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Electroencephalogram (EEG) modeling in brain-computer interface (BCI) provides a
theoretical foundation for its development. However, limited by the lack of guidelines
in model parameter selection and the inability to obtain personal tissue information in
practice, EEG modeling in BCI is mainly focused on the theoretical qualitative level which
shows a gap between the theory and its application. Based on such problems, this
work combined the surface EEG simulation with a converter based on the generative
adversarial network (GAN), to establish the connection from simulated EEG to its
application in BCI classification. For the scalp EEGs modeling, a mathematical model
was built according to the physics of surface EEG, which consisted of the parallel 3-
population neural mass model, the equivalent dipole, and the forward computation.
For application, a converter based on the conditional GAN was designed, to transfer
the simulated theoretical-only EEG to its practical version, in the lack of individual
bio-information. To verify the feasibility, based on the latest microexpression-assisted
BCI paradigm proposed by our group, the converted simulated EEGs were used in
the training of BCI classifiers. The results indicated that, compared with training with
insufficient real data, by adding the simulated EEGs, the overall performance showed a
significant improvement (P = 0.04 < 0.05), and the test performance can be improved
by 2.17% ± 4.23, in which the largest increase was up to 12.60% ± 1.81. Through
this work, the link from theoretical EEG simulation to BCI classification has been initially
established, providing an enhanced novel solution for the application of EEG modeling
in BCI.

Keywords: BCI, EEG, GAN, modeling, simulation, classification

INTRODUCTION

Non-invasive brain-computer interface (BCI) as a branch in neuroscience, has continuously been a
hotspot in recent decades. The focal point of the research has been shifted from the signal detection
at first (Berger, 1929), to the paradigm proposal (Herrmann, 2001; Pfurtscheller and Neuper, 2001;
Wolpaw et al., 2002; Polich, 2007), then the EEG decoding and classification (Koelstra et al.,
2012; Chen et al., 2015; Muller-Putz et al., 2016). With the growing publication of related studies,
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attention began to be paid to the generation mechanism and
modelling of EEG in BCI, attempting to provide more solid
theoretical foundations.

Unlike clinical medicine (Sanz-Leon et al., 2015), EEG
modeling launched by BCI usually adopted the neuronal
population level-based modeling approach and has been more
concerned with the theoretical qualitative simulation. The
“neural population” had first been put forward in the 1970s,
assuming that all nervous processes can be dependent upon
the interaction of excitatory and inhibitory cells (Freeman,
1972, 1973, 1975; Wilson and Cowan, 1972, 1973). Later, it
was adopted by Lopes da Silva in modeling the generation of
rhythmic activity (Lopesdas et al., 1974; Lopes da Silva et al.,
1976). In 1995, the neural mass model (NMM) was proposed
by Jansen and Rit (1995) in the mathematical computation of
visual evoked potential (Jansen et al., 1993). Since then, Jasen-Rit
NMM established the connection between deep EEG modeling
and the BCI paradigm, and became popular in terms of BCI-
related EEG modeling. In 2006, Wendling NMM (Wendling
et al., 2002), as an improved Jasen-Rit, was utilized in the
simulation of cortical activity during motor tasks (Zavaglia et al.,
2006). Afterward, NMM was applied in the EEG simulation
based on the scene graph steady-state visual evoked potentials
BCI paradigm (Li et al., 2018a) and the EEG driven by facial
expression (Zhang et al., 2016).

Neural mass model-based EEG modeling does evidence the
signal response under the BCI paradigm to some extent, but
by far it has not formed guidance for the paradigm design
and it is still a certain distance away from application in
BCI. Firstly, according to the anatomy, the output of NMM is
the postsynaptic membrane potential, which can be regarded
as the deep source of surface EEG, but not the collected
one. Certainly, under well-selected parameters, phenomena in
surface EEG can be reproduced (i.e., significant frequency
distribution (Jansen and Rit, 1995), rhythmic activity (Ursino
et al., 2010), energy undulation (Zavaglia et al., 2006)); However,
the selection of NMM parameters in BCI relied largely on manual
adjustment and consumed large efforts. Another challenge is the
forward computation from the inner source to the scalp signal,
which especially requires one’s tissue conductivity and geometry
(Cosandier-Rimele et al., 2010). Although the simplified three-
shell concentric spherical head model can be adopted (Berg
and Scherg, 1994), without extra modification the result still
stayed at the theoretical level (meanwhile, it is unaffordable and
impossible for investigators to obtain complex tissue data from
every user in practice). Obstacles above (i.e., the selection of
NMM parameters, and the lack of individual biometric data)
limited the application of EEG simulation in BCI. However,
without the application, modeling, and simulation of EEG, it
lacked practical meaning, was stuck in the theoretical level, and
felt within an inch of enough.

In the other aspect, building the link between EEG simulation
and its application in BCI is also valuable for BCI. Simulated
EEG has its natural advantage in data amount. If the simulated
signal can be applied to BCI training, it can become another
feasible solution to reduce the amount of pre-collected training
data and alleviate the problem of data insufficiency. To build

such a link, the core problem lies in how to realize the personal
scalp EEG simulation without detailed individual tissue data
and the fine tuning of the NMM parameter. Encouraged by the
work of probabilistic forecasting (Koochali et al., 2019), data
augmentation (Fan et al., 2020; Luo et al., 2020), and EEG feature
generating (Krishna et al., 2021) with generative adversarial
networks (GAN), in this work, we proposed an EEG simulation
method with conditional GAN combined to compensate for the
lack of tissue information, hence establishing the link between
EEG modeling and its application.

In this paper, emphasis was laid on surface EEG modeling and
realizing its application in BCI classification. In the methodology
section, the generation physics of surface EEG were explained
firstly thus deriving the mathematical model of scalp EEG;
Then, focusing on the realistic dilemma, a conditional GAN
converter was proposed to transform the simulated EEGs from
the theoretical-only to its practical version, to overcome the lack
of individual bio-information. In the data acquisition section,
the experimental EEGs acquisition and the paradigm-related
parameters were stated. In the results section, the feasibility
of applying the EEG simulation to the BCI classification was
estimated. As followed, the discussion section discussed the
performance and the limitation of this work, and the conclusion
was summarized in the conclusion section.

