement other text mining components
in building powerful tools for fact extraction within the
biomedical domain.
The new UKPMC EvidenceFinder search service

makes use of the facts that have been extracted from
the UKPMC document collection, using the method
described above. The service, which is currently avail-
able for testing on the UKPMC labs website (http://labs.
ukpmc.ac.uk/), allows users to search for information in
a more efficient and focussed way than is possible using
traditional keyword search.
For any given named entity, e.g., p53, there can be

many different types of fact that mention the entity.
Often, a user is only interested in a specific subset of
these facts, e.g., those that mention specific types of
relationships between p53 and other entities. Given such
a search term, EvidenceFinder filters the search results
by presenting a list of questions that illustrate the most
frequent types of relationship in which the search entity
is involved, e.g., What expresses p53 protein?, What
induces p53 protein?, What binds to p53 protein? These
questions are generated from the set of facts extracted
from the UKPMC document collection that involve the
search term (thus, these are generated questions with
known answers, not auto-completed questions that may
have no answer). When a question is selected, docu-
ments containing corresponding facts are displayed.
Sentences containing facts corresponding to the selected
question are displayed as part of the search results for
each document, with answers related to the question
clearly highlighted in each case. An example of the
questions and search results generated is illustrated in
Figure 8.
As we do not currently have a corpus annotated with

gold-standard fact annotations, and as the production of
such a corpus would be costly in terms of manual anno-
tation effort required, we are not currently able to
report on precision and recall values for the results
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obtained. However, it should be noted that the engage-
ment and satisfaction of users is of paramount impor-
tance in the UKPMC project. Therefore, users have
been invited to test and evaluate thoroughly the new
EvidenceFinder feature, and feedback will help to assess
the quality of the extracted facts.

Conclusions
This article has presented the BioLexicon, a unique
resource comprising rich linguistic information that can
support a wide variety of tasks relating to IR and text
mining within the biomedical domain, ranging from
low-level tasks such as POS tagging to advanced tasks
such as extraction of events. As a terminological
resource, the BioLexicon brings together terms pre-
viously present only in a range of disparate resources, in
order to create a more unified, wide-scope resource for
use in biomedical text mining. Variants of terms are
linked together via accession numbers from reference
data resources, e.g., UniProt, ChEBI, NCBI taxonomy
and others. Further variants of terms for genes and pro-
teins that appear in the literature, but not in existing
databases, have been automatically recognised and
mapped to existing terms using text mining techniques.
This is important, given the significant number of term
variants that appear in the literature, and ensures that
the BioLexicon contains many more term variants than
can be reasonably included in manually curated
resources. We have shown that the BioLexicon covers a
large amount of domain-specific vocabulary that is miss-
ing from comparable computational lexical resources (i.
e., WordNet and the SPECIALIST lexicon), and we have
also demonstrated that the coverage of protein names is
superior to BioThesaurus.
The wide coverage of terminology in the BioLexicon

makes it suitable for a variety of tasks. In terms of IR
systems, search interfaces can be improved by providing

dynamic completion of query terms that are being typed
in, through reference to the lexicon. Retrieved results
can also be improved by using the lexicon to find the
known variants of search terms entered, thus allowing a
greater number of potentially relevant documents to be
retrieved.
A further key feature is the semi-automatic acquisition

of information regarding the grammatical structure and
semantic role of verbs. The corpus-driven nature of the
acquisition process ensures that the BioLexicon provides
accurate information regarding the observed behaviour
of verbs within domain-specific texts. This in turn can
help to facilitate the identification of events, together
with their participants and the semantic roles assigned
to them. Such comprehensive information is not cur-
rently available in any comparable domain-specific
resource.
In order to foster interoperability, the BioLexicon is

modelled using the Lexical Markup Framework, an ISO
standard. An XML interchange format (XIF) facilitates
integration and standardization of the data extracted
from the different terminological resources and from
texts via text mining techniques.
We have described how the BioLexicon can be

exploited in a number of key tasks relating to the pro-
cessing of biomedical texts, including POS tagging, lem-
matisation, IR and focussed fact extraction from large
collections of full papers and abstracts. As future devel-
opments, we will integrate the BioLexicon into further
text mining applications [81], and will increase its cover-
age by adding more NEs and terms relevant to the bio-
medical domain, as well as acquiring grammatical and
semantic information for additional verbs from biomedi-
cal corpora. We also plan to define a (semi)-automatic
process for linking together the syntactic and semantic
verb frames. This will allow us to investigate the integra-
tion of the BioLexicon within rule-based parsers, which

