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Skin wound caused by external injury is usually difficult to be cured by conventional topical
administration because of its poor drug diffusion across the stratum corneum. It has been
recognized that stratum corneum is the major obstacle for transdermal drug delivery. To
address this issue, microneedles (MNs) have been developed to penetrate the stratum
corneum of the skin and then form micron-sized pores between the epidermis and the
dermis layers. As such, biomacromolecule drugs and/or insoluble drug molecules can be
allowed for effective transdermal penetration. A multifunctional microneedle array patch
that can avoid wound infection and promote tissue remolding has important value for
wound healing. Among others, marine polysaccharides have attracted much attention in
multifarious biomedical applications due to their excellent (bio)physical and chemical
properties. Herein, we developed a microneedle array patch using a blend of kangfuxin
(KFX), chitosan (CS), and fucoidan (FD), named KCFMN, for accelerating full-thickness
wound healing. The traditional Chinese medicine KFX extracted from Periplaneta
americana (PA) has effective bio-functions in promoting wound healing. The macro-/
micro-morphology and (bio)physicochemical properties of such composite microneedles
were also studied. We showed that the KCFMN patch displayed noticeable antibacterial
properties and good cytocompatibility. In particular, the KCFMN patch significantly
accelerated the wound healing development in a full-thickness wound in rats by
improving the epithelial thickness and collagen deposition. Thus, this versatile KCFMN
patch has great prospects as a dressing for full-thickness wound healing.
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INTRODUCTION

The skin is the largest sensory organ of the human body, and it is also the main barrier against
harmful substances andmicroorganisms to protect tissues and organs andmaintain homeostasis (He
et al., 2021). Large-area full-thickness skin wounds affected by skin burns, scalds, trauma, and
surgical trauma occur frequently, resulting in infections and scars, which lead to wounds that are
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difficult to heal and seriously affect individual’s health (Gorantla
et al., 2021). Wound healing is a compound multi-level
physiological process, which can be separated into four
overlapping but distinct stages: hemostasis, inflammation, new
tissue formation, and remodeling (Gurtner et al., 2008). In the
past few decades, a fact has been proved that wound dressing can
be used as a physical barrier to achieve wound healing (Yergoz
et al., 2017; Jahromi et al., 2018; Zhu et al., 2018; Hajilou et al.,
2020). However, traditional wound dressing materials, such as
gauze, hydrogels, sponges, and nanofibers are less efficient in
inhibiting bacterial infection and promoting wound healing
(Zhao et al., 2017; Chen G. et al., 2018; Chen H. et al., 2018;
Yin et al., 2018; Lumbreras-Aguayo et al., 2019; Chen et al., 2020;
Dong et al., 2020; Hao et al., 2020; He et al., 2020; Li et al., 2020;
Montaser et al., 2020; Qian et al., 2020; Yang et al., 2020; Qian
et al., 2021a; Qian et al., 2021b; Dong and Guo, 2021; Hao et al.,
2021; He et al., 2021; Wang et al., 2021; Yin et al., 2021; Zheng
et al., 2021). In addition, most present patches still have some
restrictions: 1) the effect of transdermal delivery across the
stratum corneum is poor; 2) the patches have insufficient
mechanical strength and are easy to be damaged; 3) the
patches have low adhesion and are easy to fall off; and 4) the
dressing is thick, with poor adhesion, low air permeability, and
foreign body sensation (Zheng et al., 2021). Therefore, it is urgent
to develop new approaches for full-thickness wound repair.

