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SUMMARY

Nervous systems maintain information internally using persistent activity changes. The 

mechanisms by which this activity arises are incompletely understood. We study prefrontal cortex 

(PFC) in mice performing behaviors in which stimuli predicted rewards at different delays with 

different probabilities. We measure membrane potential (Vm) from pyramidal neurons across 

layers. Reward-predictive persistent firing increases arise due to sustained increases in mean and 

variance of Vm and are terminated by reward or via centrally generated mechanisms based on 

reward expectation. Other neurons show persistent decreases in firing rates, maintained by 

persistent hyperpolarization that is robust to intracellular perturbation. Persistent activity is layer 

(L)- and cell-type-specific. Neurons with persistent depolarization are primarily located in upper 

L5, whereas those with persistent hyperpolarization are mostly found in lower L5. L2/3 neurons 

do not show persistent activity. Thus, reward-predictive persistent activity in PFC is spatially 

organized and conveys information about internal state via synaptic mechanisms.
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In brief

Kim et al. show sustained changes in membrane potential and firing rates in mouse frontal cortex 

leading up to an expected reward. These dynamics rely on underlying changes in mean and 

variance, directly testing prior theoretical studies. Neurons showing increased and decreased 

activity changes are located in different cortical layers.

INTRODUCTION

Predicting future reward is critical for successful adaptive behavior (Hull, 1943). Nervous 

systems anticipate the likely outcomes of stimuli in the environment through reinforcement 

learning (Bush and Mosteller, 1951; Rescorla and Wagner, 1972; Sutton and Barto, 1981). In 

the real world, many reward-predicting stimuli are followed by a time delay. This requires 

the nervous system to maintain activity in anticipation of the future reward.

Neurons are capable of maintaining changes in firing rates in the absence of external stimuli. 

This persistent activity was first observed in prefrontal cortex (PFC) (Fuster and Alexander, 

1971; Kubota and Niki, 1971) and was traditionally viewed as a substrate of working 

memory (Fuster and Alexander, 1971, Funahashi et al., 1989). Subsequent work pointed to a 

more general strategy for the nervous system to bridge delays between events in the world, 

during decision making (Schall and Hanes, 1993; Kim and Shadlen, 1999), rule learning 

(Wallis et al., 2001), and anticipation of future reward (Watanabe, 1996; Leon and Shadlen, 

1999; Shuler and Bear, 2006). In particular, persistent activity in PFC is critical for cognitive 
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functions that require integrating learned experience to predict future outcomes for flexible 

behavior (Miller and Cohen, 2001; Fuster, 2015).

Despite decades of theoretical work proposing how persistent activity may be generated, the 

mechanisms underlying its dynamics are still largely unknown. There are multiple 

challenges in understanding persistent activity. First, cortical neurons alone are biophysically 

incapable of maintaining information over behaviorally relevant timescales. Their intrinsic 

membrane time constants are on the order of tens of milliseconds, and postsynaptic 

potentials arising from synaptic input only last for hundreds of milliseconds (Koch, 1999). 

These are much shorter than the timescales of delay-related behaviors.

Second, persistent firing patterns in PFC neurons are highly irregular (Compte et al., 2003; 

Shafi et al., 2007). Early experimental and theoretical work suggested that persistent spiking 

rate changes during task delays are largely due to increased mean synaptic inputs, driving 

membrane potential (Vm) above spike threshold (Wang, 1999; Seung et al., 2000; Brunel 

and Wang, 2001). However, firing patterns in this regime are fairly regular, in contrast to 

experimentally observed irregular spike timing in delayed-response tasks (Compte et al., 

2003; Shafi et al., 2007).

One solution to this puzzle lies in the dense synaptic connectivity between neurons. Cortical 

neurons receive extensive local and long-range synaptic inputs, and spikes are driven by 

integration of these inputs. Intracellular recordings in awake animals reveal that cortical 

neurons exhibit persistent depolarization (Steriade et al., 2001; Destexhe et al., 2003; Zagha 

and McCormick, 2014), and the observed irregular firing patterns are thought to be produced 

by fluctuations of their synaptic inputs (Softky and Koch, 1993; van Vreeswijk and 

Sompolinsky, 1996; Shadlen and Newsome, 1998). These characteristic features of cortical 

neurons in awake animals led to proposals that persistent firing rate changes with irregular 

timing arise not only by increasing the mean synaptic inputs but also through increased 

variance of synaptic inputs (Amit and Brunel, 1997; Renart et al., 2003, 2007).

Although these models are biologically plausible in explaining the underlying subthreshold 

dynamics of persistent activity, there is still a lack of experimental evidence supporting these 

models under conditions leading to persistent activity in PFC. Recently, intracellular 

recordings in the premotor cortex showed that increased spiking activity during motor 

preparation was correlated with Vm depolarization (Inagaki et al., 2019), but the direct 

relationship between Vm variability and the spike output irregularity remains to be tested. 

Moreover, in sensory and motor areas of mouse neocortex, large-amplitude Vm fluctuations 

observed during quiet resting states disappeared during movement, resulting in decreased 

Vm variability (Crochet and Petersen, 2006; Bennett et al., 2013; Polack et al., 2013; 

Schiemann et al., 2015), pointing to an apparent discrepancy between models and 

experimental data.

Another unexplained phenomenon—observed as soon as persistent activity was discovered 

in PFC (Fuster and Alexander, 1971, Funahashi et al., 1989)—is sustained decreases in 

firing rates during task delays. Recent intracellular recordings in sensory and motor cortical 

areas revealed layer- and cell-type-specific spike output and subthreshold dynamics 
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(Schiemann et al., 2015; Zhao et al., 2016). These observations suggest a possible laminar 

distribution of different subtypes of PFC neurons in mice (Douglas and Martin, 2004; 

Dembrow et al., 2010; Morishima et al., 2011).

Therefore, to study the subthreshold dynamics underlying reward-predictive persistent 

activity, we measured Vm in PFC neurons, while mice performed a delayed-reward task.

RESULTS

Persistent changes in Vm in anticipation of predicted rewards

To study persistent activity associated with reward anticipation, we trained thirsty, head-

restrained mice on a classical trace-conditioning task (Figures 1A, 1B, and S1). Three 

olfactory cues, presented for 0.5 s, predicted one of three outcomes: no reward, a reward 

after a 1-s delay, or a reward after a 3-s delay. We measured Vm by making whole-cell patch 

clamp recordings (Figures 1C and 1D) (66 neurons from 39 mice) in the dorsomedial region 

of frontal cortex, previously characterized by its projections to mediodorsal thalamus, 

medial striatum, amygdala, ventral tegmental area, and dorsal raphe (Uylings and van Eden, 

1990; Van De Werd et al., 2010). Injecting adeno-associated virus (AAV) into recording sites 

showed projections to each of these previously observed efferents (Figure S2). Axons did 

not target primary motor cortex, indicating that this area is distinct from neighboring 

secondary motor cortex (Hooks et al., 2013).

A subset of neurons (15 of 66, 24%) displayed significantly increased mean firing rates 

during delays to reward, relative to baseline (1 s prior to conditioned stimulus [CS]; pre-CS). 

This was the case for both 1-s (Figures 1E, 1F, and S3) (pre-CS: 1.23 ± 0.45; delay: 8.26 ± 

1.22 spikes s−1 mean ± SEM; Wilcoxon signed rank test, p < 0.01) and 3-s delay trials (pre-

CS: 0.87 ± 0.28; delay: 6.03 ± 2.32 spikes s−1; Wilcoxon signed rank test, p < 0.01). After 

rewards, firing rates decreased significantly compared to delay periods (Figure S3) (1-s 

trials: 2.90 ± 1.26 spikes s−1; Wilcoxon signed rank test, p < 0.01; 3-s trials: 3.15 ± 1.61 

spikes s−1; Wilcoxon signed rank test, p < 0.01). We found a similar proportion of neurons 

showing increased firing rates during the delay using extracellular recordings with tetrodes 

(Figure S4).

