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The application of deep learning for automated segmentation (delineation of boundaries) of 

histologic primitives (structures) from whole slide images can facilitate the establishment of 

novel protocols for kidney biopsy assessment. Here, we developed and validated deep learning 

networks for the segmentation of histologic structures on kidney biopsies and nephrectomies. 

For development, we examined 125 biopsies for Minimal Change Disease collected across 29 

NEPTUNE enrolling centers along with 459 whole slide images stained with Hematoxylin & 

Eosin (125), Periodic Acid Schiff (125), Silver (102), and Trichrome (107) divided into training, 

validation and testing sets (ratio 6:1:3). Histologic structures were manually segmented (30048 

total annotations) by five nephropathologists. Twenty deep learning models were trained with 

optimal digital magnification across the structures and stains. Periodic Acid Schiff-stained whole 

slide images yielded the best concordance between pathologists and deep learning segmentation 

across all structures (F-scores: 0.93 for glomerular tufts, 0.94 for glomerular tuft plus Bowman’s 

capsule, 0.91 for proximal tubules, 0.93 for distal tubular segments, 0.81 for peritubular 

capillaries, and 0.85 for arteries and afferent arterioles). Optimal digital magnifications were 

5X for glomerular tuft/tuft plus Bowman’s capsule, 10X for proximal/distal tubule, arteries and 

afferent arterioles, and 40X for peritubular capillaries. Silver stained whole slide images yielded 

the worst deep learning performance. Thus, this largest study to date adapted deep learning for the 

segmentation of kidney histologic structures across multiple stains and pathology laboratories. All 

data used for training and testing and a detailed online tutorial will be publicly available.
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primitives; large-scale tissue interrogation; renal biopsy interpretation

Renal biopsy interpretation remains the gold standard for the diagnosis and staging of native 

and transplant kidney diseases.1–3 Although visual morphologic assessment of the renal 

parenchyma may provide useful information for disease categorization, manual assessment 

and visual quantification by pathologists are time-consuming and limited by poor intra- and 

interreader reproducibility.4–7

The introduction of digital pathology in nephrology clinical trials8 has provided an 

unprecedented opportunity to test machine learning approaches for large-scale tissue 

quantification efforts. Standardization of pathology material acquisition has allowed 

worldwide consortia to establish digital pathology repositories containing thousands of 

digital renal biopsies for the evaluation of kidney diseases in adults and children, 

across diverse populations and pathology laboratories.4,9,10 This large-scale quantification, 

however, presents some new challenges. Unlike cancer pathology where hematoxylin and 

eosin (H&E) is generally the sole stain employed, renal biopsies require routine special 

stains such as Jones and periodic acid–methenamine silver (SIL), periodic acid–Schiff 

(PAS), and Masson trichrome (TRI).3,11,12 Additionally, the multicenter nature of such 

consortia is reflected in the heterogeneity of preparations (e.g., integrity of tissue sections 

and quality of the stains).

Deep learning (DL) is a machine learning approach that recognizes patterns in images 

through a network of connected artificial neurons. DL uses deep convolutional neural 
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networks (CNNs) that are capable of identifying patterns in complex histopathology data 

prone to such heterogeneity. U-Net is a popular semantic-based DL network validated 

in the context of biomedical image segmentation that takes spatial context of pixels into 

consideration as opposed to naive pixel-level DL classifiers.13 The output of U-Net is 

a high-resolution image (typically the same size as the input image) with labeled class 

predictions at the pixel level.14–16

In this study, we evaluated the feasibility of DL approaches for automatic segmentation 

of 6 renal histologic primitives on 4 stains, using the digital renal biopsies from a 

multicenter Nephrotic Syndrome Study Network (NEPTUNE) dataset.9 In addition, we 

describe annotation and training considerations, specifically as they relate to DL algorithms 

for digital nephropathology. To the best of our knowledge, this is the largest comprehensive 

study to address applicability of DL approaches employable for kidney pathology images 

generated in a multicenter setting.

RESULTS

DL performance per histologic primitive

Glomerular tuft.—The classifier performed consistently across the 4 stains with only 

marginal differences in F-score and Dice similarity coefficient (DSC). A 5× digital 

magnification on PAS and H&E stains (Table 1, Figures 1 and 2) resulted in optimal 

detection and segmentation.

Glomerular unit.—Consistent quantitative performance metric with F-score and DSC over 

0.89 were observed across all stains, with optimal results for detection and segmentation 

using 5× digital magnification on PAS and SIL stains (Table 1, Figures 1 and 2).