Microneedles (MNs) are a new type of physical penetration-
enhancing technology, which have many advantages such as the
capability to pass through the stratum corneum painlessly,
minimal invasiveness, simple production, and convenient
administration. Importantly, MNs can bypass the first pass
metabolism and can directly enter the systemic circulation
(Amani et al., 2021). Thanks to these merits, MNs have
proven their value in the medical fields, including tumor
treatment, vaccine injection, and sample collection (Kim et al.,
2018; Moreira et al., 2019; Samant et al., 2020; Guo et al., 2021;
Sheng et al., 2021). According to the demand, various types of
MNs have been discovered for the transfer of therapeutic drugs.
The types of MNs used to provide treatment include dissolving
MNs, solid MNs, hollow MNs, and coated MNs (Gorantla et al.,
2021). Among them, dissolving microneedle is a disposable
preparation, which is composed of drug and polymer. After
being inserted into the skin, the drug is released into the skin
layer and the patch is degraded under the action of a variety of
enzymes, especially lysozymes (Lee et al., 2008; Ita, 2017;
Waghule et al., 2019). Moreover, the choice of polymers is one
of the most important steps. The reasons include that the polymer
must have biodegradable properties in addition to the strength to
penetrate the skin layer, and it must not react with the
encapsulated drugs.

Nowadays, Chinese medicine mainly obtained from natural
medicines, including botanicals, animals, and insect medicines,
which is widely practiced and regarded as one of the alternatives
for various wound treatments (Ahn et al., 2019). Chitin is widely
distributed in nature. The shells of marine arthropods such as
shrimps and crabs are rich in chitin. Chitosan (CS) is a derivative
of arthropod chitin, which is a positively charged polyelectrolyte
in solution and has a strong adsorption. Chitosan molecules

contain amino groups and are alkaline (Chi et al., 2020). MN
fabrication using CS has increased meaningful interest due to its
biocompatibility, low toxicity, non-antigenicity, biodegradability,
hemostasis, and the ability of film-forming, which enables it to
achieve local transdermal delivery of MNs (Amani et al., 2021).
Due to its positively charged characteristics, CS can penetrate the
cell wall of negatively charged bacteria and eventually cause the
overflow of intracellular fluid, which in turn leads to the death of
bacteria (Chi et al., 2020; Hao et al., 2020). Fucoidan (FD) are
mainly derived from brown seaweed, which has a variety of
biological functions, such as anticoagulation, antitumor, anti-
thrombosis, antivirus, antioxidation, and enhancement of the
body’s immune function, so it is widely used in the field of
medicine (Hao et al., 2020). In previous studies, FD-CS hydrogels
and CS sponges containing FD were reported as wound healing
accelerators (Murakami et al., 2010; Hao et al., 2020).

Particularly, kangfuxin (KFX), a Chinese medicine extracted
from Periplaneta americana (PA), has been commonly used in
the clinical application of various mucosal ulcer treatments (Chen
et al., 2016) and has been approved by the China Food and Drug
Administration (CFDA) (Z51021834). KFX contains nucleotides,
small molecular peptides, and amino acids (Fu et al., 2022).
Moreover, it has been confirmed that KFX can promote the
growth of new granulation tissue, repair ulcer wounds, enhance
immune function, and inhibit bacteria and inflammation (Shen
et al., 2017). Recently, Li et al. studied the prophylactic effect of
KFX and revealed that it can promote wound healing and
improve healing through multiple regulations (Li et al., 2019).
However, the delivery efficacy of KFX is significantly reduced.
Since KFX is a liquid, it cannot completely penetrate the
subcutaneous tissue. Herein, we effectively changed the liquid
KFX into solid, which is referred as the KCFMN patch (Figure 1).

Based on the earlier summary, it is reasonable to propose a
hypothesis that the kangfuxin (KFX)/chitosan (CS)/fucoidan
(FD) microneedle (KCFMN) would be administered through
the skin to promote epithelial regeneration and inhibit
bacterial infection, so as to promote wound healing. The
assumption earlier has not been reported. In order to verify
the earlier hypothesis, multifunctional MN patches were
established through the electrostatic interaction and hydrogen
bonding among KFX, CS, and FD in this study. The physical and
chemical characteristics of KCFMN patches were characterized
by scanning electron microscopy (SEM) and Fourier-transform
infrared (FTIR) spectra. In addition, the biocompatibility of the
patch was evaluated by cell counting kit-8 (CCK-8) assay. The
antibacterial property of KCFMN patches was achieved through
antibacterial tests. Last, the full-thickness skin defect rat model
and pathological manifestations were used to evaluate the
efficiency of wound healing.