Subthreshold Vm, after removing action potentials from these neurons, showed a significant 

trial-type and time-window interaction (one-way repeated-measures ANOVA, F2,84 = 11.18, 

p < 0.001). There was significant depolarization in anticipation of reward, relative to pre-CS 

periods, during 1-s delays (pre-CS: −54.36 ± 1.36; delay: −48.04 ± 1.51 mV mean ± SEM; 

Wilcoxon signed rank test, p < 0.01), and 3-s delays (pre-CS: −54.28 ± 1.21; delay: −48.63 

± 1.38 mV; Wilcoxon signed rank test, p < 0.01). Vm significantly decreased after reward 

delivery compared to delay periods (Figure S3) (1-s trials: −51.37 ± 1.46 mV, Wilcoxon 

signed rank test, p < 0.001; 3-s trials: −51.56 ± 1.56 mV, p < 0.01). Depolarization was 

correlated with increases in firing rates (1-s: Pearson’s r = 0.541, p < 0.04; 3-s: r = 0.517, p 

< 0.05) (Figure S3), indicating that firing rate increases in anticipation of reward were 

associated with Vm depolarization.
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Next, we examined subthreshold Vm dynamics during the delay period. Vm rapidly 

depolarized following the onset of reward-predicting odors. Fitting logistic functions to the 

rise of Vm, we observed that the transition from baseline to a state of persistent 

depolarization was similar in 1-s (487 ± 45 ms after odor onset) and 3-s delay trials (684 ± 

111 ms after odor onset, Wilcoxon signed rank test, p > 0.1) (Figure S3). After this 

transition, mean Vm remained in a sustained state of depolarization throughout the delay, 

showing no difference in Vm between the first 0.5 and last 0.5 s of the delay (1-s delay: first 

0.5 s, −48.13 ± 1.47 mV, last 0.5 s, −47.96 ± 1.62 mV, Wilcoxon signed rank test, p > 0.05; 

3-s delay: first 0.5 s, −48.33 ± 1.37 mV, last 0.5 s, −49.48 ± 1.46 mV, p > 0.05). These data 

indicate that reward-predicting cues evoked a persistent increase in Vm that appeared stable 

during delays to reward.

In tasks such as ours, reward anticipation and preparatory licking are correlated (Fiorillo et 

al., 2008; Cohen et al., 2012). As predicted, lick rates increased significantly in anticipation 

of reward compared to pre-CS (1-s: pre-CS, 0.50 ± 0.15, delay, 4.53 ± 0.39 licks s−1; 3-s: 

pre-CS, 0.51 ± 0.06, delay, 4.17 ± 0.36 licks s−1) (Figure S3) that was further maintained at 

an increased level during the consummatory period after the reward delivery (1-s: 5.91 ± 

0.33; 3-s: 4.09 ± 0.36 licks s−1). Previous studies have shown that a subset of neurons in the 

premotor cortex located adjacent to our area of study showed direct correlations between 

licking and neuronal activity in a lick/no-lick task (Komiyama et al., 2010), whereas another 

population showed ramping activity prior to lick onset only during motor preparation 

periods (Li et al., 2015; Inagaki et al., 2019). To test the temporal relationship between lick 

rates and Vm changes, we estimated cross-correlation coefficients for each neuron (Figure 

S3). We found that Vm and lick rates were positively correlated during reward-anticipation 

delays (Figure S3) (Vm-lick cross-correlation coefficient 1-s: Pearson’s r = 0.68 ± 0.03; 3-s: 

r = 0.51 ± 0.03). However, the correlation decreased significantly during reward 

consumption (Figure S3) (1-s: Pearson’s r = 0.21 ± 0.10, Wilcoxon signed rank, p < 0.001; 

3-s: r = 0.23 ± 0.07, Wilcoxon signed rank, p < 0.01). After reward was delivered, licking 

persisted while mice harvested reward. At the same time, Vm depolarization terminated 

quickly, and decayed to baseline (Figures 2A–2C and S3) (1-s: 395 ± 118 ms after reward 

delivery; 3-s: 436 ± 71 ms; Wilcoxon signed rank test, p > 0.1). These results suggest that 

Vm depolarization was temporally correlated with licking during the reward anticipation, but 

the termination of depolarization was independent from ongoing consummatory licking.

Internally generated termination of sustained Vm changes

Clearly, a reward-predictive stimulus initiates persistent changes in Vm. What terminates it? 

Is an external stimulus, such as reward delivery, required?

We observed that some neurons (6 of 66) showed significant hyperpolarization during no-

reward trials. Remarkably, these hyperpolarized states were sustained for ~3 s after cue 

offset—precisely the time of the longest reward delay—and then terminated in the absence 

of any external stimulus (Figures 2D–2F) (3.54 ± 0.18 s from CS offset, not significantly 

different from termination time on 3-s rewarded trials, Wilcoxon rank-sum test, p > 0.77). 

This demonstrates that persistent changes in Vm do not require an external stimulus to 

terminate. They can be terminated purely internally.
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To study sustained Vm termination further, we designed a behavioral task with uncertain 

reward. One stimulus predicted no reward, a second stimulus predicted reward after a 3-s 

delay, and a third stimulus predicted reward after a 3-s delay with probability 0.5 (Figure 3). 

This task is well-suited to address the question of whether sustained Vm changes can be 

terminated by purely internal mechanisms because following the third stimulus, reward 

expectation is fixed for 3 s, until the mouse does or does not receive reward. In the latter 

case, if activity terminates around the time of expected reward, it must be due to a purely 

internal process.

Consistent with data from the previous task, there was a significant interaction of trial type 

and time window for firing rate (one-way repeated-measures ANOVA, F2,42 = 5.95, p < 

0.01) and Vm (F2,42 = 10.54, p < 0.001), and neurons showed significantly increased firing 

rates and sustained depolarizations in Vm during the delays of trials with reward probability 

of 1 (Figure 3) (6 neurons from 5 mice; pre-CS: 1.55 ± 0.40 spikes s−1, −50.96 ± 1.62 mV; 

delay: 8.31 ± 1.95 spikes s−1, −47.75 ± 1.35 mV; Wilcoxon signed rank tests, p < 0.05). We 

did not observe these differences during no-reward trials (pre-CS: 1.73 ± 0.48 spikes s−1, 

−51.00 ± 1.50 mV; delay: 1.32 ± 0.27 spikes s−1, −51.51 ± 1.79 mV; Wilcoxon signed rank 

test, p > 0.05).

Critically, the same neurons also showed sustained increases of firing rates and Vm during 

the delays of trials with reward probabilities of 0.5 on both rewarded (pre-CS: 2.06 ± 0.60 

spikes s−1, −50.51 ± 1.87 mV; delay: 9.66 ± 2.59 spikes s−1, −46.85 ± 2.14 mV; Wilcoxon 

signed rank tests, p < 0.05) and unrewarded trials (pre-CS: 2.06 ± 0.38 spikes s−1, −50.93 ± 

1.62 mV; delay: 9.63 ± 2.78 spikes s−1, −46.15 ± 2.13 mV; Wilcoxon signed rank tests, p < 

0.05). There were no significant differences in either firing rates (Wilcoxon signed rank 

tests, p > 0.96) or Vm (Wilcoxon signed rank tests, p > 0.32) during the delays of these trials, 

compared to those with reward probabilities of 1, indicating similar dynamics while 

anticipating a possible reward at a fixed time.