METHODOLOGY

To build the connection between EEG modeling and its
application in BCI, the method started from the scalp EEG
modeling, and then a converter based on the conditional GAN
was combined to transfer the theoretical-only simulated-EEG to
its practical version. The overall schematics diagram is illustrated
in Figure 1.

The Mathematical Model of Surface
Electroencephalogram
Electroencephalogram measures the large-scale simultaneous
activation of the brain neurons through the surface electrodes
placed on the scalp (Berger, 1929). It is generally believed
that the extracellular potential field generated by postsynaptic
potentials is the source of an EEG (Baillet et al., 2001; Hallez
et al., 2007). Since only the regular arrangements of neurons
can amplify their extracellular potential field to a measurable
extent, the extracellular potential fields raised by the postsynaptic
potential of pyramidal cells are generally admitted to be the
generator of the EEG. The extracellular potential is caused
by the migration of positively charged ions (Schaul, 1998), as
illustrated in Figure 2. From the extracellular environment to
the brain surface, the spread pathway contains the gray matter,
the white matter, the cerebrospinal fluid (CSF), the skull, and
the scalp. Only by passing through various tissues, can the
electrical activity deep within the brain be finally detected by
EEG electrodes. According to the physics of surface EEG, the
modeling process of scalp EEG can be divided into three nodes:
the postsynaptic membrane potential, the extracellular electric
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FIGURE 1 | The schematics diagram of methodology.
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FIGURE 2 | The generation of extracellular potentials.

field and the forward computation from deep EEG to scalp EEG.
Following are the details.

Modeling of Postsynaptic Membrane Potential
According to the physics, the modeling starts from the
postsynaptic membrane potential. For being generated by large-
scaled simultaneous activation, instead of isolated neurons,
the cortical activity is simulated with the population-level
based model: NMM.

In NMM, one population represents neurons that are lumped
together with the same membrane potential. A single population
includes the interaction among four neural subgroups (Wendling
et al., 2002), pyramidal cells, excitatory interneurons, inhibitory
interneurons with slow synaptic kinetics, and inhibitory
interneurons with faster synaptic kinetics, as illustrated in
Figure 3.

In Figure 3, a static nonlinearity sigmoid relationship is used
to convert the average postsynaptic membrane potentials to an
average spike density. Then a second-order transfer function

FIGURE 3 | The structure of a single population model.

h(t) transfers the presynaptic spike density to the postsynaptic
membrane potential. This second-order representation of
synaptic effect was firstly derived by Rotterdam (van Rotterdam
et al., 1982) and is still in use. After simplification, the
mathematical equations of Wendling’s NMM (Wendling et al.,
2002) are

ÿ0(t) = AaSigm[C2y1(t)− C4y2(t)− C7y3(t)] − 2aẏ0(t)− a2y0(t)
ÿ1(t) = Aa(Sigm[C1y0(t)] + P(t)/C2)− 2aẏ1(t)− a2y1(t)
ÿ2(t) = BbSigm[C3y0(t)] − 2bẏ2(t)− b2y2(t)
ÿ3(t) = GgSigm[C5y0(t)− C6Sigm[C3y0(t)]] − 2gẏ3(t)− g2y3(t)

(1)

where A, B, & G are the average gain in synaptic effect, and a,
b, & g are the time constant; C1∼C7 represent the connectivity
constants between neuron groups; P(t) is the sum of exogenous
contributions. The sigmoid function is

Sigm(v) = 2e0/(1+ er(s0−v)) (2)

where e0 determines the maximum firing rate of the neural
population, s0 is the mean firing threshold, and r is the slope.

Since a single population can only produce a unimodal
spectrum, multiple coupled neural populations with different
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ways of connecting were studied (Wendling et al., 2000) to
describe the neural activity in a wide bandwidth. By separating
typical EEG into three bands as the low (4-12 Hz), the medium
(12-30 Hz), and the high (>30 Hz) (Zavaglia et al., 2006),
parallel feedforward schema of three populations were arranged
to mimic the overall complexity of EEG, as illustrated in Figure 4.
The postsynaptic membrane potential Vout under multi-parallel-
populations is

Vout =
∑

k=L,M,H

wkVk
o(t) (3)

where superscript L, M, and H indicate the three populations
in representative EEG bands, and wk(k = L, M, H) stands
for the weights.

Equivalent Model of Extracellular Electric Field
The generator of the extracellular electric field can be viewed
as a simplified electric model with two current monopoles, as
demonstrated in Figure 5. At the apical dendrite side, a current
sink is used to describe the influx of positive ions. At the cell body,
a current source is placed to represent the injection of positively
charged ions into the extracellular environment.

The frequency range and time-variation of measured EEGs
indicate that there is no charge piled up in the conducting
extracellular volume (Plonsey and Heppner, 1967). Thereby the
simplified electric model can be regarded as a current dipole
that consists of two equal anisotropic charges. Following the
population level-based modeling approach in “Modeling of
Postsynaptic Membrane Potential,” the simultaneous electrically
active pyramidal cells in a small patch can be represented as one
equivalent dipole (He et al., 2002).

The electric-field intensity of the dipole in a quasi-static field
can be driven utilizing the gradient operator

E = −∇U (4)

where E is the vector electric-field intensity in V/m, ∇ is the
gradient operator, and U is the scalar potential field. For a dipole,

L

0V
M

0V H

0V

L
P ( )t M

P ( )t H
P ( )t

outV

L
w

M
w

H
w

FIGURE 4 | Parallel feedforward schema of triple populations.

the scalar potential in a vacuum at any point a is

Ua = k
I(r2 − r1)

r1r2
≈ k

d cos θ

r2 = k
I · p cos θ

r2 (5)

where k is the scale factor, r1 r2 r are distances apart from the
positive, the negative, and the dipole center respectively, p is
distance between two monopoles, I is the current injected or
removed, and d is the dipole moment. By combining (4) and
(5), the equipotential lines and electric-field intensity in vicinity
is illustrated in Figure 6.