MATERIALS AND METHODS

Materials
CS (Mw = 300 kDa and deacetylation degree ≥90%) was obtained
from Zhejiang Golden-Shell Pharmaceutical Co., Ltd., China. FD
(Mw = 276 kDa, sulfate: 29.65%) was purchased from Qingdao
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Bright Moon Seaweed Group Co., Ltd. China. KFX was bought
from Hunan Kelun Pharmaceutical Co., Ltd. China. Other
chemical reagents were taken from Macklin and Sinopharm
Chemical Reagent Co., Ltd. China. Deionized water was used
in all experiments. Male Sprague–Dawley rats (200 g in weight)
were offered by Jinan Pengyue Laboratory Animal Breeding Co.,
Ltd. China. All rats were treated in strict accordance with the
Laboratory Animal Care and Use Guidelines. All the animal care
and experimental procedures were evaluated and approved by the
Animal Investigation Ethics Committee of Qingdao
Stomatological Hospital Affiliated to Qingdao University.

Fabrication of the KCFMN Patch
The KCFMN patch was fabricated using PDMS molds. CS (4%
w/v), FD (0.4% w/v), and acetic acid (1% v/v) were dissolved
together with 30 ml of KFX by operating a mechanical stirrer at
700 rpm for two h to prepare the microneedle pre-gel. Under the
vacuum state for 30 min, the deionized water was totally filled in
the narrowed microcavities of the mold. Excess deionized water
was removed. Then, the pre-gel was cast into the mold and
completely infilled into the mold by ultrasonic treatment for
30 min. And then the KCFMN patch was dried in a drying oven
for 36 h. The resulting KCFMN patch was carefully taken from
the mold. Moreover, the procedure of the CFMN patch was
carried out in accordance with the steps of KCFMN preparation.

Scanning Electron Microscopy
To evaluate the physical shape of the KCFMN and CFMN
patches, all samples were measured using a SEM (VEGA3,
TESCAN, Czech) operated at an acceleration voltage of 10 kV.
Samples were sputtered with gold before imaging to increase
conductivity.

Fourier-Transform Infrared Spectroscopy
The Nicolet iN10 FTIR spectrometer (Thermo Fisher Scientific,
Waltham, MA, United States) was applied to determine the
functional group of the samples (i.e., KFX, CS, FD, CFMN,
and KCFMN).

Biocompatibility Analysis
To examine the biocompatibility of MNs, CCK-8 (Absin
Bioscience Inc. China) tests were conducted according to the
previous method (Hao et al., 2021; He et al., 2021). Mouse
fibroblast cell lines L929 (Cell Culture Center, Shanghai
Institute of Life Sciences, Chinese Academy of Sciences) were
cultured in Dulbecco’s modified eagle medium (DMEM)
containing 10% fetal bovine serum (FBS) with 1% penicillin/
streptomycin double antibiotics in an incubator at 37 °C, 5% CO2

(DMEM, FBS, 1% penicillin/streptomycin double antibiotics,
Biological Industries, Israel). To prepare the extract solutions,
equal sized samples of KCFMN and CFMNwere sterilized at high
temperature in a microwave oven for five min and immersed in
one ml of the culture medium and incubated for 24 h. L929 cells
were seeded in 24-well plates with a density of 8×103 cells/well for
24 h to ensure attachment. Then the original culture medium was
removed, and the cells were washed with PBS solution (Solarbio,
China) and divided into three groups. For the control group, a 24-
h culture medium was added; for the KCFMN group, 24-h
KCFMN extract solution was added; and for the CFMN
group, 24-h CFMN extract solution was added. The CCK-8
tests were measured on days 1, 3, and 5, and each group had
five parallels. The culture medium was replaced with 100 μL fresh
medium. Eventually, cell viability was obtained by CCK-8 assay
with a microplate reader (SynergyH1/H1M, Bio-Tek, China).