As predicted, based on the previous experiment (Figure 2), sustained increases in firing rates 

and depolarization significantly decreased after reward delivery, compared to the delay 

period. This occurred during trials with reward probabilities of 1 or 0.5, when reward was 

delivered (Figure S5) (post-unconditioned stimulus [US], P(R) = 1: 2.59 ± 0.57 spikes s−1, 

Wilcoxon signed rank test, p < 0.05, −50.31 ± 1.60 mV, p < 0.05; P(R) = 0.5: 3.87 ± 1.27 

spikes s−1, p < 0.05, −49.06 ± 1.97 mV, p < 0.05). Remarkably, even when reward was 

omitted during P(R) = 0.5 trials, Vm and firing activity also abruptly terminated around the 

time of expected reward and showed significantly decreased firing rates and Vm compared to 

the delay period (Figures 3F and S5) (2.98 ± 0.99 spikes s−1, p < 0.05, −49.46 ± 1.88 mV, p 

< 0.05). We measured the times at which Vm changes terminated and found that transitions 

from depolarized states to baseline Vm were similar during trials with or without reward 

(Figure 3G) (P(R) = 1: 0.48 ± 0.63 s after reward; P(R) = 0.5: rewarded trials, 0.53 ± 0.32 s 

after reward, unrewarded trials, 0.19 ± 0.20 s after expected reward time; Wilcoxon signed 

rank tests, p > 0.1). Termination of Vm changes after expected reward on reward-omission 

trials was not solely a result of licking terminating at that time; mice continued licking even 

after the expected time of reward (Figure S5). In addition, Vm and licking rates showed 

weak temporal correlations during reward-anticipation delays (P(R) = 1, Pearson’s r = 0.13 
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± 0.12; P(R) = 0.5 rewarded trials, r = 0.14 ± 0.11; P(R) = 0.5 unrewarded trials, r = 0.32 ± 

0.10) and reward consumption (P(R) = 1, r = 0.02 ± 0.20; P(R) = 0.5, r = −0.01 ± 0.19) or 

during reward omission (P(R) = 0.5, r = −0.01 ± 0.19).

Thus, based on results from both experiments, we conclude that persistent changes in Vm 

could be terminated in the absence of reward by a mechanism purely internal to the nervous 

system.

Persistent activity increases are primarily fluctuation-driven

We have observed that increased average Vm was associated with increased firing rates 

during reward-anticipation delay periods. Increased average Vm could arise by either one or 

a combination of two factors: tonic depolarization or a change in dynamics of Vm 

fluctuation resulting from changes in the patterns of presynaptic network activity (Hô and 

Destexhe, 2000; Chance et al., 2002; Shu et al., 2003). In order for a spike to occur, Vm must 

reach spike threshold. It has been proposed that persistent spiking arises from sustained Vm 

depolarization over threshold (mean driven) or by increasing the magnitude of fluctuation to 

enhance the probability that Vm exceeds spike threshold (fluctuation driven) (Amit and 

Brunel, 1997; Renart et al., 2003, 2007). To distinguish between these mechanisms during 

periods of persistent spiking, we combined neurons from the two behavioral tasks, and 

analyzed 3-s delay trials of P(R) = 1 with at least an average of 2 spikes s−1 during reward 

delays.

The example neurons in Figure 4A show Vm depolarization with large fluctuations, greater 

than 10 mV in magnitude, only during reward delays, suggesting that increased Vm mean 

(E(Vm)) and variance (Var(Vm)) underlie persistent activity during this interval. To quantify 

this, we plotted histograms of Vm in each time window (pre-CS, delay, and post-US) (Figure 

4B) and measured the mean and variance of each Vm distribution (Figures 4C and S6). 

E[Vm] was significantly higher during delay periods (−47.53 ± 0.89 mV) relative to pre-CS 

(−52.49 ± 0.98 mV, Wilcoxon signed rank test, p < 0.001) (Figure 4C) or post-US (Figure 

S6) (−49.97 ± 1.16 mV, p < 0.01), reflecting the depolarized states during the delay. In 

addition, Var[Vm] was significantly larger during the delay than pre-CS or post-US (pre-CS: 

17.17 ± 2.84 mV2; delay: 23.73 ± 3.49 mV2; post-US: 15.62 ± 1.67 mV2; Wilcoxon signed 

rank test, p < 0.01) (Figures 4C and S6), which indicates that increased average Vm during 

the delay was due to a combination of Vm depolarization and increased Vm fluctuation. 

Var[Vm] was not significantly different between pre-CS and post-US periods (Wilcoxon 

signed rank test, p > 0.4), demonstrating that increased Var[Vm] was selective for the delay 

period. Despite weak correlations between mean Vm and lick rates (Figures S3 and S5), it is 

possible that trial-by-trial licking accounted for Vm changes. We compared trial-by-trial lick 

rates and Vm mean and variance during reward delays and post-US. We found no clear 

relationship between Vm and lick rates in either time interval Figures S6 and S7). We further 

compared trial-by-trial licking and Vm in the probabilistic reward task (Figure S6) and found 

a similar lack of relationship, indicating that Vm changes were dissociated from licking.

Changes in Vm variance affect spike timing irregularity (Softky and Koch, 1993; van 

Vreeswijk and Sompolinsky, 1996; Shadlen and Newsome, 1998). Theoretical studies of 

spiking neurons predicted that irregular spike timing during persistent activity arises from a 
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network operating in a fluctuation-driven regime, whereas regular spiking is due to mean-

driven activity (Renart et al., 2003, 2007; Roxin et al., 2011; Petersen and Berg, 2016).

To determine how Vm variation related to spike irregularity, we measured spike timing 

variability by calculating the coefficient of variation (CV, SD/mean) of inter-spike interval 

distributions. Spike timing increased in irregularity during the delay, more so than during the 

pre-CS period (pre-CS: 0.7 ± 0.07; delay: 1.57 ± 0.14; Wilcoxon signed rank test, p < 

0.001), consistent with previous results in primate PFC (Compte et al., 2003). Increased 

spike irregularity was correlated with increases in Var[Vm] (Figure 4D; r = 0.58, p < 0.02), 

suggesting that persistent activity during reward delays operated in a fluctuation-driven 

regime.

In fluctuation-driven networks, the mean inputs are subthreshold, whereas they are 

suprathreshold in mean-driven networks (Gerstner et al., 2014). When mean inputs are 

subthreshold, spikes are driven by fluctuations in Vm, resulting in increased probability of 

spikes within normally silent ranges of Vm (Hô and Destexhe, 2000; Miller and Troyer, 

2002; Fellous et al., 2003; Roxin et al., 2011). For each neuron, we measured the probability 

of an action potential (P(AP)) in 1-mV intervals of Vm. When Vm was well below threshold, 

P(AP) increased monotonically with Vm during the delay, whereas there was no spike at the 

same voltage during pre-CS periods (Figure 4E). When Vm was subthreshold, the 

relationship between Vm and P(AP) during the delay was approximated by a power law 

(Figure 4E), confirming the contribution of Vm fluctuations in generating spikes during 

delay periods (Hô and Destexhe, 2000; Miller and Troyer, 2002). Across neurons, we fit a 

function of the form a(Vm)b separately for the 3-s delay (R2 = 0.98) and for the pre-CS 

period (R2 = 0.97), considering the monotonically increasing values of firing probability 

(Figure 4E). Values of b were smaller for the pre-CS period (b = 2.85 ± 0.29) than the 3-s 

delay (b = 3.55 ± 0.27), suggesting increased neuronal responsiveness during delay periods.

When neurons fired while Vm was above threshold, however, there was no clear relationship 

between Vm and P(AP), suggesting that neurons were no longer in a fluctuation-driven 

regime. Cumulative distributions of Vm showed that, during the delay, Vm between action 

potentials was mostly subthreshold (84% ± 0.04% of the total time) (Figure 4E), but spent 

more time above threshold than during the pre-CS period (98.0% ± 0.01% of the total 

subthreshold time, Wilcoxon signed rank test, p < 0.001) or the post-US period (92.0% ± 

0.03%, p < 0.002) (Figure S7). This suggests that, although delay-period activity was 

primarily fluctuation-driven, some periods of spiking may be more regular due to epochs of 

mean-driven activity over threshold. To test this prediction, we calculated instantaneous 

spike irregularity (CV2), to measure the regularity of spiking over time (Holt et al., 1996). 