Proximal tubular segments.—Segmentation results varied little across the stains (F

score from 0.89 to 0.91, and DSC from 0.88 to 0.95), with PAS, SIL, and TRI stains having 

better performance than the H&E stain. A 10× magnification was optimal for detection and 

segmentation across all stains. (Table 1, Figures 1 and 3).

Distal tubular segments.—Segmentation results were highly variable across all the 

stains: F-scores were 0.78 and 0.81 for H&E and TRI, respectively, and 0.91 and 0.93 for 

SIL and PAS, respectively. DSC scores were 0.78 and 0.82 for H&E and TRI, and 0.92 and 

0.93 for SIL and PAS. Optimal results for detection and segmentation were obtained using 

10× digital magnification on PAS and SIL stains (Table 1, Figures 1 and 3).

Arteries/arterioles.—Artery/arteriole segmentation was variable across stains, with F

scores ranging from 0.79 to 0.85 across TRI, H&E, and PAS staining and DSC ranging from 

0.85 to 0.90. Optimal results for detection and segmentation were obtained using 10× on 

PAS stain (Table 1, Figures 1 and 4).

Peritubular capillaries.—Optimal results for detection and segmentation were obtained 

using 40× magnification on PAS stain (Table 1, Figures 1 and 4). Qualitative segmentation 

results on the testing cohort show that most of the large-sized peritubular capillaries were 
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thin and long as they were cut tangentially from the biopsy. Although the size, shape, and 

textural presentation of peritubular capillaries varied (Figure 5a), the U-Net model was 

able to detect and segment peritubular capillaries of varying sizes and shapes (Figure 5). 

The classifier tends to perform better on thin and long, small- to medium-sized capillaries. 

However, capillaries with size less than 40 pixels (167 μm2) failed to be identified or were 

inaccurately segmented.

Validation of DL models using nephrectomies.—An F-score of 0.93 was obtained 

for 191 glomerular units, 0.90 for 1484 proximal tubules, 0.93 for 1251 distal tubules, 0.71 

for 269 arteries/arterioles (Figure 6), and 0.90 for 3784 peritubular capillaries (Figure 7). 

The rare globally sclerotic glomeruli and atrophic tubules present in the sections were not 

segmented by the DL network.

DL segmentation performance across sites and artifacts.—See Supplementary 

Figure S4.

DL performance as a function of number of training exemplars

The rate of improvement of the network performance as a function of the number of 

training exemplars was observed to be different across histologic primitives. The number 

of exemplars needed to maximize network performance increases substantially from 

glomerular tufts to distal tubular segments, arteries/arterioles, and finally to peritubular 

capillaries (Figure 8). For larger structures such as glomerular tufts, it was observed that 

only 60 training samples were necessary to achieve an F-score of 0.89, with a 0.02 increase 

using 183 tufts. For smaller and largely represented structures such as distal tubules, a 0.07 

increase in F-score was observed by increasing the number of exemplars from 507 to 2789. 

For structures such as arteries/arterioles with varying sizes, the F-score increased by 0.13, 

increasing the number of exemplars from 258 to 864. A significant increase in F-score 

from 0.27 to 0.81 was observed with peritubular capillaries by increasing the number of 

exemplars 2.5 times (i.e., from 4273 to 10,975).

DISCUSSION

The assessment of renal biopsy is unique compared with other surgical pathology specimens 

because of the variety of stains routinely used. Morphologic assessment relies on the quality 

of the preparations, the pathologists’ expertise in detecting the individual structures and 

associated changes, and quantitative or semiquantitative metrics used to capture the extent 

of tissue damage. Visual histologic quantitative assessment such as counting, distribution, 

and morphometry of certain histologic primitives are known to be robust predictors of 

outcome for various kidney diseases.10,17–23 However, quantitative analysis remains a 

challenge for the human eye. Some of these primitives (e.g., peritubular capillaries) cannot 

be measured visually or manually and warrant the aid of computational algorithms. Recent 

studies have suggested that computer vision tools can serve as triage and decision support 

tools for disease diagnosis with digital pathology.24–27 Thus, automated image analysis 

tools need to be implemented and integrated into the pathology workflow for efficient 

and reliable segmentation of histologic primitives across multiple types of stains. DL 
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segmentation tools could greatly facilitate derivation of not only the visual but also subvisual 

histomorphometric features (e.g., shape, textural, and graph features) for correlation with 

diagnosis and outcome.28–30

This study attempts to address the challenges of computational renal pathology for large

scale tissue interrogation by providing DL algorithms for thorough annotation of 6 histologic 

primitives on renal parenchyma of minimal change disease (MCD), using whole slide 

images (WSIs) of 4 stains and generated across 29 NEPTUNE enrolling centers. In the past 

few years, several studies have demonstrated the utility of DL networks for low-level image 

analyses (i.e., detection, segmentation, and classification of histologic primitives) and high

level complex prognosis and prediction tasks.31–35 Our study is the largest, comprehensive 

DL study of kidney biopsies, presenting algorithms that were developed on different stains 

and using a large number of annotated images, compared with those previously published. 