Antibacterial Test In Vitro
Antibacterial efficacy of the KCFMN and CFMN patches were
tested by the colony counting method (Feng et al., 2021). Gram-
positive Staphylococcus aureus (S. aureus) and Gram-negative
Escherichia coli (E. coli) were chosen to evaluate the antimicrobial
ability of MNs. It was performed according to the reference (Hao
et al., 2020). Two kinds of bacteria were cultured in Luria–Bertani
(LB) and tryptic soy broth (TSB) agar plates, separately.
Subsequently, the MNs were sterilized at high temperature in
a microwave oven for five min, and then all patches were briefly
washed with PBS. Afterward, 3 ml bacterial suspension was
mixed with equal-sized sample KCFMN and CFMN patches

FIGURE 1 | Schematic diagram of sample preparation for KCFMN patches and its application in wound healing.
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and incubated at 37 °C for 24 h, respectively. Then, after six-fold
serial dilution, 10 μL of each bacterial suspension was spread with
an agar plate. The plates were then inverted and kept at 37 °C in
an incubator for 24 h. Thereafter, colonies were counted on each
plate. The experiment comprised three replicates, and the results
were expressed as kill%:

Kill% � cell count of cuntrol − survior count with MNs
cell count of cuntrol

× 100%.

Wound Healing Study
To further evaluate the in vivo effect of KCFMN patches for
wound healing, a rat skin circular full-thickness wound model
was established (Hao et al., 2020; He et al., 2021). Specifically,
healthy male SD rats were first anesthetized by intraperitoneal
injection of 1% pentobarbital sodium (Sigma-Aldrich). After
their backs were shaved, a 1.0 cm diameter full-thickness skin
excision was created on the back of the rat. Then, the rats were
randomly divided equally into five groups: the KCFMN, the
CFMN, the KCF-Film, the KFX, and the control group. Each
group included six rats, and the rats were put back to cages with
free food and water after waking from anesthesia. Wounds on
individual rats were photographed digitally on days 0, 3, 5, 7, and
9 post-wounding. Furthermore, the wounds were measured with
a rule. All rats were killed to analyze on day 9. The wound areas
were calculated and quantified using ImageJ software. The closure
area of the wound (Awc) was calculated as follows:

AWC(%)A0 − A
A0

× 100%,

where A0 is the initial wound area and A is the wound area at the
indicated times.

Histopathology Assay
Skin tissues were harvested on day 9 and fixed overnight in 4%
buffered paraformaldehyde and embedded in paraffin. After the
samples were sectioned, hematoxylin–eosin staining (H&E) and
Masson’s trichrome staining were performed. H&E samples were
observed to assess the epidermal thickness. Collagen synthesis
was detected by Masson’s trichrome staining.

Statistical Analysis
All data were shown as mean ± standard deviation (SD).
Statistical analysis was carried out using GraphPad Prism 9
(GraphPad software). Statistical analysis was performed using
one-way analysis of variance (ANOVA). The statistically
significant p values were labeled as follows: *p < 0.05, **p <
0.01, ***p < 0.001, and ****p < 0.0001.

RESULTS AND DISCUSSION

Preparation and Characterization of
KCFMN Patches
KCFMN patches were fabricated by a micro-molding technique.
In short, a predetermined amount of KFX, CS, and FD was mixed

and stirred to form a pre-gel solution, which were put into the
microcavity of the mold, and ultrasonicated for 30 min. Finally,
the pre-gel was dried using a drying oven for 36 h. The fabricated
KCFMN and CFMN patches were arranged in a 15 × 15 MN
arranged on a 15 × 15 mm2 support base (Figures 2A,B).
KCFMN patches showed light brown because of the KFX
(Figure 2A). The MNs exhibited a cone shape with a 5-μm-
diameter tip, 700 μm height, and 300 μm base diameter as shown
in the SEM images (Figures 2C,D). The microstructure of MNs
was further detected by SEM (Figure 2D). We found that the
KCFMN patch had no pores on the surface, which is different
from previous studies (Chi et al., 2020). The reason may be that
CS is not cured with NaOH.