We found that, indeed, when mean Vm in the 25 ms preceding spikes were suprathreshold, 

spike irregularity was lower than when spikes were generated following subthreshold Vm 

(CV2 suprathreshold: 0.57 ± 0.09; subthreshold: 0.75 ± 0.07; Wilcoxon rank-sum test, p < 

0.02) (Figures 4G–4I). Interestingly, Vm remained above threshold more often at the 

beginning of the delay than during later delay periods, suggesting that strong synaptic inputs 

initiated persistent activity, to be maintained further by fluctuations of synaptic inputs 

(Figure 4H).
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Reward-predictive persistent hyperpolarization

Previous studies using extracellular recordings in PFC found neurons with suppression of 

firing rates relative to baseline during task delays (Fuster and Alexander, 1971; Funahashi et 

al., 1989). We also observed a subpopulation of neurons in our first task (Figure 1A) that 

showed persistent decreases in firing rates during reward-anticipation delays (Figure 5) (no 

reward: pre-CS, 5.13 ± 0.98 spikes s−1, delay, 6.37 ± 1.21; 1-s trials: pre-CS, 5.07 ± 0.96, 

delay, 1.93 ± 0.54, post-US, 2.93 ± 0.76; 3-s trials: pre-CS, 5.03 ± 1.01, delay, 1.68 ± 0.40, 

post-US, 2.98 ± 0.67). There was a strong interaction between trial type and time window 

for firing rates (one-way repeated-measures ANOVA, F2,54 = 14.45, p < 0.001), showing 

significant differences between pre-CS and delay intervals in both 1-s (Wilcoxon signed 

rank test, p < 0.01) and 3-s reward trials (p < 0.01), as well as between delay and post-US in 

3-s reward trials (p < 0.05) (Figure S8). These decreases in firing rates were accompanied by 

hyperpolarized Vm relative to the pre-CS period (no reward: pre-CS, −48.06 ± 0.51 mV, 

delay, −47.35 ± 0.68; 1-s trials: pre-CS, −47.86 ± 0.55, delay, −49.62 ± 0.71, post-US, 

−48.86 ± 0.64; 3-s trials: pre-CS, −48.06 ± 0.55, delay, −49.91 ± 0.78, post-US, −48.81 ± 

0.6) (Figures 5D and S8). There was also a significant interaction between trial type and 

time window (one-way repeated-measures ANOVA, F2,54 = 14.32, p < 0.001), with 

significant differences in Vm between pre-CS and delay (Wilcoxon signed rank test, 1-s, p < 

0.01, 3-s, p < 0.01) and delay and post-US during 3-s trials (p < 0.05) (Figure S8).

Similar to depolarizing neurons, Vm hyperpolarization was maintained throughout the delay 

and terminated after reward (Figures 5F and 5G) (1-s delay: 880 ± 221 ms after reward; 3-s 

delay: 894 ± 164 ms). In contrast to delay-period depolarizing neurons, hyperpolarizing 

neurons showed significant decreases in Var[ΔVm] during reward delays compared to pre-

CS (no reward: pre-CS, 6.48 ± 0.87 mV, delay, 7.56 ± 0.86, Wilcoxon signed rank test, p = 

0.84; 1-s: pre-CS, 6.71 ± 0.85, delay, 5.14 ± 0.78, p = 0.004; 3-s: pre-CS, 6.70 ± 0.83, delay, 

5.00 ± 0.52, p = 0.02) and post-US (1-s trials post-US, 7.85 ± 1.76, p = 0.01, 3-s trials post-

US, 6.90 ± 0.60, p = 0.002). In addition, neuronal input-output transformations, comparing 

3-s delay to pre-CS periods, reflected the decrease in Var[ΔVm] (Figure 5H). There was a 

marked decrease in P(AP) in each Vm interval during delay periods (b = 4.17 ± 1.25, 95% 

confidence interval [CI], R2 = 0.94) compared to pre-CS (b = 7.59 ± 0.88, 95% CI, R2 = 

0.99).

As we observed in depolarizing neurons, lick rates did not clearly correlate with Vm in 

hyperpolarizing neurons. We compared trial-by-trial lick rates with Vm mean and variance 

during delay and post-US periods in 3-s delay trials and found no clear relationship (Figure 

S8), suggesting that reward anticipation may be represented by neurons with persistent 

decreases in activity as well as by those with increases.

Recent work showed that neurons with persistent activity during the task delay were robust 

to perturbation (Kopec et al., 2015; Li et al., 2016; Inagaki et al., 2019), demonstrating that 

persistent activity was maintained by attractor-like network dynamics (Hopfield, 1982; 

Aksay et al., 2001; Brody et al., 2003). Many of these experiments focused on neurons with 

increased activity; less is known about the robustness of persistent activity changes in 

neurons with decreased activity during the delay (Li et al., 2016). To test this, we expressed 

the light-gated ion channel, channelrhodopsin-2 (ChR2) in dorsomedial frontal cortex and 
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made whole-cell recordings in neurons expressing ChR2 (see STAR Methods) that showed 

hyperpolarization during the delay (5 neurons, ΔVm relative to pre-CS: no reward trials, 0.53 

± 0.46 mV, 1-s delay trials, −3.28 ± 1.68 mV, 3-s delay trials, −4.14 ± 2.14 mV). We directly 

excited these neurons and surrounding areas for 500 ms during the delays to reward. If the 

hyperpolarized state is not maintained by network activity, a brief excitation could induce a 

prolonged depolarized state driven by intrinsic mechanisms such as plateau potentials 

(Major and Tank, 2004; Milojkovic et al., 2005; Major et al., 2008). However, we found that 

Vm rapidly returned to its hyperpolarized state after the stimulation without showing any 

prolonged depolarization (Figures 5I–5K). These results suggest that reward anticipation 

could be represented by neurons with persistent decreases in activity that is actively 

maintained by network dynamics.

Persistent activity is layer-specific

Is there a circuit logic for this persistent activity? Neocortical pyramidal neurons are 

organized into layers, comprising subpopulations of neurons that send outputs to distinct 

targets (Thomson and Bannister, 2003; Douglas and Martin, 2004). Locally, L2/3 neurons 

provide prominent excitatory input to L5 neurons, whereas L5 neurons form reciprocal 

connections with each other (Douglas and Martin, 2004; Otsuka and Kawaguchi, 2008; 

Brown and Hestrin, 2009; Morishima et al., 2011). L5 pyramidal neurons are further 

subdivided into two major groups based on their projection targets. Pyramidal tract (PT) 

neurons send axons predominantly to midbrain and brainstem structures and have somata 

mainly in lower L5. Intratelencephalic neurons (IT) send axons to striatum and contralateral 

cortex and have somata mostly, but not exclusively, in upper L5. These two subpopulations 

of L5 neurons have different somatodendritic morphologies and biophysical properties 

(Hattox and Nelson, 2007; Dembrow et al., 2010; Avesar and Gulledge, 2012; Oswald et al., 

2013; Kawaguchi, 2017; Anastasiades et al., 2018).

To test whether the distinct subsets of neurons found in different layers contributed distinct 

patterns of persistent activity, we first compared firing patterns and their recording depth. 

Somatic depth estimated from the brain surface during recordings revealed that neurons that 

showed persistent ΔVm during delays to reward were mostly located in L5 (Figures 6A and 

6B). Of those, depolarizing neurons were mostly in upper L5, whereas hyperpolarizing 

neurons were almost exclusively found in lower L5. In addition, a subset of neurons 

visualized with GFP expression after recordings supported the correlation between depth of 

soma and Vm modulation (Figure S9).

In contrast, most PFC neurons recorded in superficial layers (14 neurons, <300 μm from the 

pial surface) did not fire action potentials, and only a few neurons fired action potentials 

briefly following odor cues (3 of 14) (Figures 6C and 6D). All three response types clustered 

at different somatic depths (Kruskal-Wallis χ2
2 = 16.3, p < 0.001).

To verify this result with a larger sample size, we recorded extracellularly from 167 neurons 

in 2 mice using 64-channel silicon probes (Figure 6E). These electrodes had a linear 

arrangement of contacts, which allowed us to record simultaneously from neurons with 

known relative depths. Qualitatively, data from individual sessions confirmed the laminar 

organization observed with whole-cell recordings. Neurons at depths of less than 300 μm 
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from the pial surface typically showed brief (100–200 ms) excitation after reward-predicting 

cues. Neurons at deeper locations had sustained firing rate changes, with predominantly 

excitation in more superficial L5, and predominantly inhibition in deeper L5. To quantify 

this, we calculated the average firing rate of each neuron during 3-s delay trials, and 

clustered them into three groups, using principal component analysis. These three groups 

had firing dynamics matching the shapes of the three firing patterns observed in the whole-

cell recordings: phasic excitation, sustained excitation, and sustained inhibition (Figure 6E) 

(Shuler and Bear, 2006; Huertas et al., 2015). We compared the depths of each population of 

neurons (Figures 6F and 6G) and found that those showing phasic excitation (median depth, 

320 μm) were more superficial than those showing sustained excitation (median depth, 620 

μm, Wilcoxon rank-sum test, p < 0.05). Neurons showing sustained excitation were found to 

be more superficial than those showing sustained inhibition (median depth, 770 μm, 

Wilcoxon rank-sum test, p < 0.05).