Forward Computation of Surface
Electroencephalogram
From the extracellular field to the scalp, charges pass through the
gray matter, the white matter, the cerebrospinal fluid (CSF), the
skull, and the scalp. Tissues on this pathway have their unique
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FIGURE 5 | A simplified dipole model for generating the extracellular electric
field.
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FIGURE 6 | The simplified extracellular electric field and its equipotential lines
generated by dipole.
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conductivities, resulting in a smearing effect on the forward
potential computation (Wolters et al., 2006). Among them, the
conductivities for gray matter, scalp, and CSF are isotropic
(Baumann et al., 1997); While the white matter and the skull have
anisotropic conductivity (Rush, 1900; Nicholson, 1965).

By multiplying the electric field E and the conductivity, the
current density is introduced to describe the total flow of charge
per time over a cross-section of area. According to Ohm’s law, the
current density is

J = κE (6)

where vector field J in A/m2 indicates the current density
perpendicular to the cross-sectional area of the conductor, and
κ is the electrolytic conductivity with units S/m. For isotropic
conductivities κ is a scalar; While for anisotropic conductivities,
κ ∈ R3×3 is a position dependent conductivity tensor as

κ=

 κ11 κ12 κ13
κ12 κ22 κ23
κ13 κ23 κ33

 (7)

By applying the divergence operator to the current density,
according to Poisson’s equation, relationships can be defined

∇ · J = lim
G→0

1
G

∮
∂G

JdS = Im (8)

where the ∇ · J is often called the current source density and
symbolized with Im in Enderle (2012). To compute the potential
field on different tissues, combing equation (4), (6), and (8), a
general formed Poisson’s differential equation can be obtained

−∇ · (κ∇(U)) = Im (9)

For a dipole, the current source density at any point can be
written as a delta function with its distance from the positive and
the negative.

∇ · J = Iδ(r1)− Iδ(r2) = −∇ · (κ∇(U)) (10)

where r1 r2 are the same as in (5).
In the Cartesian coordinate system, setting the positive

monopole at position (x1, y1, z1) and the negative at (x2, y2, z2),
at any point (x, y, z) (10) becomes

κ11
∂2U
∂x2 + κ22

∂2U
∂y2 + κ33

∂2U
∂z2 + 2(κ12

∂2U
∂x∂y + κ13

∂2U
∂x∂z + κ23

∂2U
∂y∂z )

+( ∂κ11
∂x +

∂κ12
∂y +

∂κ13
∂z ) ∂U

∂x + ( ∂κ12
∂ +

∂κ22
∂y +

∂κ23
∂z ) ∂U

∂y + ( ∂κ13
∂x

+
∂κ23
∂y +

∂κ33
∂z ) ∂U

∂z =− Iδ(x− x1)δ(y− y1)δ(z − z1)+

Iδ(x− x2)δ(y− y2)δ(z − z2)

(11)
for anisotropic conductivities. For isotropic conductivities with a
scalar κ, (10) can be written as

∂

∂x
(κ

∂U
∂x

)+
∂

∂y
(κ

∂U
∂y

)+
∂

∂z
(κ

∂U
∂z

) = −Iδ(x− x1)δ(y− y1)

δ(z − z1)+ Iδ(x− x2)δ(y− y2)δ(z − z2) (12)

GAN Converter: From Simulated Signal
to Practical Electroencephalograms
To accurately simulate the scalp EEGs, one’s unique tissue
conductivity, geometry, and the location of the EEG generator
are crucial in the forward computation. Such data have to be
measured with specific equipment (e.g., Magnetic Resonance
Imaging). But in practice, for BCI, it is impossible to get
this biological information from every user. Without detailed
personal data, however, the simulated scalp EEGs can only stop
at theory without being used in realistic applications. To mimic
one’s real EEGs in the lack of individual bio-information, the
generative adversarial network (GAN) was adopted to convert the
simulated signal into its practical version.

Conditional Generative Adversarial Network for
Practical Electroencephalograms Imitation
Generative adversarial network was firstly proposed by
Goodfellow et al. (2014), which provides the ability to
counterfeit images that are statistically indistinguishable
from real ones. A GAN consists of two networks: a Generator
and a Discriminator. The Generator is trained to produce
counterfeits that can deceive the Discriminator. As an adversary,
the Discriminator aims at distinguishing the true from the fake.
Inspired by GAN’s genius in image forgery, it was adopted in this
work as a powerful converter to transform the simulated scalp
EEGs from the theoretical-only to the practical.

To transform the simulated EEGs hence applying in the
training of BCI classifier, conditional GAN was adopted to output
signals with labels as the specified intention. For traditional
GANs, the input of the Generator is a random vector, and several
up-sampling computations are used to expand pixels. However,
as a converter in this research, the simulated scalp EEGs were fed
as input instead, without extra up-sampling.

According to our previous experimental setup in the BCI serial
studies (Lu et al., 2018a, 2020; Zhang et al., 2021b), to realize
the real-time decoding, continuous collected EEGs (4 s) were
sliced into short-windowed (100 ms) to form the training-set. To
reproduce the dataset forming procedure and augment the real
EEGs samples, the output of the Generator was sliced to window-
length size before entering the Discriminator. The conditional
GAN in this work is illustrated in Figure 7.

Generator and Discriminator
In general cases, the input for the Generator is one-dimensional
noise. Thus, one-hot labels for conditional GAN can be
concatenated just after the noise. But in this work, with inputs
being multi-channeled simulated scalp EEGs, one-hot labels
were fed and transformed as an extra channel concatenated
with the simulated signal. The transform of the label input
is demonstrated in Figure 8, of which the Generator and
the Discriminator shared the same method but a different
number of dense nodes.