The drug KFX loaded in this study is liquid, in order to
prevent the pore drug amount from being too small and can be
quantified better; therefore, CS and FD are dissolved directly
with KFX to better quantify and ensure that KFX has sufficient
drug amount. In order to manufacture KCFMN patches with
perfect qualities, the solidification was initially adjusted.
Thus, the addition of FD to the solution is beneficial to
increase consistency and solidification of the solution, and
thereby improve the mechanical strength of KCFMN patches.
According to previous research, 4% CS and 0.4% FD are
selected to fabricate KCFMN patches in the following
experiment (Chi et al., 2020; Hao et al., 2020; Hao et al.,
2021; Zheng et al., 2021).

FTIR spectra of KFX, CS, FD, CFMN, and KCFMN are shown
in Figure 3. FTIR spectra of CS showed characteristic peaks at
1,645 and 1,586 cm−1 appeared to -C=O stretching and -NH
bending vibration, respectively (Don et al., 2006; Hao et al., 2021).
The FD showed characteristic peaks at 821 and
1,212 cm−1corresponding to the C-O-S stretching (galactose-4-
sulfate) and S=O asymmetric stretching (sulfate groups) of sulfate
groups, respectively (Manivasagan et al., 2019; Hao et al., 2021).
The spectra of CFMN included the characteristic peaks of CS
(1,645 and 1,586 cm−1) and FD ( 1,024 cm−1) and the spectra of
KCFMN included the characteristic peaks of CS (1,645 cm −1), FD
(1,041 cm−1), and KFX (1,212 cm−1), respectively, which was
revealed that composite KCFMN patches were manufactured
without affecting the biologically active functional groups of
the individual components in the physical mixing process
(Hao et al., 2020; Hao et al., 2021).

Evaluation of the Biocompatibility and
Antibacterial Ability of KCFMN Patches
Since KCFMN patches are in direct contact with the wound
surface, biocompatibility is very important for the MNs,
which can avoid damage caused by its toxic ingredients to
the wound (Margolis et al., 2018). To evaluate the
biocompatibility of KCFMN patches, L929 cells were co-
cultured with extract solutions of MNs. Additionally, CCK-8
assays were carried out to evaluate cell viability (Figure 4B).
After days 1, 3, and 5 of culture, the cell viability of KCFMN
patches was higher than that of the CFMN patches. This
result showed that KCFMN patches had good
biocompatibility and could meet the basic requirements
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for subsequent animal experiments used as wound dressing
materials.

The ideal wound dressing not only acts as a barrier to
prevent foreign bacterial infections but also has antibacterial
properties. The colony forming unit (CFU) test was used to
test the antibacterial ability of KCFMN patches against S.
aureus and E. coil (Hao et al., 2020; He et al., 2021). As shown
in Figure 4A, these pictures qualitatively showed that the
number of colonies on the KCFMN and CFMN groups were
significantly reduced compared with the control group. The
inhibition rate was calculated from the number of colonies. It
can be seen from Figures 4C,D that the inhibition rate of
KCFMN on E. coli is close to 100%, and the inhibition rate on
S. aureus reaches 80%, indicating that the KCFMN patch
exhibited antibacterial activity against E. coil is more

durable than that of S. aureus. That is probably due to the
sterilization effect of KFX on E. coil is better than that of S.
aureus, but the specific mechanism of action is unclear (Shen
et al., 2017; Hao et al., 2020). In summary, the excellent
antibacterial activity and biocompatibility of the KCFMN
patch showed the potential to effectively prevent wound
infection with bacteria.

Evaluation of Full-Thickness Skin Excisional
Wound Healing In Vivo
In ancient China, people usually utilized Chinese medicine
mainly obtained from natural medicines, including
botanicals, animals, and insect to promote wound healing
(He et al., 2021). Particularly, KFX is a Chinese medicine

FIGURE 2 | Optical and SEM photographs of KCFMN and CFMN. (A) Optical photograph of KCFMN. (B) Optical photograph of CFMN. (C) SEM photograph of
KCFMN. (D) Magnified SEM photograph of the individual MN. Scare bars: 5 mm in (A) and (B), 500 μm in (C), 200 μm in (D).