To further demonstrate the physiologically distinct subpopulations of L5 neurons, we 

measured intrinsic properties of pyramidal neurons in different depths of L5 in anesthetized 

mice (12 neurons from 6 mice). There was no difference in firing patterns during current 

injection (frequency-adaptation ratio at +200 pA: upper L5, 0.80 ± 0.23; lower L5, 0.87 ± 

0.24, p > 0.05) and input resistance (upper L5, 153 ± 7.52 MΩ; lower L5, 155 ± 5.75 MΩ, p 

> 0.05). However, there was a positive correlation between recording depth and ‘‘voltage 

sag’’ ratio (r = 0.61, p < 0.05): neurons in lower L5 had a greater voltage sag in response to 

hyperpolarizing current steps than those in upper L5 (Figures 7A and 7B) (upper L5, 1.04 ± 

0.01; lower L5, 1.09 ± 0.01, p < 0.01).

The voltage sag is thought to be generated by hyperpolarization-activated cyclic nucleotide-

gated channels that generate the h-current, which helps generate resting Vm (Biel et al., 

2009). Given this biophysical difference between upper and lower L5 neurons, we predicted 

that resting Vm would be higher in lower L5 neurons. To test this, we examined Vm in a pre-

task window, before the start of the first trial. Pre-task Vm was significantly higher in 

neurons that were hyperpolarized during delays to reward (Figures 7C–7E) (−61.4 ± 2.2 

mV) than in neurons that were depolarized during those delays (−50.7 ± 0.88 mV; Wilcoxon 

rank-sum test, p < 0.01). In addition, firing rates before the task began were higher in 

neurons hyperpolarized (Figure 7F) (5.16 ± 1.13 spikes s−1) than depolarized (0.70 ± 0.44 

spikes s−1; Wilcoxon rank-sum test, p < 0.01) during delays to reward. These results suggest 

that two different functionally defined populations in L5 sublayers have distinct intrinsic 

properties that set their baseline activity before the task and can determine how they behave 

during reward-delay periods.

DISCUSSION

In our experiments, mice learned associations between cues and their outcomes. Our data 

showed that these learned relationships elicited activity that was stable and depended on 

predicted future events.

Theoretical and experimental studies have proposed that attractor dynamics could produce 

stable, persistent firing rate changes (Hopfield, 1982; Seung, 1996; Amit and Brunel, 1997; 
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Renart et al., 2007; Lim and Goldman, 2013). In particular, a Hopfield network model 

(Hopfield, 1982) suggested that neurons can learn synaptic input patterns and store them as a 

set of synaptic weights that can be retrieved by learned inputs. Odor cues that predicted 

reward with probability 0.5 initiated persistent activity changes that terminated precisely at 

the time of the expected reward, even when reward was omitted. In a subset of our neurons, 

odor cues that predicted no reward also generated persistent activity that lasted for ~3 s, 

which was precisely the longest expected interval between cue and reward. This learned 

timing may have been stored as a reference interval (Gibbon et al., 1984), which could then 

be used to predict the expected time of reward or the delay on no-reward trials (Watanabe et 

al., 2002). Our findings indicate that persistent activity can represent an internal state of 

expectation about future events, which can be terminated without an external signal.

We found that neurons with persistent increases in firing rates exhibited both Vm 

depolarization and increased Vm variance. In addition, these neurons showed highly 

irregular firing patterns, suggesting that, during the delay period, they were in a fluctuation-

driven regime. Although theoretical studies predicted increased Vm variance without 

changing mean Vm to underlie fluctuation-driven persistent activity maintenance, it has been 

shown that both depolarization and increased variance enhance neuronal gain and 

responsiveness (Hô and Destexhe, 2000; Chance et al., 2002; Fellous et al., 2003). In our 

data, input-output curves were approximated by a power law, characterized by a non-zero 

spike rate for mean Vm below spike threshold (Hô and Destexhe, 2000; Miller and Troyer, 

2002; Roxin et al., 2011), which shifted to the left during delay periods. These results 

indicate that Vm depolarization during reward anticipation provided increased neuronal 

responsiveness, with increased Vm variance further enhancing spiking probability. These 

appear to be the ingredients to maintain persistent, irregular spike output for multiple 

seconds in our tasks.

What could be the source of Vm fluctuations? Previous studies proposed that temporally 

balanced excitatory and inhibitory synaptic inputs maintain neural activity in stable states, 

producing irregular spiking outputs (Amit and Brunel, 1997; Shadlen and Newsome, 1998; 

Renart et al., 2003, 2007). In these models, if Vm drifts above threshold, it produces regular 

spiking output. However, if excitation is balanced by inhibition, net input currents fluctuate 

and spike trains are irregular. Interestingly, we observed that although Vm was mostly 

subthreshold during the delay period, Vm tended to lie above threshold, accompanied by 

more regular spike patterns, in the beginning of the delay. In addition, there was no 

threshold-linear relationship when spikes were initiated above threshold, suggesting that 

total input was saturated during these periods. Strong, transient excitation, generated by the 

reward-predicting stimuli, could account for this early suprathreshold activity. This pulse of 

excitation could act as a command signal for the network to recruit local recurrent 

excitation, balanced by inhibition, to maintain persistent activity (Seung et al., 2000; Brunel 

and Wang, 2001). The transition from mean- to fluctuation-driven activity may be similar to 

previous reports of changes in firing dynamics over the course of delay periods (Suzuki and 

Gottlieb, 2013; Spaak et al., 2017).

We found clear Vm modulation in the absence of licking (particularly on CS– trials), 

indicative of internally generated Vm fluctuations. However, it has also been shown that 

Kim et al. Page 12

Cell Rep. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activity across cortex covaries with movements (Musall et al., 2019; Stringer et al., 2019), 

forming a dynamic interaction between recurrent activity within cortex and inputs arising 

from movements. Although we found differences in the dynamics of Vm and licking, Vm 

fluctuations may be modulated by a combination of internally generated signals and the 

panoply of movements that cannot be summarized by a single variable.

Although most literature on persistent activity focused on neurons with increased firing rates 

(see Li et al., 2016), we also examined the subthreshold patterns of persistent activity in 

neurons that had decreased firing rates during reward-anticipation delays. These neurons 

showed persistent hyperpolarization and decreased Vm variance that was robust to brief local 

perturbation, indicating that decreased firing rates could be maintained by network activity. 

How, then, could the same network shared by depolarizing neurons maintain persistent 

hyperpolarization? One possibility is that strong excitatory input to the network also 

recruited local inhibition, resulting in hyperpolarization in a subpopulation of neurons. It has 

been reported that L5 cortical neurons form different local inhibitory connections, eliciting 

distinct patterns of responses in different subtypes of neurons (Lee et al., 2014; Morishima et 

al., 2017). Thus, the hyperpolarization we observed during reward delays in a subpopulation 

of neurons may have resulted from increased synaptic inhibition onto these neurons. On the 

other hand, it has been shown that increasing total synaptic conductance―without 

disrupting the balance between excitation and inhibition―leads to decreases in neural 

responsiveness via shunting inhibition (Hô and Destexhe, 2000; Chance et al., 2002). 

Indeed, we observed that input-output functions of hyperpolarizing neurons were shifted to 

the right, suggesting decreased neural responsiveness during delays. Thus, network-

generated synaptic activity in these neurons could increase total synaptic conductance, 

including inhibitory synapses, further enhancing persistent hyperpolarization through 

shunting inhibition.