The primary conclusions and significant findings from our work are described next.

Comparison with current literature

The differences between previous studies36–44 and our contributions are summarized in 

the Supplementary Figure S6. Previously published studies focus on a single histologic 

primitive and a single stain. For example, Marsh et al. evaluated CNNs for detection of 

global glomerulosclerosis in transplant kidney frozen sections stained with H&E36; Kanna 

et al. evaluated CNNs to discriminate normal, segmentally and globally sclerosed glomeruli 

from trichrome stained formalin-fixed and paraffin-embedded kidney sections37; Gallego 

et al. applied DL to detect glomeruli on PAS-stained sections; Bel et al. demonstrated 

segmentation of normal and pathologic histologic structures using PAS stained WSIs of 

nephrectomy cortex tissue.39 Temerinac-Ott et al. demonstrate a DL approach to improve 

glomerular detection on 1 staining using results from differently stained sections of same 

tissue.38 Our DL networks on all 4 stains represent a first step for future clinical deployment 

allowing for the detection, segmentation, and ultimately quantification of several normal 

histologic primitives in all stains routinely used for diagnostic purposes.

Another critical element that needs to be taken into consideration before their use in large

scale DL networks is how they can be applied to heterogeneous datasets. Our DL models 

were trained and tested on a very heterogeneous set of WSIs with preanalytic variations 

in tissue acquisition, processing, and slide preparation using 4 stains, thus facilitating the 

rigorous evaluation of the applicability of the DL approach in a multisite setting.

Different DL approaches have been used for the segmentation of histologic primitives, 

such as Gadermayr et al.’s application of generative adversarial deep networks for 

stain-independent glomerular segmentation.45 Bel et al. employed cycle-consistent 

generative adversarial networks (cycle-GANs) in DL applications for multicenter stain 

transformation.40 Hermsen et al. has demonstrated U-Net based segmentation of 7 tissue 

classes using 40 transplant biopsies on PAS stain.42 Our approach, in this study, was to 

develop multiple U-Net based DL networks using optimal digital magnification and varying 

number of annotations across primitives and stains.
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All previous works have used relatively smaller number of WSIs of renal biopsies/

nephrectomies compared with our study (Table 2). The use of a large WSI dataset allowed us 

to provide insights to pathologists for generating well-annotated training exemplars for each 

primitive and stain, as well as the number of training exemplars required for best network 

performance using U-Net CNNs (Figure 8).

Specificity of the segmentation of the individual histologic primitives and their pathologic 

variation is critical for the deployment of DL models into clinical practice.42,43 The DL 

networks generated in this work are specific to structurally normal histologic primitives, 

such as those seen in MCD or nephrectomies, and can be applied to both adult and pediatric 

renal biopsies. When the DL networks were tested on patches of renal parenchyma from 

nephrectomy specimens, the specificity for the structurally normal histologic primitives 

was maintained. The DL framework presented in this study will also enable architecting 

of networks in the future that are specifically focused on automated segmentation and 

assessment of structurally abnormal histologic primitives and their correlation with clinical 

outcomes.

DL-based ranking of different stains

Our study suggests that the PAS stain is best suited for identification of structurally normal 

histologic primitives using the U-Net model. This may be because PAS appears to be 

consistently more homogeneous across pathology laboratories compared with TRI or SIL. 

PAS-stained WSIs highlight the basement membranes of different structures, which in turn 

provides superior definition of the boundary of each single primitive to be segmented. For 

this reason, PAS was the only stain used for segmentation of peritubular capillaries. On the 

basis of our results, PAS and H&E stains showed better performance for glomerular tuft and 

unit segmentation, PAS and TRI for arteries/arterioles, PAS and SIL for tubular segments, 

and PAS for peritubular capillaries.

Optimal digital magnification for DL models

Our results suggest that with a unified patch size of 256 × 256, optimal magnification for 

the DL models was 5× for glomeruli, 10× for tubules and vessels, and 40× for capillaries 

(Figure 1). Interestingly, most of the optimal magnifications were concordant with the 

magnifications that pathologists tend to use when annotating the individual primitives, 

except for glomeruli where the pathologists used 15× to 20×. Larger structures such as 

glomeruli, tubules, and vessels were more precisely segmented by the network at 5× to 10× 

magnification regardless of the stain. For smaller structures such as peritubular capillaries, 

larger digital magnification (40×) was required for accurate DL segmentation.