FIGURE 3 | (A) FTIR spectra of CS, FD, and CFMN (B) FTIR spectra of CS, FD, KFX, and KCFMN.
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extracted from PA, which has been widely used for various
mucosal ulcer treatments. To demonstrate the excellent
wound healing ability of KCFMN patches, a full-thickness
skin defect model made on rats was tested. Subsequently,
KCFMN, KCF-Film, CFMN, and KFX were used in the wound
areas, respectively. Rats performed with PBS solution were
used as the control group. Data from the five different groups
were recorded on days 0, 3, 5, 7, and 9 for further detailed
analysis. Qualitative analysis of the photos (Figure 5A) and
their traces (Figure 5B) showed that the wound healing effect
of KCFMN patches was higher than that of the KCF-Film,
CFMN, KFX, and control groups.

Quantitative analysis of the wound contraction
(Figure 5C) suggests that the wound healing effect treated
with the KCF-Film group was best on days 3 and 5, which was
significantly higher than the CFMN, KFX, and control groups.
Moreover, on day 5, the KFX group had statistical significance

with the control group. This may be the reason that the KCF-
Film and KFX can directly and closely contact the wound
surface, causing the drug to act directly, thereby promoting
wound healing. However, the KCF-Film has a longer action
time than KFX; therefore, the effect of the KCF-Film was
better than that of KFX. On days 7 and 9, the KCFMN group
was obviously different compared with the KCF-Film and the
CFMN group, which indicated that the ability of the KCFMN
group to accelerate wound healing was higher than that of the
KCF-Film and the CFMN group. The reason may be that in
the first five days, the KCF-Film can directly act on the wound
at the beginning, so the effect was better than other groups.
The healing of the KCFMN group on days 7 and 9 was
significantly better than that of the KCF-Film, which may
be the slow-release effect of KCFMN under the skin. In
addition, the KCFMN group was better than the CFMN
group, which was attributed to the healing effect of the KFX.

FIGURE 4 | (A) Photographs of clones on agar plates after co-cultured with control, KCFMN, and CFMN. (B) Cytocompatibility analysis of the KCFMN and CFMN.
The cell viability of MNs on day 1, 3, 5 (**p < 0.01 and ****p < 0.0001). (C) Inhibition rate of E. coli co-cultured with KCFMN and CFMN, respectively. (D) Inhibition rate of
S. aureus co-cultured with KCFMN and CFMN, respectively.
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Evaluation of H&E and Masson’s Trichrome
Staining
H&E and Masson’s trichrome staining were used to analyze
the histological status of the wound at the end of healing on
day 9 (Figure 6). We were pleasantly surprised to find that the
re-epithelialization of the KCFMN group was faster than the
other groups. The H&E staining image showed that the
thickness of the newly formed epidermis in the KCFMN
group was much thicker than that in the other groups.
Therefore, it showed that KCFMN had a strong ability to
promote wound healing. In addition, the results of Masson’s
trichrome staining showed that the KCFMN group had more

collagen fibers, and the fibers and collagen were arranged
more regularly, which indicated a stronger dermis. This
phenomenon might be explained as the KCFMN group can
accelerate wound healing by promoting epithelial thickening
and increasing collagen deposition.

CONCLUSION

In summary, the kangfuxin/chitosan/fucoidan microneedle array
patch for promoting wound healing was successfully developed
via the van der Waals force. KCFMN patches can penetrate the

FIGURE 5 | (A) Representative images of the wounds treated by KCFMN, KCF-Film, CFMN, KFX, control group on days 0, 3, 5, 7, and 9. (B) Traces of wound
closure for 3–9 days. (C) Wound contraction for 3–9 days (*p < 0.05 and ***p < 0.001).

FIGURE 6 | H&E and Masson’s trichrome staining of wound skin tissues. Scale bars represent 100 μm.
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stratum corneum of the skin, promote the penetration of KFX
and marine polysaccharide, and overcome the problem of low
transdermal penetration of traditional drugs. In addition,
KCFMN patches showed better biocompatibility and
antibacterial abilities and significantly promoted the closure of
full-thickness wounds in rats by remodeling the epithelium. Thus,
KCFMN patches have great clinical wound healing potential for
these advantages mentioned before.
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