In the cortical area we studied, generation and maintenance of persistent activity was 

organized anatomically. It has been reported that neurons in different layers use different 

coding schemes: L2/3 neurons are sparsely active, whereas L5 neurons fire persistently on 

stimulation (de Kock et al., 2007; Niell and Stryker, 2008; Sakata and Harris, 2009; 

Schiemann et al., 2015). Similarly, we observed that neurons recorded in superficial layers 

were mostly silent, and only a few neurons showed brief excitation following reward-

predicting stimuli. In contrast, although a large population of neurons was either silent or did 

not show task-relevant modulation during the delay, ~40% of neurons recorded in deeper 

layers showed persistent activity throughout the delay. The different connectivity of neurons 

in different layers may contribute to their coding schemes. Within a cortical column, L2/3 

neurons often form interlaminar, feedforward synapses with L5 neurons, and L5 neurons 

form strong intralaminar recurrent connections (Douglas and Martin, 2004; Otsuka and 

Kawaguchi, 2008; Brown and Hestrin, 2009; Morishima et al., 2011). Brief excitation in 

L2/3 neurons could, therefore, act as a trigger to initiate persistent activity through recurrent 

synaptic networks in L5.

Within L5, we observed two distinct patterns of persistent activity. Upper L5 neurons 

showed increased firing rates with depolarized Vm, whereas lower L5 neurons showed 

decreased firing rates with hyperpolarized Vm. Rather than reflecting two tails of a 
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distribution of firing rates, we propose that differences in synaptic and intrinsic biophysical 

properties could explain these two opposing dynamics. Within L5, neurons are subdivided 

based on their projection targets and cluster into different sublayers (Morishima and 

Kawaguchi, 2006; Wang et al., 2006; Dembrow et al., 2010; Morishima et al., 2011; Lee et 

al., 2014). Furthermore, differences in intrinsic properties further differentiate their 

responses to synaptic inputs (Dembrow et al., 2010; Anastasiades et al., 2018). In agreement 

with these previous studies, we found that the intrinsic properties of neurons varied by 

response dynamics and cortical layer. The implication of opposing activity patterns in two 

sublayers of L5 is that their downstream targets receive distinct signals and form feedback 

loops that could maintain persistent activity. These efferents include thalamus (Schiemann et 

al., 2015; Bolkan et al., 2017; Guo et al., 2017), contralateral cortex (Li et al., 2016), and 

neuro-modulators such as norepinephrine (Wang et al., 2007; Dembrow et al., 2010; 

Schiemann et al., 2015; Breton-Provencher and Sur, 2019), acetylcholine (Egorov et al., 

2002; Dembrow et al., 2010; Rahman and Berger, 2011; Baker et al., 2018), dopamine 

(Williams and Goldman-Rakic, 1995), and serotonin (Williams et al., 2002; Avesar and 

Gulledge, 2012; Stephens et al., 2014; Geddes et al., 2016; Zhou et al., 2017). Notably, the 

present laminar organization differs from that found in humans (Finn et al., 2019) and 

monkeys (Goldman-Rakic, 1995; Wang et al., 2013; Yang et al., 2013), likely reflecting 

differences across species (DeFelipe, 2011) and tasks.

Persistent activity is a general strategy for nervous systems to represent behaviorally relevant 

states over biophysically long timescales. As predicted from theoretical studies, the 

persistent activities elicited from learned association between reward-predicting cues and 

rewards primarily operated within a fluctuation-driven regime. These findings contrast with 

previous studies in sensory-motor cortex showing increased firing rates that were associated 

with decreased Vm variability. Although the reason for this discrepancy is unclear, one 

possibility is that because sensory-motor cortex is important for integrating sensory inputs 

and controlling motor output, they increase signal-to-noise ratio by reducing Vm variance, 

thereby enhancing signal detection. By contrast, because PFC has an important role in 

executive control, the increased Vm variance we observed may reflect the dynamics of 

multiple components of cognitive control, such as motivation, attention, and time estimation. 

Thus, it will be important for future studies to investigate the subthreshold mechanisms 

underlying various cognitive functions in PFC, which is critical for refining models of 

cognition.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for reagents should be directed to the 

Lead Contact, Jeremiah Y. Cohen (jeremiah.cohen@jhmi.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—Data and computer code for experimental control and data 

analysis is available upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—Six- to 12-week-old male C57BL/6J mice (The Jackson Laboratory, 000664) 

were used for all electrophysiological and behavioral experiments. All surgical and 

experimental procedures were in accordance with the National Institutes of Health Guide for 
the Care and Use of Laboratory Animals and approved by the Johns Hopkins University 

Animal Care and Use Committee.

METHOD DETAILS

Surgery—For whole-cell electrophysiological recordings, mice were surgically implanted 

with custom-made titanium head plates using dental adhesive (C&B-Metabond, Parkell) 

under isoflurane anesthesia (1.0%–1.5% in O2). In a subset of mice, viruses were injected 

targeting dorsal medial PFC (3.0 mm anterior to bregma, 0.5 mm lateral from the midline). 

Following head plate implantation, the surface of the skull was covered with silicone 

elastomer (Kwik-Cast, WPI). For extracellular electrophysiological recordings, a custom-

made microdrive containing 8–16 tetrodes made from nichrome wire (PX000004, Sandvik) 

positioned inside 39 ga polyimide guide tubes were implanted, targeted toward the same 

coordinates as above. Surgery was conducted under aseptic conditions and analgesia 

(ketoprofen, 5 mg kg−1 and buprenorphine, 0.05–0.1 mg kg−1) was administered 

postoperatively. After at least one week of recovery, mice were water-restricted in their 

home cage with free access to food. Weight was monitored and maintained within 80% of 

their full body weight.

Behavioral task—Mice were head-restrained and positioned in a 38.1 mm acrylic tube in 

a sound-attenuated chamber. During each conditioning session, each trial began with the 

presentation of one of 3 different olfactory stimuli (A, B, and C), delivered for 0.5 s. Odor A 

was followed by an inter-trial interval (ITI). Odor B was followed by a 1 s trace delay, and 

then a reward (4 μL of 5% sucrose in water). Odor C was followed by a 3 s delay, and then a 

reward. ITIs were drawn from an exponential distribution with a rate parameter of 0.3, with 

a maximum cutoff of 5 s. For the task with reward probabilities of 0.5, reward was delivered 

on randomly chosen trials, but no more than 3 rewards were delivered consecutively. Odors 

were delivered with a custom-made olfactometer (Bari et al., 2019).

Each odor was dissolved in mineral oil at 1:10 dilution. Diluted odors (40 μl) were placed on 

filter-paper housing (Whatman, 2.7 μm pore size). Odors were p-cymene, (−)-carvone, (+)-

limonene, and acetophenone, and differed across mice. Odorized air was further diluted with 

filtered air by 1:10 to produce a 1.0 L min−1 flow rate. Licks were detected by charging a 

capacitor (MPR121QR2, Freescale) or using a custom circuit. Task events were controlled 

with a microcontroller (ATmega16U2 or ATmega328). Mice were housed on a 12h dark/12h 

light cycle (dark from 08:00–20:00) and each performed behavioral tasks at the same time of 

day, between 09:00 and 18:00.

Extracellular recordings—Extracellular signals were recorded bilaterally from multiple 

neurons simultaneously at 30 kHz using a custom-built screw-driven microdrive with 8 

tetrodes (32 channel total). All tetrodes were gold-plated to an impedance of 200–300 kΩ 
prior to implantation. Spikes were bandpass-filtered between 0.3–6 kHz and sorted online 
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and offline using Spikesort 3D (Neuralynx, Inc.) and custom software written in MATLAB. 

To measure isolation quality of individual units, we calculated the L-ratio (Schmitzer-

Torbert et al., 2005) and fraction of inter-spike interval (ISI) violations within a 2 ms 

refractory period. All single units included in the dataset had an L-ratio less than 0.05 and 

fewer than 1% ISI violations. We collected data from 1,065 neurons from 3 mice in these 

experiments.