DL segmentation performance across sites and artifacts

Heterogeneity of tissue preparation and lack of standardization of the analytics is 

particularly relevant for multicenter studies, where the pathology material is collected from 

several laboratories. As expected, heterogeneity in tissue presentation and glass, tissue, and 

scanning artifacts was observed, each with variable contribution to the DL performance. 

For example, although in general tissue artifacts had limited impact on the DL networks, 

the thickness of the section appeared to affect performance. The impact of individual 
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artifacts was also relative to the histologic primitive; for example, glass artifacts showed 

a slight negative impact on DL performance for arteries/arterioles and proximal tubules. 

Additionally, there was variability in DL performance across sites, and this variability 

appeared to be histologic primitive dependent (Supplementary Figure S4).

DL performance as a function of number of training exemplars

Our quantitative data validated the intuitive assumption that more exemplars are needed 

for those primitives that are more difficult to identify visually (i.e., tangentially cut arteries/

arterioles or primitives at the edge of the region of interest [ROI]) (Figure 8). For those 

primitives that were too small or ill defined (i.e. peritubular capillaries), curation and 

iterative annotation was necessary to improve segmentation accuracy. For segmentation 

of glomerular tufts, the network converged to maximum accuracy with a small number 

(60–183) of training exemplars; performance did not improve with inclusion of additional 

exemplars. For tubules and arteries/arterioles segmentation, the corresponding networks 

showed marginal to intermediate performance improvement with an increasing number of 

exemplars. In contrast, a significant increase in F-score and DSC (0.27–0.81) was observed 

with a 2.5-fold increase in the number of peritubular capillary exemplars, a linear scope of 

F-score increase indicating even better accuracy with more exemplars.

Interpreting segmentation results

Few false positives were observed in regions of interest with artifacts (i.e. tissue folds, 

uneven staining), suggesting the need for digital quality assessment of the slide images 

prior to invocation of the computational models (Supplementary Figure S4). In a few ROIs, 

the DL appeared to outperform the pathologists—for example, when a small portion of an 

artery/arteriole was at the edge of the ROIs and was not manually annotated as ground truth 

by the pathologist because they were visually difficult to detect. This can be explained by 

the protocol used for segmentation of arteries, where pathologists included only arteries 

where the wall (tunica media and intima) and lumen were visible and segmented the outer 

boundary of the tunica media. Thus, the models, trained to detect the tunica media and 

intima of the arteries correctly identified small fragments of tunica media (arterial/arteriolar 

wall tangentially cut) as arteries/arterioles despite the lack of a lumen (Figure 9).

Additionally, tubules in renal biopsy sections are more often seen in transverse than 

longitudinal sections. The initial classifier missed some longitudinally sectioned tubules, 

mostly on H&E-stained images, because the tubule boundaries were less sharp, and 

longitudinally sectioned tubules were underrepresented in the initial training set. To facilitate 

and improve the process of annotation and the network, the false-negative errors associated 

with the U-Net segmentation of the tubules were visually identified and manually refined by 

the pathologist, and the updated annotations were returned to the network. A few small 

arterioles were also incorrectly identified as distal tubules by the DL algorithm (false 

positives) during the first iteration. These false-positive annotations were removed by the 

pathologist upon review of the initial classifier output and corrected images were returned 

to the network for retraining without changing the experimental setup or the network 

parameters to eliminate false positives and negative errors of the DL algorithm.45
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In line with current sharing guidelines, with this report, we are making all of our data 

and accompanying ground truth annotations publicly available for the community. Online 

supplemental material released as part of this work is anticipated to advance the field 

of computational renal pathology46 and provide best practices for generating annotations, 

augmentations,47 magnifications and recommended stains to perform segmentation tasks 

optimally.

