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ABSTRACT: Mass spectrometry imaging (MSI) has the potential to reveal the
localization of thousands of biomolecules such as metabolites and lipids in tissue
sections. The increase in both mass and spatial resolution of today’s instruments
brings on considerable challenges in terms of data processing; accurately extracting
meaningful signals from the large data sets generated by MSI without losing
information that could be clinically relevant is one of the most fundamental tasks of
analysis software. Ion images of the biomolecules are generated by visualizing their
intensities in 2-D space using mass spectra collected across the tissue section. The
intensities are often calculated by summing each compound’s signal between
predefined sets of borders (bins) in the m/z dimension. This approach, however, can
result in mixed signals from different compounds in the same bin or splitting the signal
from one compound between two adjacent bins, leading to low quality ion images. To
remedy this problem, we propose a novel data processing approach. Our approach
consists of a sensitive peak detection method able to discover both faint and localized signals by utilizing clusterwise kernel
density estimates (KDEs) of peak distributions. We show that our method can recall more ground-truth molecules, molecule
fragments, and isotopes than existing methods based on binning. Furthermore, it automatically detects previously reported
molecular ions of lipids, including those close in m/z, in an experimental data set.

Mass spectrometry imaging (MSI) is a technique often
used to study the localization of known and unknown

biomolecules such as lipids, metabolites, or peptides in tissue.
Today’s instruments can scan samples with both high spatial and
mass spectral resolution and, consequently, generate massive
data sets that require highly efficient and accurate processing.
Thus, one of the key components of MSI data processing is data-
reduction, which typically involves detection and extraction of
signals originating from tissue or drug compounds while
discarding noise.1,2 The peaks of each spectrum are mapped
onto a common reference, and by visualizing the intensities of
individual peaks as images the spatial distribution of
biomolecules can be revealed. The reference spectrum is
generated by detecting peaks which are common to multiple
spectra. Accurate peak detection facilitates the isolation of
signals from individual compounds which is necessary to obtain
high quality images.
Many existing MSI software, such as Cardinal3 and

MALDIquant,4 detect isotopic peaks of compounds on a data
set mean spectrum and subsequently rank them based on the
frequency of their presence in ion image pixels. This method is
fast and produces concise peak lists but has limited performance
for low-intensity peaks and those localized to small regions in the
analyzed tissue section.1 Many tools generate ion images by
binning around each peak of interest; the intensity value for each

pixel is calculated by summing ion intensities between
predefined m/z borders (bins). When doing this, however, it
is crucial to use narrow bins to avoid mixing signals from
multiple compounds in one image and to ensure that the mass of
the peak around which binning is performed is accurate.
Suits et al.5 showed that slicing the entire m/z range into ion

images of fixed mass widths enables MSI practitioners to explore
MSI data sets in a hypothesis-free manner. This approach sets no
threshold on either peak intensity or presence in a minimum
number of pixels and is thus not biased toward large or high
intensity molecules in the tissue. Choosing bin width is a
specificity-sensitivity trade off. A small bin width results in
higher sensitivity but increases the risk of peak splitting and a
higher number of empty or noninformative ion images. Larger
bin widths on the other hand result in fewer noninformative
images but are unable to discriminate between compounds that
are close in mass, resulting in ion images containing signals from
multiple compounds. Unfortunately, even when using relatively
large bin widths, slicing leads to impractically large sets of ion-
images unless the experimentalist is guided by known ion
masses. However, previous studies have demonstrated that
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incorporating information about the ion-images’ spatial
structure in MSI data analysis pipelines is an effective way to
automatically separate high and low quality images in these large
image sets.6−9

In this paper, we present a peak detectionmethod that enables
automatic detection of faint and localized signals as well as high
intensity and/or abundant signals. We show that our peak
detection can serve as a part of anMSI data analysis pipeline that
is both sensitive and specific by combining it with established
methods that filter peaks based on their spatial arrangement. A
sensitive peak detection algorithm is not only essential for
exploratory analysis but also for discovering molecules spatially
colocalized with those expected to be present, e.g., drug
compounds and metabolites. This is highly relevant in both
scientific and clinical settings where drug−tissue interaction and
tissue composition are often investigated. To assess and
compare the performance of our method to existing MSI data

processing tools, we used a rat liver section spiked with several
drugs, most of which are anticancer drugs, where the masses of
the spiked drugs are used as ground-truth. Using this data set, we
show that we are able to detect drug peaks as well as fragment
and isotopic peaks, including those that are close inm/z to more
intensive and/or abundant peaks. We also used the MSI data set
from a mouse bladder section originally presented by Römpp et
al.10 to further assess our method.