For silicon-probe recordings, we made acute penetrations with 64-channel probes (H3, 

Cambridge Neurotech) at 5-degree angles relative to the surface of cortex, at depths of 1 

mm. Signals were acquired at 20 kHz, bandpass filtered between 0.1 and 6 kHz (Intan 

Technologies, RHD2164 headstage), and sorted offline using SpikeSort 3D. Depth estimates 

were corrected by 0.4 mm due to tissue compression during silicon probe penetrations. This 

value was drawn from post hoc reconstructions.

Patch-clamp recordings—For whole-cell recordings, mice were anesthetized with 

isoflurane (1%–1.5%) and a craniotomy was made over medial PFC (3.0 mm anterior to 

bregma, 0.5 mm lateral from the midline). Both hemispheres were sampled. A thin layer of 

Kwik-Cast (WPI) was applied over the skull, mice were returned to their home cage, and 

were given at least 2 hr to recover before being placed in the behavior apparatus. Glass 

electrodes (5–7 MΩ, fabricated using a PC-10 puller, Narishige) were filled with an internal 

solution composed of the following (in mM): 135 potassium gluconate, 4 potassium 

chloride, 10 sodium phosphocreatine, 4 ATP magnesium salt, 0.3 GTP sodium salt hydrate, 

10 HEPES; pH was adjusted to 7.25 using KOH. In a subset of recordings, pCAG-GFP (50–

100 ng μl−1), was included in the internal solution for post hoc cell identification and 

reconstruction. pCAG-GFP (Matsuda and Cepko, 2004) was a gift from Connie Cepko 

(Addgene plasmid 11150).

Electrophysiological signals were low-pass filtered at 10 kHz (Multiclamp 700B, Molecular 

Devices) and acquired at 20 kHz on a PCIe-6323 (National Instruments) using Ephus 

(Vidrio Technologies, LLC). Standard blind patch methods were used to obtain whole cell 

recordings. Pipettes were lowered into the brain while high positive pressure (100 mmHg) 

was applied. Once in the brain, positive pressure was reduced (40 mmHg) and the pipette 

was advanced down slowly (approximately 2 μm s−1) to search for neurons. If the pipette 

resistance increased abruptly by 10%–20%, positive pressure was released and whole-cell 

configuration was obtained when resistance was > 1 GΩ and stable. Series resistance was < 

100 MΩ. After successful break in, the recording mode was switched to current clamp (I = 

0), and the behavior session was initiated if the membrane potentials were stable over a 1 

min period after break in. The recording was terminated if Vm became depolarized above 

−45 mV, or when the mouse stopped performing the task. After recordings, the patch pipette 

was slowly withdrawn, a thin layer of Kwik-Cast (WPI) applied again, and the animal 

returned to its home cage to recover. To measure the depth-dependent sag ratio and input 

resistance, a separate group of mice was anesthetized with a low level of isoflurane (< 1%), 

current step recording was performed, and post-recording procedures were followed.

Viral injections—To express ChR2 (500 nL for electrophysiological experiments), eGFP, 

or mCherry (30 nL each for anatomical experiments) in PFC neurons, we pressure-injected 
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each virus (bilaterally for ChR2) into PFC at a rate of approximately 1 nL s−1 (MMO-220A, 

Narishige). The injection pipette was left in place for > 5 min between each injection. The 

craniotomy was covered with silicone elastomer (Kwik-Cast, WPI). pAAV-CaMKIIa-

hChR2(H134R)-EYFP (Lee et al., 2010) was a gift from Karl Deisseroth (Addgene viral 

prep 26969-AAV5; http://addgene.org/26969; RRID:Addgene_26969). 

pENN.AAV.CB7.CI.mCherry.WPRE.RBG was a gift from James M. Wilson (Addgene viral 

prep 105544-AAV1; http://addgene.org/105544; RRID:Addgene_105544). 

pENN.AAV.CB7.CI.eGFP.WPRE.rBG was a gift from James M. Wilson (Addgene 105542-

AAV1; http://addgene.org/105542; RRID:Addgene_105542).

Optogenetic stimulation with recordings—Mice that were injected with AAV-

CaMKII-ChR2 were used for optogenetic perturbation experiments. The optic fiber was 

inserted into the recording pipette, enabling direct light projection to the recorded neuron 

(Katz et al., 2013). After a whole-cell recording was obtained, a train (10 pulses, 3 ms at 10 

Hz) of 473 nm light (Laserglow) stimuli was delivered using a shutter in series with the laser 

(Uniblitz) to induce action potentials to identify ChR2-expressing neurons. If the action 

potentials were elicited reliably with a short latency (< 3 ms), the light irradiance was 

lowered to a level at which the membrane potential crossed action potential threshold 

(except in one cell) to generate more than 1 action potential but not bursting during a long 

pulse (500 ms). Light stimulation during the delay was delivered in 30%–40% of trials, 

chosen randomly.

Histology—Seven to 10 days after recordings, mice were euthanized with an overdose of 

ketamine (100 mg kg−1), exsanguinated with saline, and perfused with 4% 

paraformaldehyde. The brain was removed, post-fixed in the perfusion solution, and cut in 

100-μm-thick sagittal sections. For immunostaining for GFP, rabbit anti-GFP (Invitrogen, 

1:1000, 2 hr) primary antibody, followed by donkey Alexa 488 anti-rabbit (Invitrogen, 

1:1000, overnight) secondary antibody was used. All confocal images were taken as tiled z 

stacks using a confocal microscope (Zeiss LSM 800, ZEN software) at 10X or 20X and 

reconstructions were done using ImageJ or Fiji (Schindelin et al., 2012).

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were performed with MATLAB (Mathworks) and R (http://www.r-project.org/). 

All data are presented as mean ± SEM unless reported otherwise. All statistical tests were 

two-sided, and multiple-comparison (Bonferroni) corrections were used. For nonparametric 

tests, the Wilcoxon rank sum test was used, unless data were paired, in which case the 

Wilcoxon signed rank test was used.

For subthreshold Vm measurements, spikes were removed from raw traces by truncating data 

above spike threshold. Mean Vm was calculated by averaging spike-removed Vm traces in 

each time window. E[Vm] and Var[Vm] in Figure 4 were estimated from the probability 

distributions of Vm in each time window. Spike threshold was calculated as the value of Vm 

when d2Vm/dt2 of each spike reached its maximum. Mean spike threshold of spontaneous 

action potentials was used to estimate the time Vm spent below or over threshold.
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To determine the relationship between Vm and spike output, we first selected spikes that 

were not preceded by other spikes in a 30-ms window and calculated spike-triggered Vm by 

averaging Vm over 10 ms prior to the spike. Spike probability was estimated as a function of 

Vm by calculating the probability of spike-triggered Vm in 1-mV bins (Jahn et al., 2011; 

Petersen and Berg, 2016). Power-law fits were based on individual measurements of Vm and 

the estimated spike probability of each neuron, and fit over the range of Vm.

Time-dependent CV2 was defined as CV2(i) = 2|ISI(i+1)|/(ISI(i)+ISI(i+1)), where ISI(i) is 

the ith interspike interval (Holt et al., 1996). CV2 above threshold was defined by intervals 

during which the mean Vm in the 25 ms preceding the spike was over the average spike 

threshold.

Sag ratio was measured by hyperpolarizing current steps (1 s, −200 pA, holding at −60 mV) 

and calculated as a ratio between the peak amplitude of the initial response (0–0.25 s) and 

the steady state response (0.75–1 s). Input resistance was obtained by calculating the slope 

from the current-voltage curve of the steady state response of hyperpolarizing current steps 

from −200 pA to 0 pA (100 pA increments). A frequency adaptation index was calculated as 

the ratio of the first ISI to the last ISI of the spike trains evoked by a depolarizing current 

injection.

Neurons were classified as showing persistent changes in Vm if it was significantly different 

from baseline using t tests. Neurons were classified as showing persistent changes in firing 

rates if area under receiver operating characteristic curves were > 0.65 or < 0.35 throughout 

the delay on 3 s delay trials. To measure persistent Vm onset and offset times, we fit 

sigmoidal curves to Vm traces in each window (Polack et al., 2013). The onset and offset 

times were defined as the time at which the sigmoids reached half of their maximum.
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Highlights

• Persistent changes in membrane potential (Vm) occur in anticipation of 

upcoming reward

• Vm changes arise due to sustained increases in mean and variance of Vm

• Persistent activity changes are layer-specific and robust to perturbation
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Figure 1. Persistent firing rate and Vm changes in PFC during delays to expected reward
(A) Behavioral task in which odors predict no reward, reward following a short delay, or 

reward following a long delay.