The detailed design of the Generator and the Discriminator is
listed in Tables 1, 2. In both networks, the selection of kernel size
followed the principle from a rough glance to a fine adjustment.
The optimizer and the cost function of GAN are shown in
Table 3.
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(Trials 1, Timestamps, Channels)
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FIGURE 7 | The conditional GAN for simulated EEGs conversion, where the
number of trials, timestamps, channels, and labels, and the window length is
in accordance with the experimental setup (latterly stated in RESULTS).
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FIGURE 8 | The label input in “simulated EEGs conversion GAN.”

In the training process of GAN, the output of the Generator
was unclear at the beginning. Then the awkward outputs mixed
with the real collected EEGs were fed into the Discriminator to
train a pair of discerning eyes. Subsequently, the Discriminator
was frozen, and the Generator was trained to confuse the
Discriminator according to the loss of the GAN. After
iterations, with a comparable capability of the two networks,
the Generator was able to successfully convert the simulated
EEGs to the convincingly share the same characteristics as the
real collected data.

TABLE 1 | Summary of the generator.

Layer Method Parameter Value

InputLayer_1 Label input Shape (None, One-hot
label)

Dense_1 — Units Timestamps

Activation LeakyReLU

Reshape_1 — Output (None,
Timestamps, 1)

InputLayer_2 Simulated Scalp
EEGs input

Shape (None,
Timestamps,
Channels)

Concatenate_1 Reshape_1 &
InputLayer_2

Axis 2

Conv1D_1 Temporal
dimension

Filters 64

Kernel Size 64

Stride 1

Padding Same

Activation LeakyReLU

Conv1D_2 Temporal
dimension

Filters 52

Kernel Size 32

Stride 1

Padding Same

Activation LeakyReLU

Conv1D_3 Temporal
dimension

Filters 42

Kernel Size 16

Stride 1

Padding Same

Activation LeakyReLU

Conv1D_4 Temporal
dimension

Filters 36

Kernel Size 6

Stride 1

Padding Same

Activation LeakyReLU

Conv1D_5 Temporal
dimension

Filters Channels

Kernel Size 2

Stride 1

Padding Same

Activation Tanh

EXPERIMENTAL DATA

In the experiment, the latest EEG-based control paradigm
assisted by microexpressions (ME-BCI) (Zhang et al., 2021b)
proposed by our team was adopted, to verify the feasibility of
scalp EEG modeling and its application in BCI training.

Experimental Electroencephalograms
Acquisition
The commercial wireless EEG acquisition system (Neuracle
Technology Co., Ltd.) with 30 EEG channels and 1000 Hz
sampling rate is adopted in this study, as illustrated in Figure 9.
The electrode placement is demonstrated also in Figure 9,
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TABLE 2 | Summary of the discriminator.

Layer Method Parameter Value

InputLayer_1 Label input Shape (None, One-hot label)

Dense_1 — Units Window

Activation LeakyReLU

Reshape_1 — Output (None, Window, 1)

InputLayer_2 Mixed EEGs
input

Shape (None, Window,
Channels)

Concatenate_1 Reshape_1 &
InputLayer_2

Axis 2

Conv1D_1 Temporal
dimension

Filters 16

Kernel Size 32

Stride 1

Activation LeakyReLU

Conv1D_2 Temporal
dimension

Filters 8

Kernel Size 16

Stride 1

Activation LeakyReLU

Conv1D_3 Temporal
dimension

Filters 4

Kernel Size 8

Stride 1

Activation LeakyReLU

Conv1D_4 Temporal
dimension

Filters 2

Kernel Size 4

Stride 1

Activation LeakyReLU

Flatten_1 — — —

Dropout_1 — Value 0.4

Dense_2 — Units 1

Activation sigmoid

Loss Function Binary
Cross entropy

— —

Optimizer RMSprop Learning rate 0.0008

Clip value 1.0

Decay 1e-8

Activation Tanh

TABLE 3 | Optimizer and cost of GAN.

Type Method Parameter Value

Loss Function Binary Cross entropy — —

Iteration — — 200

Optimizer RMSprop Learning rate 0.0004

Clip value 1.0

Decay 1e-8

in accordance with the international 10-20 location system,
in which AFz is the ground and Cpz is the reference by
default. Eight healthy subjects (25-38 years of age) participated
in the experiment (World Medical Association, 2013).

Following our latest progress on ME-BCI (Zhang et al.,
2021b), real EEGs were collected. Four microexpressions were

selected: micro raise-brow (mRB), micro furrow-brow (mFB),
micro left-smirk (mLS), and micro right-smirk (mRS), as
illustrated in Figure 10. Each microexpression was conducted
for 4 sessions (including 6 trials) per subject. In each trial,
3 s countdown, 4 s microexpression, and 2 s rest were
contained in turn, as demonstrated in Figure 11. During
data collection, subjects were asked to sit quietly and avoid
extra body movements.

In the ME-BCI related serial works (Lu et al., 2018a, 2020;
Zhang et al., 2021b), for the real-time requirement, each result
was decoded with 100 ms EEG input. Thus, in this work, the EEG
sequences were still sliced into pieces with short-window-length.
Real collected EEG data were divided into two parts: 1st session
as a template for simulated EEGs conversion, 2nd ∼ 4th sessions
as testing-set for feasibility verification.

The Head Models and the Dipole Position
Facing the lack of one’s unique tissue conductivity and geometry,
the three-shell standard mesh of the human head in FieldTrip
(Oostenveld et al., 2010) was adopted as a template. In this
standard mesh, the head structure is simplified into several
surfaces, including brain, skull, and scalp; On the scalp are
the EEG electrodes. Figure 12 shows the surfaces of the
standard head model, and the electrodes in accordance with the
Neuracle Device.