In conclusion, this study represents a solid foundation toward invoking machine learning 

classifiers to aid large-scale tissue quantification efforts and the implementation of machine–

human interactive protocols in clinical and pathology workflows. DL segmentation of 

histologic primitives enables computational derivation of histomorphometric features for 

enabling biopsy interpretation. Additionally, the framework presented in this work will 

also pave the way for development of new DL networks in the future that are specifically 

geared toward (i) abnormal or pathologic histologic primitives (i.e., global and segmental 

sclerosis, glomerular proliferative features, collecting ducts, veins and peripheral nerves, 

tubular atrophy, interstitial fibrosis, and arteriosclerosis), (ii) renal cortex and medullary 

compartments, and (iii) a wider spectrum of diseases. Further, these novel approaches could 

pave the way for the development of machine learning tools that provide disease prognosis 

or predicting treatment response24 and even facilitate discovery of clinically actionable, 

nondestructive computational pathology–based imaging diagnostic biomarkers for kidney 

diseases.25,27,48

METHODS

Case and image dataset selection

This study was conducted using digital renal biopsies from the NEPTUNE digital pathology 

repository. NEPTUNE is a North American multicenter collaborative consortium with more 

than 650 adult and children enrolled from 29 recruiting sites (38 pathology laboratories). 

Only cases with a diagnosis of MCD were included in this study because histologically 

they are the most similar to normal renal parenchyma. A total of 459 curated WSIs (125 

H&E, 125 PAS, 102 SIL, 107 TRI) from 125 MCD renal biopsies were used.49 Not all 

cases had all stains available in the digital pathology repository. Four WSIs were selected 

for each patient (1 WSI per stain). From each WSI, approximately 3 to 5 ROIs containing 

the histologic primitives were randomly selected, inspected by a pathologist, and manually 

extracted as 3000 × 3000 tiles then stored as 8-bit red-green-blue (RGB) color images in 

PNG format at 40× digital magnification. Additional details on digitization and curation of 

biopsy WSIs can be found in Supplementary Figure S1.

Independent validation of the DL models.—Six WSIs from 3 formalin-fixed 

and paraffin-embedded nephrectomy specimens were included to test the DL network 

performance for the segmentation of all histologic primitives on adult renal parenchyma 

without significant structural abnormalities. Sections from the nephrectomy specimens were 

stained with PAS, scanned into WSIs, and subsequently stained with a CD34 antibody, 

a marker of endothelial cells, and then rescanned into WSIs. One hundred seventy-five 

random ROIs (3000 × 3000 pixels) were extracted from the PAS-stained WSIs. The PAS
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CD34 double-stained WSIs were used as ground truth for validation of the DL segmentation 

approach for peritubular capillaries.

Histologic primitives and manual segmentation

Five renal pathologists manually segmented the ROIs to establish the ground truth for the 

histologic primitives (Table 2). Manual segmentations were generated using an open-source 

software application.15 The ground truth annotations were saved as binary masks; that is, 

each pixel that was denoted as part of a histologic primitive (positive class pixels expressed 

as binary 1s) or not (negative class pixels expressed as binary 0s). Through this process, 

30,048 annotations were made by pathologists on 1818 ROIs (Figure 10).

Six histologic primitives were used for this study: glomerular tuft, glomerular unit (tuft 

+ Bowman’s capsule), proximal tubular segments, distal tubular segments, arteries and 

arterioles, and peritubular capillaries. Consistent and detailed ground truth labels across all 

training samples can greatly facilitate robust DL performance, especially in segmentation 

tasks.24,32,36,50–54 In order to produce consistent annotations across all images, each 

histologic primitive and its boundaries were carefully defined, and the annotation procedure 

for each use case standardized (Supplementary Figure S2). Furthermore, each annotation 

generated by a pathologist was reviewed by a second pathologist for quality assessment.

DL experimental pipeline and training methods

DL dataset.—Up to four WSIs per biopsy (H&E, PAS, TRI, and SIL for each) were 

used for the segmentation of the glomerular tuft and unit, and proximal and distal 

tubular segments. Peritubular capillaries were segmented using only PAS WSIs, and arteries/

arterioles were segmented only in H&E, PAS, and TRI WSIs (Table 2). WSIs were divided 

at the patient level into training, validation, and testing sets (ratio 6:1:3). The networks were 

developed using WSIs of both adult and pediatric patients (Supplementary Figure S1). For 

training of the U-Net network, 5 pathologists annotated 1196 glomerular tufts and units, 

4669 proximal and 2285 distal tubular segments, 19,280 peritubular capillaries, and 2261 

arteries/arterioles (Table 2).

Network configuration and training.—Standard U-Net architecture with slightly 

tweaked parameters were implemented in PyTorch framework for training of each use 

case (Figure 11). Details of U-Net configuration, training methods including training set 

balancing and data augmentation can be found in Supplemental S3.