(B) Behavioral learning curves show mean lick rates across days of exposure to the task in 

one mouse. Bars, odor cues; dashed lines, rewards.

(C) Left: schematic of whole-cell recording. GFP plasmid was included in the recording 

pipette to localize a subset of neurons. Right: Vm from an example neuron over several 

minutes. Ticks below Vm indicate licks.

(D) Top: example trials of each type from the neuron in (C). Note the persistent increase in 

spiking and sustained depolarization in the delay between cue and reward. Bottom: Vm with 

action potentials removed.

(E) Mean firing rates of 15 neurons showing persistent increases during delays to reward.

(F) Firing rates from the same neurons, comparing pre-CS period to delay (individual 

neurons in gray, points are mean ± SEM).

(G) Mean ± SEM Vm without action potentials from the same neurons.

(H) Vm from the same neurons, comparing pre-CS to delay (individual neurons in gray, 

points are mean ± SEM).
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Figure 2. Persistent Vm changes can be terminated by reward or purely internally
(A) Action-potential-removed traces (individual trials in gray, averages in thick lines) of Vm 

changes relative to baseline from one neuron.

(B) Offset of persistent Vm changes for the same neuron, relative to reward times.

(C) Cumulative distribution function (CDF) of ΔVm offset times relative to odor and reward 

(n = 15).

(D) Example neuron showing hyperpolarization for ~3 s during no-reward trials (left), and 

depolarization during reward trials.

(E) Dynamics of ΔVm offset for the same example neuron in (D) during no-reward trials.

(F) CDF of ΔVm offset times during no-reward trials (n = 6).
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Figure 3. Persistent Vm changes in anticipation of probabilistic reward
(A) Behavioral task in which odors predict no reward, reward with probability 0.5 after a 3-s 

delay, or reward with probability 1 after a 3-s delay.

(B) Mean licking rates from one experiment on each trial type.

(C) Vm from one neuron during three example trials of each type. Ticks below Vm traces 

indicate lick times.

(D) Firing rates from 6 depolarizing neurons in this task, comparing pre-CS period to delay 

(individual neurons in gray, points are mean ± SEM).

(E) Vm without action potentials from the same neurons.

(F) Dynamics of sustained Vm termination across trial types from one neuron. Note the 

return of Vm to baseline even without reward.

(G) CDF of ΔVm termination times relative to expected reward times for rewarded and 

unrewarded trials (n = 6).
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Figure 4. Vm changes are primarily fluctuation-driven during delays to reward
(A) Vm during two 3-s delay trials illustrating subthreshold fluctuations.

(B) Probability densities of spike-removed Vm during the pre-CS period and the 3-s delay 

for the same neuron.

(C) E[Vm] and Var[Vm] during pre-CS and 3-s delay periods (n = 17; individual neurons in 

gray, points are mean ± SEM).

(D) Left: CV of ISI during pre-CS and 3-s delay. Right: CV of ISI correlated with Var[Vm] 

during delays.

(E) Left: example transfer function of firing probability versus Vm during pre-CS period 

(gray) and 3-s delay (black). Vthresh indicates spike threshold. Inset: spike waveforms from 

the example neuron. Scale bars, 5 mV, 5 ms. Right: average transfer functions of 17 neurons 

(±SEM).

(F) CDF of the deviation of Vm from Vthresh during the delay for individual neurons (gray, n 

= 17) and average (blue).

(G) Example Vm from a 3-s delay trial showing the relationship between spikes and 

threshold and local interspike interval variability (CV2).

(H) Probability of Vm > Vthresh during 3-s delay trials across 17 neurons (mean ± SEM).

(I) Probability densities of CV2 when Vm > Vthresh (red) or Vm < Vthresh (gray).
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Figure 5. Hyperpolarizing persistent Vm changes
(A) Vm from an example neuron showing hyperpolarization during delays to reward.

(B) Vm from the same neuron with action potentials removed (individual trials in gray).

(C) Mean firing rates and ΔVm from each trial type across 10 hyperpolarizing neurons.

(D) Vm during delay versus pre-CS periods.

(E) Var[Vm] during delay versus pre-CS periods.

(F) Dynamics of termination of hyperpolarization after reward from an example neuron.

(G) CDFs of hyperpolarization offset times for 1-s and 3-s delay trials.

(H) Average transfer functions (±SEM). Black, 3-s delay; gray, pre-CS.

(I) Experimental schema and example trials from one neuron, showing hyperpolarization 

between CS and delayed reward and a similar response despite a burst of stimulation-

induced spikes during the delay (cyan period).

(J) Mean ΔVm from an example neuron during unstimulated versus stimulated (cyan) trials, 

for trials with no reward, 1-s delay, and 3-s delay.

(K) Mean ± SEM (in cyan; individual neurons in gray, n = 5) difference between stimulated 

(‘‘stim’’) and unstimulated (‘‘no stim’’) trials. ‘‘Pre’’ indicates the interval 500 ms before 

stimulation onset. ‘‘Stim’’ is during stimulation (or the corresponding period during 

unstimulated trials). ‘‘Post’’ is 500 ms after stimulation offset.
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Figure 6. Persistent activity is layer-specific
(A) Maximum-intensity projection of GFP expression in two neurons recorded from one 

mouse. One had a soma in upper L5 and showed persistent depolarization during the delay 

to reward. The other had a soma in lower L5 and showed persistent hyperpolarization during 

the delay to reward. Scale bar, 100 μm.

(B) Recording depth of the three populations of neurons.

(C) Example Vm from a L2/3 neuron on each trial type. Below are spike-removed traces.

(D) Mean firing rates and ΔVm from 14 L2/3 neurons. Gray, no-reward trials; thin black, 1-s 

delay trials; thick black, 3-s delay trials.

(E) Schema of extracellular recordings with silicon probe contacts spanning cortical layers 

(top) and average firing rates on 3-s delay trials for each neuronal response type (bottom).

(F) Histograms (top) and estimates of probability densities (bottom) for neurons. Scale bar, 

0.001 density.

(G) Right: average firing rates of 39 simultaneously recorded neurons plotted by depth from 

pial surface during 3-s delay trials.
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Figure 7. Layer-specific biophysical properties
(A) Biophysical properties of upper and lower L5 pyramidal neurons in anesthetized mice. 

Example upper (left) and lower (right) L5 neurons in response to current injections. Note the 

pronounced sag in the hyperpolarizing response to negative current injection in the lower L5 

neuron. Scale bars, 10 mV, 200 ms.

(B) Sag ratios are larger in lower versus upper L5 neurons (black points, mean ± SEM).

(C) Example depolarized neuron exhibiting a sharp increase in Vm at the beginning of the 

task. Arrow indicates −50 mV.

(D) Example hyperpolarized neuron exhibiting a sharp decrease in Vm at the beginning of 

the task.

(E and F) Neurons depolarized during delays to reward had lower pre-task Vm and firing 

rates than those hyperpolarized during delays to reward (black points, mean ± SEM).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

pAAV-CaMKIIa-hChR2(H134R)-EYFP Addgene; Lee et al., 2010 Addgene viral prep 26969-AAV5; http://addgene.org/
26969; RRID:Addgene_26969

pENN.AAV.CB7.CI.mCherry.WPRE.RBG Addgene Addgene viral prep 105544-AAV1; http://addgene.org/
105544; RRID:Addgene_105544

pENN.AAV.CB7.CI.eGFP.WPRE.rBG Addgene Addgene 105542-AAV1; http://addgene.org/105542; 
RRID:Addgene_105542

Experimental models: organisms/strains

C57BL/6J mice The Jackson Laboratory 000664

Recombinant DNA

pCAG-GFP Addgene; Matsuda and Cepko, 
2004

Addgene plasmid 11150
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