As for the location of the EEG generator, since the precise
positioning cannot be achieved without the extra professional
equipment, the dipole was set in accordance with the mechanism.
In our serial research on ME-BCI (Zhang et al., 2016, 2021b;
Li et al., 2018b; Lu et al., 2018a,b, 2020), data-driven brain
connectivity analysis demonstrated the main involvement of
the motor cortex (Lu et al., 2018a; Zhang et al., 2021b),
which conformed to the contralateral control facts. Meanwhile,
evidence showed the frontal lobe and limbic system also
participate in facial-expression processing (Price and Drevets,
2010; Li et al., 2018b; Lu et al., 2018b). Thereby, the dipole was set
orthogonalization to the surface in the frontal lobe/motor cortex,
separately for different microexpressions (Figure 13).

RESULTS

Simulation of Multi-Channeled Scalp
Electroencephalograms
Postsynaptic Membrane Potential
To simulate postsynaptic membrane potentials in three
representative EEG bands as low (4-12 Hz), medium (12-30 Hz)
and high (>30 Hz), different parameter values were taken
in tuning the peaks. Part of parameters in (1) and (2) are
common for each band whose values are determined according
to anatomical facts (Table 4; Freeman, 1987; Jansen and Rit,
1995).

Using the 4th order Runge-Kutta algorithm, differential
equations in (1) can obtain accurate numerical solutions.
Under certain parameter combinations, the peak can be
fine-tuned by adjusting only G (the average gain for fast
inhibitory interneurons) (Zavaglia et al., 2006). Setting the
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FIGURE 9 | The Neuracle wireless EEG acquisition system and its electrode placement, in which AFz is the ground and Cpz is the reference by default.

FIGURE 10 | Illustration of four selected microexpressions. (A) Micro raise-brow. (B) Micro furrow-brow. (C) Micro left-smirk. (D) Micro right-smirk.

Trial

micro Facial Expression RestCountdown
Beeper 1

4 s 2 s3 s

Raise Brow Rest

Beeper 2 Beeper 3

FIGURE 11 | Timing diagram of each trial.

exogenous input P(t) as a random noise (mean value = 60,
variance = 100), Table 5 lists the system parameters to generate
peaks approximately in three bands. Figure 14 illustrates the
spectrum of each population.

To mimic the subject’s EEG, population weights are calculated
via one’s real EEGs (1st session of experimental data). The
uniformly scaled energies within the band’s range in Real EEGs
were set as the population weights, as listed in Table 6. The mimic
postsynaptic membrane potentials are shown in Figure 15.

Multi-Channelled Scalp Electroencephalograms
With the standard mesh of the human head, the forward
computation was calculated with the boundary element method
(BEM) for its low computational needs (Fuchs et al., 2002).

According to the dipole setup, the simulated multi-channeled
scalp EEGs were demonstrated in Figure 16.

However, due to the blankness of the individual bio-
information, the simulated multi-channeled scalp EEGs lacked
realism in the temporal domain. But literature showed its
capability in mimicking the spectral characteristics (Li et al.,
2018a). Table 7 lists the Pearson correlation coefficient
between the simulated scalp EEGs and the real collected 1st
session in spectrum distribution. Figure 17 demonstrated the
spectrum comparison between simulated scalp EEGs and the
real collected one.

Unlike visual evoked potentials, the frequency spectrum
distribution of the ME-BCI paradigm showed no typical features
(Zhang et al., 2016). As shown in Table 7, without a fine tuning in
NMM parameters, dipole positions, and tissue configurations, the
simulation ability of computation is limited for spectra without
significant characteristics. The value in Table 7 indicated that the
correlation existed, but was not high.

Conversion and Application of Simulated
Scalp Electroencephalograms
Given the lack of biological information, the theoretical
simulation of multi-channeled scalp EEGs can only reproduce
some general phenomenon. To complete the conversion of
simulated EEGs to its useful practical version in BCI, the
simulated signals were fed into the conditional GAN. The
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FIGURE 12 | Triangulated surfaces of the standard head model, and the electrodes location of the Neuracle device. (A) Brain. (B) Skull. (C) Scalp. (D) Electrodes
location according to the Neuracle device.

training losses of the Discriminator and the GAN are illustrated
in Figure 18.

With the random exogenous input P(t), the population
weights, the dipole position, and the conditional label, endless
practical simulated EEGs can be generated through the
conversion. To verify the feasibility and capability of this method,
the simulated EEGs mixed with the real collected 1st session were
used to train a ME-BCI classifier, and the rest of the 2nd to
4th sessions were used to test its performance. The division of
datasets is shown in Figure 19.

All EEGs, both the real and the simulated one, were detrended
and filtered into [2 Hz, 55 Hz] with 4th-order Butterworth
bandpass-filter. To form an intuitive comparison, same as
previous research (Lu et al., 2018a, 2020), EEGs were sliced
into short-windowed (100 ms) segments, and the same feature
extraction method Common Spatial Pattern (CSP) was adopted
to emphasize the performance between “training with only real
EEGs” and “training with fake augmented EEGs.” The spatial
filter of CSP was calculated via the training-set. The ‘one versus

rest’ strategy was adopted in the CSP. Various commonly used
classifiers were used to calculate the validation accuracy and test
accuracy. The validation and test performances under ‘training
with fake augmented EEGs’ are listed in Table 8.

As shown in Table 8, classifiers such as K-nearest neighbor
(KNN) and some ensembles (i.e., bagged trees, and subspace
KNN) achieved higher validation accuracies. As for test
accuracies, due to the individual differences, the personal best
varied from 73.7 to 98.1%. The mean test accuracy among
classifiers is 84.93% ± 1.25. The overall performance in Table 8
indicates the feasibility of applying the simulated EEGs to the
BCI classifier training, through a GAN conversion. For a detailed
comparison, accuracies under the training-set with only the 1st
session real EEGs were also estimated. The validation and test
performances under ‘training with only the real 1st session EEGs’
are shown in Table 9.

Comparing Table 9 with Table 8, most accuracies have been
improved after the data augmentation with simulated EEGs,
both the validation and the test. The two-sample T-test shows
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FIGURE 13 | Dipole position of scalp EEGs simulation in (A) frontal lobe, (B) left motor cortex, and (C) right motor cortex. For mRB and mFB, dipole was set in the
frontal lobe; for mLS was the right motor cortex, and for mRS was the left motor cortex.