Detection and segmentation metrics.—Detection and segmentation results were 

evaluated using F-Score, true positive rate (TPR), positive predictive value (PPV), and 

DSC.55–57 Values of 0 and 1 represent the maximal discordance and agreement, respectively, 

between the pathologist ground truth and the U-Net results. TPR, PPV, and F-Score measure 

the detection accuracy of the DL networks. These metrics are computed using the number 

of correct segmentation results (true positives), incorrect segmentations (false positives), and 

missing segmentations (false negatives). DSC is the pixel-wise spatial overlap index that 

measures the segmentation accuracy of the classifier, with values ranging from 0 (indicating 

no spatial overlap between ground truth annotation and corresponding DL output mask) to 1 
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(indicating complete overlap), and a DSC value >0.5 denoting a correct segmentation (true 

positive).

Number of training exemplars for different histologic primitives

To test how the number of manually annotated training exemplars influences network 

performance, we selected a representative set of histologic primitives based on size, 

complexity, distribution, and stain: glomerular tufts on H&E, peritubular capillaries on 

PAS, distal tubular segments on TRI, and arteries/arterioles on SIL. Specifically, we sought 

to evaluate the minimum number of annotated exemplars for standing up trained U-Net 

models for each type of histologic primitive. Toward this end, multiple U-Net models were 

trained for each type of primitive, each time with a greater number of annotated exemplars. 

Detection and segmentation accuracy were then computed for each such U-Net model for 

each primitive on the corresponding testing sets (Figure 8).

DL segmentation performance across sites and artifacts

See Supplementary Figure S4.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Members of the Nephrotic Syndrome Study Network (NEPTUNE)

NEPTUNE Enrolling Centers.

Cleveland Clinic, Cleveland, OH: J. Sedor*, K. Dell*, M. Schachere#, J. Negrey#

Children’s Hospital, Los Angeles, CA: K. Lemley*, E. Lim#

Children’s Mercy Hospital, Kansas City, MO: T. Srivastava*, A. Garrett#

Cohen Children’s Hospital, New Hyde Park, NY: C. Sethna*, K. Laurent#

Columbia University, New York, NY: G. Appel*, M. Toledo#

Duke University, Durham, NC: L. Barisoni*

Emory University, Atlanta, GA: L. Greenbaum*, C. Wang**, C. Kang#

Harbor-University of California Los Angeles Medical Center: S. Adler*, C. Nast*‡, J. 

LaPage#

John H. Stroger Jr. Hospital of Cook County, Chicago, IL: A. Athavale*, M. Itteera

Johns Hopkins Medicine, Baltimore, MD: A. Neu*, S. Boynton#

Mayo Clinic, Rochester, MN: F. Fervenza*, M. Hogan**, J. Lieske*, V. Chernitskiy#

Montefiore Medical Center, Bronx, NY: F. Kaskel*, N. Kumar*, P. Flynn# NIDDK 

Intramural, Bethesda, MD: J. Kopp*, J. Blake#

New York University Medical Center, New York, NY: H. Trachtman*, O. Zhdanova**, F. 

Modersitzki#, S. Vento#

Stanford University, Stanford, CA: R. Lafayette*, K. Mehta#

Temple University, Philadelphia, PA: C. Gadegbeku*, D. Johnstone**, S. Quinn-Boyle#

University Health Network Toronto: D. Cattran*, M. Hladunewich**, H. Reich**, P. Ling#, 

M. Romano#

University of Miami, Miami, FL: A. Fornoni*, C. Bidot#

University of Michigan, Ann Arbor, MI: M. Kretzler*, D. Gipson*, A. Williams#, J. 

LaVigne#

University of North Carolina, Chapel Hill, NC: V. Derebail*, K. Gibson*, A. Froment#, S. 

Grubbs#

University of Pennsylvania, Philadelphia, PA: L. Holzman*, K. Meyers**, K. Kallem#, J. 

Lalli#
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University of Texas Southwestern, Dallas, TX: K. Sambandam*, Z. Wang#, M. Rogers#

University of Washington, Seattle, WA: A. Jefferson*, S. Hingorani**, K. Tuttle**x, M. 

Bray#, M. Kelton#, A. Cooper#§

Wake Forest University Baptist Health, Winston-Salem, NC: B. Freedman*, J.J. Lin**

Data Analysis and Coordinating Center.

M. Kretzler, L. Barisoni, C. Gadegbeku, B. Gillespie, D. Gipson, L. Holzman, L. Mariani, 

M. Sampson, J. Troost, J. Zee, E. Herreshoff, S. Li, C. Lienczewski, J. Liu, T. Mainieri, M. 

Wladkowski, and A. Williams.

Digital Pathology Committee.