Table 8 Using the BioLexicon for fact extraction

Year Total lexical verbs Verbs in BL
(% lex. verbs)

Facts extracted
(% BL verbs)

Gramm. frame mismatch
(% BL verbs)

Absence of NE in args
(% BL verbs)

Facts with prep. args
(% of facts)

2001 6,637,052 4,083,325 1,000,571 89,719 2,993,038 187,493

(61.5%) (24.5%) (2.2%) (73.3%) (18.7%)

2002 13,412,793 8,694,065 2,417,809 194,986 6,081,289 493,962

(64.8%) (27.8%) (2.2%) (69.9%) (20.4%)

2004 6,811,428 4,201,550 742,621 89,249 3,369,690 129,600

(61.7%) (17.7%) (2.1%) (80.2%) (17.5%)

The table provides statistics regarding the use of the BioLexicon to identify biomedical facts in approximately 80,000 full text articles taken from the UKPMC
corpus. For each of the 3 years represented in this sub-corpus, the total number of lexical (i.e., non-auxiliary) verbs for that year is shown. In the next column, the
number of these lexical verbs that match with entries in the BioLexicon (BL) is provided. The figure is also shown as a percentage of the total number of lexical
verbs. Next to this is the total number of verbs that are extracted as representing facts (i.e., following the filtering steps), displayed both as an absolute figure
and as a percentage of the total number of verbs in the BL. The next two columns display the number of verbs filtered out during the two filtering steps: firstly,
the verbs whose grammatical frame does not match with the ones specified in the BL, and secondly, verbs whose arguments do not contain any NEs. The final
column displays the number of facts extracted that have one or more arguments corresponding to prepositional phrases, both as a raw figure and as a
percentage of the total number of facts extracted.
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will enable sophisticated constraints to be applied dur-
ing the parsing process.
Given the rate at which biomedical literature is being

published, keeping the BioLexicon as up-to-date as
possible is a major concern. The sheer size of the
resource means that such a task could not be accom-
plished without the use of some automatic techniques.
Accordingly, as has been described above, partial auto-
matic updating of the BioLexicon can be achieved
through periodic execution of the text mining mechan-
ism to identify new term variants appearing in newly
published texts.
It is important that the BioLexicon remains a high-

quality resource, in order to continue in helping to

improve the performance of text mining systems in the
biomedical field. Whilst the state-of-the-art in text
mining is sufficient to support the automatic update of
the resource, experience shows that the best method of
maintaining high quality at a reasonable cost is to use a
combination of automatic and manual methods. Given
the role of human intervention, assistance from the bio-
medical text mining community will be important in the
maintenance of the resource. Already planned initiatives,
such as the establishment of a user group for the Bio-
Lexicon, will enable the community as a whole to help
in ensuring that the lexicon remains a relevant and valu-
able resource to assist in a wide range of text mining
tasks within the domain.

Figure 8 UKPMC EvidenceFinder interface. The screenshot displays the results of entering the search term p53. Questions corresponding to
the facts found in the UKPMC document collection that involve p53 are shown on the right-hand side of the screen. Beside each question is a
number, which denotes the total number of documents containing the corresponding type of fact. The currently selected question, i.e., What
induces p53 protein, is highlighted in green. On the left-hand side of the screen, the summary of each document retrieved by the search
concludes with Extracts relevant to your question, which lists the sentence(s) within the document that contain facts relevant to the selected
question. In each sentence, the answer to the question is highlighted in green, whilst the original search term, and the verb relevant to the
question are emboldened. A Feedback link at the top of the age makes it easy for users to report problems or suggest new features.
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