TABLE 4 | Comman parameters in NMM.

Parameter Value

C1 135

C2, C7 108

C3, C4 33.75

C5 40.5

C6 13.5

s0 6 mV

e0 2.5 s−1

R 0.56 V−1

that after adding the simulated EEGs, the overall performance
(both validation and test) has a significant improvement
(P = 0.04 < 0.05), compared with insufficient real data. By

TABLE 5 | System parameters in NMM for different EEG bands.

Parameter EEG bands

Low Medium High

A 2.7 5.2 5.6

B 3.2 4.5 3.8

G 27 43 75

a 40 85 110

b 20 30 40

g 300 350 400

marking the improvement in test accuracy as positive, and the
decline as negative, the overall performance under augmenting
with fake EEGs is 2.17%± 4.23. Among all subjects, test accuracy
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FIGURE 14 | Normalized spectrum of the low, medium, and high populations with varying G.

TABLE 6 | Normalized population weights.

Microexpression EEG Bands

Low Medium High

Raise Brow 0.1190 0.3332 0.5478

Furrow Brow 0.0845 0.0487 0.0357

Left Smirk 0.0887 0.0574 0.0467

Right Smirk 0.0996 0.0550 0.0509

of S5 achieved the largest improvement as 12.60% ± 1.81 among
6 classifiers. The comparison between Tables 8, 9 confirms the
feasibility and capability of scalp EEGs simulation as a new data
augmentation method in BCI.

Figure 20 demonstrates the confusion matrix of six classifiers
under training with “fake EEGs augmented” vs. “only real EEGs”.
The blue high-lighted blocks in Figure 20B indicate that the
performance has been improved after being augmented by the
converted simulated EEGs. Here, the improvements mean a raise
in true positive, or a decline in false positive. In all six classifiers,
the distribution between “fake EEGs augmented” and “only real
EEGs” basically remained the same, and showed no obvious
imbalance among categories. The confusion result indicates that
this training-set augmentation method with simulated EEGs
shows no bias and maintains the same level of performance
among categories.

DISCUSSION

In this work, a mathematical model of scalp EEG is presented,
and a conditional GAN is put forward to convert the simulated
scalp EEGs from theoretical-only to practical, hence applying
in the training of BCI classifiers. Through this study, we have
taken a step forward from the theoretical modeling of EEG, and
initially established the connection between simulated EEGs and
its practical applications in BCI. The pros and cons existing in
this work are discussed as followed.

The Significance and the Performance
The Tuning of Neural Mass Model Parameters, and
the Structure of Coupled Neural Mass Model
Neural mass model is represented as a group of differential
equations with several parameters related to physiological
mechanisms. Apart from the anatomy-related common
parameters (C, e0, s0, and r), for a single population, Jasen-Rit
NMM with two feedback interneurons has four adjustable
parameters (Jansen and Rit, 1995), Wendling NMM with three
feedbacks has six (Wendling et al., 2002), and the more in
Ursiono NMM (Ursino et al., 2010). For a multi-population
model, the adjustable parameters grow exponentially, and the
coupling structure also affects the output (Wendling et al., 2000).
However, the peak of NMM output shows a complex non-linear
relationship to the coupling of parameters. To strictly reproduce
the event within collected EEGs, large efforts have to be paid
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FIGURE 15 | Simulated postsynaptic membrane potentials of subject S1 under micro-raise-brow, micro-furrow-brow, micro-left-smirk, and micro-right-smirk.

FIGURE 16 | Simulated micro right-smirk multi-channeled scalp EEGs (in
aesthetics consideration, only parts of channels are shown).

or an extra fitting algorithm has to be added to tune the NMM
parameters. Another difficulty in parameter tuning is the chaos
of NMM (Huang et al., 2011). Even with changeless parameters,
the output of NMM remains fluctuated and shows instability to
different initial values and random exogenous input.

In this work, with emphasis put on the link between EEG
modeling and its application in BCI, the careful selection of the
NMM parameters for each individual seems unaffordable and less
practical. With a GAN converter added, the strict re-produce of
EEG characteristics is no longer obsessed, thereby largely ease the
NMM parameter tuning step.

Since single NMM can only generate a unimodal spectrum,
for cortical responses, multi-coupled NMM was adopted in the
modeling of postsynaptic membrane potential. In Jansen and Rit,
1995; Zhang et al., 2016; Li et al., 2018a, a double-column model

TABLE 7 | Pearson correlation coefficient of spectrum.

Subject Facial Expression

micro
Raise Brow

micro
Furrow Brow

micro
Left Smirk

micro
Right Smirk

S1 0.80 0.52 0.20 0.21

S2 0.51 0.51 0.13 0.24

S3 0.68 0.50 0.27 0.32

S4 0.64 0.51 0.26 0.13

S5 0.63 0.58 0.31 0.33

S6 0.66 0.44 0.22 0.24

S7 0.82 0.59 0.28 0.18

S8 0.66 0.55 0.22 0.27
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FIGURE 17 | The frequency spectrum of simulated scalp EEGs and real
collected data.

was used to model the generation of neural activity potential.
In this work, the triple-population coupled NMM structure was
adopted; Compared to the double-column model, the simulated
output of triple-population showed more details within the EEG
band, and can reproduce the fast activity within EEG. As for the
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studies that involve triple coupled model, such as Zavaglia et al.
(2006) and Zhang et al. (2021a), different detailed population
weights were set to adjust the coupling proportion within
multi-populations. Such population weights were calculated via
collected personal EEG data, thus improving the realism and
enhancing the personal characteristics of the cortical response.

Overcome the Lack of Personal Brain Tissue Data
From the postsynaptic membrane potential to the scalp EEGs,
personal brain tissue data matters a lot. These data include the
geometric shape of the brain surface, the tissue conductivity,
and the position of the cortical sources. Even by using the
BEM method, further combing a distributed source model
(Dale et al., 2000), the realistic cortical shape is still crucial
in the forward computation. This information by far has
to be determined from Magnetic Resonance Imaging (MRI).
An MRI system costs millions of dollars. For non-medical
department students or even some colleges, there is little chance
of accessing the MRI. Even if it can be detected, this personal
and costly modeling method is not practical in the field of
BCI. After all, in application, it is impossible for every user to
undergo MRI detection.