Carmen Avila-Casado (UHN-Toronto), Serena Bagnasco (Johns Hopkins), Joseph Gaut 

(Washington U), Stephen Hewitt (National Cancer Institute), Jeff Hodgin (University 

of Michigan), Kevin Lemley (Children’s Hospital LA), Laura Mariani (University of 

Michigan), Matthew Palmer (U Pennsylvania), Avi Rosenberg (NIDDK), Virginie Royal 

(Montreal), David Thomas (University of Miami), Jarcy Zee (Arbor Research). Co-Chairs: 

Laura Barisoni (Duke University) and Cynthia Nast (Cedar Sinai).

*Principal investigator; **co-investigator; #study coordinator

‡Cedars-Sinai Medical Center, Los Angeles, CA

§Providence Medical Research Center, Spokane, WA
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Translational Statement

The assessment of renal biopsy is unique compared with other surgical pathology 

specimens because of the variety of stains routinely used. Morphologic assessment of 

histological preparations relies on the quality of the preparations itself, as well as the 

expertise of the pathologist in identifying normal and pathological structures. The authors 

demonstrate that “deep learning–based convolutional neural networks” may be employed 

for efficient and reliable segmentation of histologic structures across different stains of 

normal renal parenchyma using the Nephrotic Syndrome Study Network whole slide 

images. This dataset was curated from 38 histology laboratories and reflects substantial 

morphologic, technical, and stain heterogeneity. The findings provide useful insights, 

along with source code and data, which will help readers overcome challenges in this 

space. Taken together, this work represents a technical foundation from which future 

pathology tools may be built to enable actionable clinical decision support tools for better 

disease characterization and risk assessment in pathology workflows.
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Figure 1|. Optimally digitally magnified regions of interest.
The optimal magnification varied for each histologic primitive using patch size of 256 × 

256 px: periodic acid–Schiff glomerular unit and tuft, original magnification ×5; proximal 

and distal tubular segment, original magnification ×10; peritubular capillary, original 

magnification ×40; and arteries/arterioles, original magnification ×10 (not shown).
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Figure 2|. Deep learning (DL) segmentation of glomerular tuft and unit.
DL segmentation for glomerular unit and tuft on whole slide images of formalin-fixed 

and paraffin-embedded sections from minimal change disease, stained with hematoxylin 

and eosin (H&E), periodic acid–Schiff (PAS), trichrome (TRI), and silver (SIL). For each 

stain, the original image overlaid with ground truth is presented on the left, and the DL 

segmentation is presented on the right. The positive classes are highlighted in bright pink 

from green transparent mask overlaid on original image. The DL output is specifically 

tracing the Bowman capsule for glomerular unit and the profile of the capillary wall for the 
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glomerular tuft. The glomerular units and tufts were correctly identified across all types of 

stains.
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Figure 3|. Deep learning (DL) segmentation of proximal and distal tubular segments.
DL segmentation for tubular segments on whole slide images of formalin-fixed and paraffin

embedded sections from minimal change disease, stained with hematoxylin and eosin 

(H&E), periodic acid–Schiff (PAS), trichrome (TRI), and silver (SIL). For each stain, the 

original image overlaid with ground truth is presented on the left, and the DL segmentation 

is presented on the right. The positive classes are highlighted in bright pink from green 

transparent mask overlaid on original image.
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Figure 4|. Deep learning (DL) segmentation of arteries/arterioles and peritubular capillaries.
DL segmentation for arteries/arterioles on whole slide images of formalin-fixed and paraffin

embedded sections from minimal change disease, stained hematoxylin and eosin (H&E), 

periodic acid–Schiff (PAS), trichrome (TRI), and silver (SIL), and for peritubular capillaries 

on whole slide images of formalin-fixed and paraffin-embedded sections stained with PAS, 

with the original image overlaid with ground truth on the left and the DL segmentation on 

the right. The positive classes are highlighted in bright pink from green transparent mask 

overlaid on original image.
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Figure 5|. Deep learning (DL) Segmentation performance in relation to the morphologic 
heterogeneity of peritubular capillaries (PTCs).
(a) Most of the peritubular capillaries were small when measured in number of pixels. The 

size of the peritubular capillaries has an exponential distribution with a long tail from small 

to large. Each pixel is 0.06 μm2 on tissue, and as observed, most of the PTCs are under 90 