To overcome these obstacles we faced during research,
the GAN converter was used in this work to make

up for the default in personal data. Focusing on the
BCI field, not only simulation but application, with the
method in this work, large numbers of applicable scalp
EEGs can be generated. Meanwhile, it should be made
feasible to apply the simulated EEGs to the training
of BCI classifier.

Build the Connection Between Electroencephalogram
Simulation and Application in BCI
Electroencephalogram modelling in BCI area is related to
specific mental tasks or BCI paradigms, but it by far has
not formed guidance for the paradigm design or built any
connection with its application in BCI; In other words, the EEG
modelling in BCI derives from BCI but exists independently
of BCI, lacking integrity. Jansen and Rit (1995) simulated the
generation of visual evoked potential in EEG, which outputted
signals with approximate phase response and, in detail, exported
the influence of NMM parameters. But, strictly, the output
ended up as the postsynaptic membrane potential, and no
more properties other than phase were discussed. Zavaglia
et al. (2006) reproduced the power spectral density and the
temporal changes of cortical EEG during finger movement;
However, the use of large fitting methods (in optimizing
NMM parameters) and the MRI measurement made it difficult
to establish the connection with the application in BCI.
Delphine’s work (Cosandier-Rimele et al., 2010) established the
computational modeling of epileptic activity, proposed a solid
study in scalp EEG simulation; Although this work was unrelated
to BCI paradigms, it indicated that the scalp EEG simulation
are very sensitive to the geometry and electrical properties
of the different head tissues (mainly, the brain, skull, and
scalp), discussing the gap between the simulated-EEG and the
actual-EEG and its difficulty of application. Recently, Li et al.
(2018a) simulated the EEG frequency response of the scene
graph steady-state visual evoked potentials; Similarly, the output
ended up at the postsynaptic membrane potential, discussed
no other properties besides the visual response frequency, and
formed no guidance for paradigm design or application. In
the latest, Hanzhe (Zhang et al., 2021a) built the mathematical
model of EEG for lower limb voluntary movement intention
based on NMM; However, the output did not propagate
to the scalp EEG, and made no comparison with the real
collected signal.

The works above did make large amounts of progress
in EEG modeling related to different BCI paradigms or
mental tasks, however a large number of them stopped at
the postsynaptic membrane potential, and focused mainly
on the reproduction of little EEG response characteristics.
Compared to them, this work focused on establishing the
connection between the EEG modeling and its application, by
proposing the scalp EEG model and applying the simulated
scalp EEG into the training of BCI classifiers, so as to add
to the modeling study; The 2.17% ± 4.23 improvement of
test accuracy demonstrated the feasibility. Meanwhile, in order
to establish such a connection, compared to those precise
modeling methods that required individual tissue data, this
work adopted the standard head mesh during the simulation
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TABLE 8 | The validation and test performances under “training with fake EEGs augmented.”

Feature CSP (One vs. Rest)

Validation Accuracy* (%) Test Accuracy* (%)

Model Type S1 S2 S3 S4 S5 S6 S7 S8 S1 S2 S3 S4 S5 S6 S7 S8

Tree Fine 77.7 87.9 69.9 95.9 81.7 97.5 95.7 87.7 − − 91.5 − 90.7 75.5 −

Medium 51.2 52.0 51.6 51.4 50.7 49.8 56.4 50.2 − − − − − − − −

Coarse 33.6 38.5 42.3 39.9 37.9 40.1 45.5 36.5 − − − − − − − −

SVM Linear \ \ \ \ \ \ \ \ − − − − − − − −

Quadratic \ \ \ \ \ \ \ \ − − − − − − − −

Cubic \ \ \ \ \ \ \ \ − − − − − − − −

KNN Fine Gaussian 62.3 53.1 45.8 70.7 56.1 60.1 44.9 47.7 − − − − − − − −

Medium Gaussian 34.9 35.4 35.1 37.6 31.3 33.4 34.4 29.7 − − − − − − − −

Coarse Gaussian 27.7 30.7 33.4 27.9 25.9 26.4 31.3 28.7 − − − − − − − −

Fine 97.8 98.8 95.5 98.7 95.8 99.8 99.9 98.1 85.4 90.1 71.8 95.9 73.7 95.0 86.9 85.4

Medium 98.2 98.8 96.2 97.5 96.1 98.8 99.2 97.3 87.6 90.7 72.3 94.8 74.8 95.0 80.1 82.1

Coarse 60.3 57.8 52.9 52.5 55.9 52.5 54.9 50.9 − − − − − − − −

Cosine 91.6 96.4 85.8 98.9 96.7 99.5 75.5 77.2 64.0 84.3 − 98.1 76.0 97.3 − −

Cubic 98.3 98.8 96.1 97.5 95.7 98.8 99.2 97.3 87.6 90.7 71.7 95.2 73.9 94.9 80.5 82.2

Weighted 98.4 98.9 96.5 98.9 96.4 99.6 99.7 97.9 87.9 91.3 72.2 96.2 74.7 95.1 84.1 84.2

Ensemble Boosted Trees 58.2 56 58.6 62.4 58.4 55.6 59.0 52.7 − − − − − − − −

Bagged Trees 97.3 98.0 95.6 98.3 96.0 99.3 99.2 96.9 82.0 86.3 74.5 94.6 72.5 92.1 78.6 79.8

Subspace Discriminant 39 38.2 34.3 38.3 31.9 37.2 35.1 34.2 − − − − − − − −

Subspace KNN 98.2 99.1 96.4 98.8 96.4 99.8 99.9 98.4 86.0 90.9 73.7 96.4 74.9 96.5 86.6 87.2

RUSBoosted Trees 51.1 51.9 51.6 51.4 50.7 49 55.9 50.1 − − − − − − − −

*Validation accuracies were estimated via 5-fold validation, in which classifiers with training-times longer than 5 mins were not recorded and marked with ‘/’, and validation
accuracies lower than 90% were marked with gray. For test accuracy, only classifiers whose validation accuracy was higher than 90% were estimated, and the highest
test accuracy for each subject was marked with red.

TABLE 9 | The performances under “training with the real 1st session EEGs.”

Feature CSP (One vs. Rest)

Validation Accuracy* (%) Test Accuracy* (%)

Model Type S1 S2 S3 S4 S5 S6 S7 S8 S1 S2 S3 S4 S5 S6 S7 S8

KNN Fine 87.7 96.2 90.1 94.9 89.8 99.9 99.7 95.4 83.7 89.6 70.2 94.8 62.7 96.3 86.8 83.9

Medium 91.0 96.6 92.6 95.0 89.4 98.5 98.9 93.1 87.0 90.0 69.2 94.1 61.6 95.0 81.3 81.3

Cubic 91.3 96.6 92.0 94.9 89.3 98.4 98.6 93.8 86.7 90.0 69.4 94.2 62.3 94.1 81.5 81.1

Weighted 91.9 96.9 92.8 96.7 90.1 99.6 99.1 94.4 87.6 89.7 69.6 95.3 62.4 95.7 84.1 83.4

Ense-mble Bagged Trees 89.5 93.8 90.2 94.3 89.7 96.3 96.8 93.3 83.8 82.7 71.5 92.1 56.2 92.1 75.7 84.0

Subspace KNN 92.2 97.0 93.1 96.8 90.0 99.8 99.7 96.3 87.4 91.7 71.8 95.5 63.7 96.3 86.3 87.2

*The blue block indicates “the accuracy was improved with simulated EEGs augmented,” the red block indicates a decline, and the white block indicates an equivalence.

and proposed an additional converter to overcome such a data
default problem.

The Limitations and Further Work
The Overfit Problem in Classification
In the transformer from the awkward simulated EEGs to the
applicable version, a conditional GAN was used. During the
learning process of GAN, the signals in the real collected 1st
session were used as the templates. The Discriminator would

be deceived if the input showed similar features to the real
templates. According to this logic, the Generator would finally
output converted signals with the same features based on
the judgment condition of the Discriminator. Therefore, the
converted simulated signals would show distinct characteristics
similar to templates.

It is widely recognized that surface EEG is a non-linear
and unstable signal with a low signal-to-noise ratio, and is
easily affected by one’s thinking or emotions. This attribute
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FIGURE 20 | The confusion matrix of test accuracy under (A) training set with “fake EEGs augmented” versus (B) training set “only real EEGs.” The blue highlight
represents that the performance has been improved with the simulation contained.

makes the EEG tend to show different feature distribution
with time-shifting. In other words, the feature space or data
distribution extracted under partial time has poor generalization.
Thus, the BCI classifier would show large overfitting if trained
with samples lacking diversity.

However, the simulated EEGs converted from GAN would
have similar characteristics as the 1st session, so does the feature
space. Since the focal point in this work is not emphasized
on the EEG decoding, the feature extraction algorithm and the
machine learning method are not discussed. Comparing Table 8
to Table 9, the accuracy in Table 8 shows a larger descent between
the validation and the test than in Table 9. It can be found
that, with the simulated EEGs added to the training, the test
performance has been improved, but the over-fitting problem has
been exacerbated at the same time. In future work, more attention
should be paid to the diversity of the converted EEGs. The
attentional mechanism can be involved (Lashgari et al., 2021), to
focus more on the main characteristics so that to enable more
randomness in other secondary characteristics.

The Lower Adaptability Among Classifiers
In Table 8, taking subject S4 as an example, among various
classifiers, the validation accuracies range from 27.9 to 98.9%.
For all subjects, classifiers such as “coarse tree,” “medium
Gaussian SVM,” “coarse Gaussian SVM,” and “subspace
discriminant” achieved low validation accuracies. While several
KNNs performed better. The same result did not appear in the
case of training with all real collected EEGs (Lu et al., 2020),
although there are difference between real datasets.

As discussed above, the simulated EEGs converted by
GAN shall appear the characteristic that accords with the
discriminator’s judgment basis. According to Table 8’s result,
such characteristics are more suitable with the computation
logic of KNN. Further, it indicates that there are flaws
in the design of the Discriminator in this article, perhaps
the network structure or the cost function. Additionally,

the symmetrical network structure tends to be adopted in
the design of GAN, thus the same defects also exist in
the Generator. In the next studies, more attention will
be paid to the design of converter GAN, to ensure a
better adaptability of simulated EEGs’ application among
different classifiers; Additionally, more kinds of decoding
algorithms will also be adopted to estimate the feasibility,
such as methods with hybrid-domain features (Ieracitano et al.,
2021), end-to-end deep learning methods, transfer learning
methods and so on.

CONCLUSION

This work established the connection from the EEG simulation
to its application in BCI, and proved its feasibility in
improving the test accuracy compared to insufficient real data.
In this paper, a mathematical model of surface EEG was
presented, and a GAN converter was proposed to transfer
the theoretical simulated EEGs to its applicable version in
BCI training.

In accordance with the physics of surface EEG, the
mathematical computation is firstly started with a triple-
population coupled NMM. Then the dipole and the forward
computation were followed to model the propagation. To
overcome the lack of individual biological data and build
a bridge between the simulation and the application, a
GAN converter was established to transfer the simulated
scalp signal to its applicable version. In application, the
converted simulated EEGs were used in the training of
BCI classifiers. With the simulated EEGs added into the
training-set, compared with only insufficient real collected
data, the overall performance improved significantly
(P = 0.04 < 0.05), and the test performance showed an
overall 2.17% ± 4.23 increase. Among all subjects, the largest
increase is 12.60%± 1.81. Through this work, we hope to provide
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a novel feasible solution for the application of surface EEG
modeling in BCI.
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