μm2. Examples of DL performance on small (c), medium (b), and large (d,e) PCs.
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Figure 6|. Deep learning (DL) segmentation of normal histologic primitives on periodic acid–
Schiff nephrectomies.
(a) Segmentation of normal glomerular units. (b) Segmentation of proximal (yellow) and 

distal (green) tubules; rare atrophic tubules were detected by the DL algorithms. (c) 
Segmentation of arteries/arterioles.
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Figure 7|. Segmentation outputs of peritubular capillaries (PTCs) on periodic acid–Schiff (PAS) 
nephrectomies.
(a) Formalin-fixed and paraffin-embedded sections stained with PAS and CD34 (double 

stain). (b) Deep learning (DL) segmentation of peritubular capillaries on the same section 

stained with PAS alone. There is overlap between the CD34 positive stain and the 

DL detection of peritubular capillaries. Overall, the DL performance was similar to the 

segmentation accuracy on the testing set for minimal change disease.
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Figure 8|. Model performance with increasing number of training annotations.
Number of annotations versus deep learning model performans. The model performance was 

measured as F-score, dice similarity coefficient (DSC), true positive rate (TPR), predictive 

positive value (PPV). For histologic primitives such as glomerular tufts, only a small 

number of annotations was required to construct a robust classifier, in contrast to peritubular 

capillaries where larger number of annotations were required. The performance metrics 

for peritubular capillary segmentation increased linearly as more annotations were added. 

Arteries/arterioles and distal tubules had intermediate rates of convergence with increasing 

number of annotations.

Jayapandian et al. Page 25

Kidney Int. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9|. Examples of false positive and false negative deep learning (DL) segmentations on 
periodic acid–Schiff (PAS).
(a) Glomerular unit: DL failed to detect a tangentially cut glomerular unit that does not have 

a typical round shape (red thick arrow). (b) Artery: section artifact generate a false positive 

(red thick arrows). (c) Arteries: black arrows show 2 arterioles missed by the pathologist 

but detected by DL. (d) Arteries: pathologists were instructed to segment artery when 

lumen was present; however, DL segmentation detected tangentially cut artery (thick black 

arrow) where only the medium was visible. (e) Peritubular capillaries: a long peritubular 

capillary reveals only partial DL segmentation at the pixel level. (f) Peritubular capillaries: 

DL network for peritubular capillaries detects a few glomerular capillaries (false positive; 

thick red arrow).
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Figure 10|. Ground truth annotation for histologic primitives.
Examples of manual annotation on histologic primitives on whole slide images of 

formalin-fixed and paraffin-embedded sections from minimal change disease, stained with 

hematoxylin and eosin (H&E), periodic acid–Schiff (PAS), trichrome (TRI), and silver 

(SIL), and corresponding binary masks (black and white pictures) are shown.
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Figure 11|. Flowchart of the workflow of deep learning (DL) experimental pipeline for each stain 
and use case.
(a) Whole slide images (WSIs) were selected for generation of training, validation, and 

testing data. (b) Regions of interest were cropped from original WSIs with 40× digital 

magnification. (c) Ground truth labels were generated by pathologists for training, and 

overlapping patches of size 256 × 256 px (0.24 μm/px) containing both image data and 

ground truth annotation information were cropped from the training and validation images 

(as shown in black boxes). (d) For each path, a randomized data augmentation method is 

introduced to account for (i) size variation of primitives, (ii) stain variations, and (iii) tissue 

variations (e.g. thickness). (e) All the training patches were passed to U-Net on PyTorch for 

training, and validation patches were used to generate loss and accuracy measures for each 

epoch trained to evaluate model performance. Finally, the epoch that yielded the lowest loss 

on the validation data was selected for generation of test results.
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Table 2|

DL dataset showing the number of training and testing region of interest images extracted from 459 WSIs of 

125 MCD patients and the number of manually segmented annotations for 6 structurally normal histologic 

primitives

Histologic primitive for DL segmentation Stain No. of manual segmentations
No. of images (3000 × 3000 px) extracted from the 

WSIs

Glomeruli H&E  240 Gt 150, Gu 150

PAS  373 Gt 228, Gu 204

SIL  267 Gt-124, Gu-124

TRI  316 Gt-138, Gu 137

Proximal tubular segments H&E 1329 108

PAS 1621 66

SIL  891 102

TRI  828 94

Distal tubular segments H&E  595 108

PAS  816 66

SIL  509 102

TRI  365 94

Peritubular capillaries PAS 19,280 121

Arteries/arterioles H&E   1153 344

PAS  508 238

TRI  957 422

DL, deep learning; Gt, glomerular tuft; Gu, glomerular unit (tuft + Bowman capsule); H&E, hematoxylin and eosin; mag, magnification; MCD, 
minimal change disease; PAS, periodic acid–Schiff; SIL, periodic acid–methenamine silver; TRI, Masson trichrome; WSI, whole slide images.
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