■ MATERIALS AND METHODS

Drug Compounds and Matrix Composition. For the
MALDI-MSI experiment, we selected 12 different drugs (see
chart in Supporting Information). The drugs were purchased
from the LC Laboratories (Woburn, MA; CAS numbers:
dabrafenib: 1195765-45-7, dasatinib: 302962-49-8, erlotinib:
183321-74-6, gefitinib: 184475-35-2, imatinib: 152459-95-5,
lapatinib: 388082-78-8, pazopanib: 444731-52-6, sorafenib:

Figure 1. Flowchart of our peak picking algorithm.m/z values of peaks from each individual spectrum are collected and sorted inmzall. We then identify
clusters in mzall as connected components in a directional graph. For each cluster we fit an optimized KDE to the distribution of m/z values. Data set
peaks are obtained as local maxima on the resulting KDE curve. Finally, the level of structure in the ion images corresponding to the data set peaks is
estimated and used to filter out noise peaks. The peak corresponding to the center ion image, atm/z = 494.2505, is an example of one filtered out in the
last step.
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284461-73-0, sunitinib: 557795-19-4, trametinib: 871700-17-3,
vatalanib: 212141-54-3) and from SelleckChem (Munich,
Germany; CAS numbers: ipratropium: 60205-81-4) with
>99% purity and were dissolved in methanol (MeOH,
(Chromasolv Plus for HPLC) (Sigma-Aldrich, Steinheim,
Germany) at 10 mg/mL concentration. These stock solutions
were further diluted with 50% MeOH and five mixtures were
generated, each containing four different drug compounds. The
spreadsheet in Supporting Information summarizes the
composition of the five drug mixtures. A 5 mg/mL solution of
α-cyano-4-hydroxycinnamic acid (CHCA, Sigma-Aldrich)
dissolved in 50% MeOH containing 0.1% trifluoroacetic acid
(TFA, Sigma-Aldrich, Steinheim, Germany) was used as matrix
solution.
Sample Preparation. For MALDI-MSI, a 10 μm section

was cut from frozen rat liver tissue using a cryotome and placed
on a glass slide. Then 0.3 μL from each drug mixture was
pipetted on the tissue section at predefined positions. After
drying of the tissue, CHCAmatrix solution was deposited on the
tissue surface by an automated pneumatic sprayer (TM-Sprayer,
HTX Technologies). The nozzle distance was 46 mm, and the
spraying temperature was set to 35 ◦C, the matrix was sprayed
(19 passes) over the tissue section at a linear velocity of 750
mm/min with a flow rate set to 0.1 mL/min and a nitrogen
pressure set at 10 psi. After each pass, a drying time of 30 s was
set on the spraying machine to give time for the sample to dry
completely before the next pass. The frozen rat liver tissue was
provided by Prof. Roland Andersson (Dept. Clinical Sciences
Lund (Surgery), Skane University Hospital, Lund University).
Animals were housed and bred according to regulations for the
protection of laboratory animals.
MALDI MSI. MSI data was collected by sampling the tissue

section with 50 μm raster arrays without laser movement within
each measuring position. The dimensions of the measured liver
tissue section was approximately 0.9 by 1.2 cm in x, y sampling
coordinates. A total of 23 823 sampling positions (x = 247, y =
181) were collected. Full mass spectra were collected using a
MALDI LTQ Orbitrap XL mass spectrometer (Thermo Fisher
Scientific, Bremen, Germany), equipped with a 60 Hz 337 nm
nitrogen pulse laser (LTB Lasertechnik Berlin, Berlin,
Germany). This instrument was operated at 60 000 resolution
(at m/z 400) collecting spectral data in the mass range of 150−
1000 m/z in profile mode generated by 20 laser shots at 10 μJ
with automatic gain control switched off. Data were acquired
using Xcalibur v 2.0.7. software (Thermo Fisher Scientific, San
Jose, CA). The MSI raw data contains mass spectra from all
measurement points together with their x, y coordinates.
The Thermo Scientific raw files were first converted tomzML

using msconvert and then to imzML11 format using
imzmlConverter. Finally, the imzML data was loaded into
MATLAB and analyzed with custom scripts. The mouse bladder
data set with PXD001283 ID was downloaded from
ProteomeXchange in imzML format.
Peak Picking.We propose a two-step peak picking scheme:

in the first step, candidate peaks are detected on clusters of peak
m/z values from all spectra, and in the second, the spatial
distribution of the candidate peaks is evaluated and we select
those that display a coherent structure. For the first step, we have
devised a novel method that relies on clusterwise kernel density
estimates (KDEs) of spectral peaks. KDEs are smooth
histograms and we use them to estimate the distribution of
the peakm/z values within clusters along them/z axis. The level
of smoothness is adapted to each cluster independently.

Candidates of data set peaks are then detected as local maxima
on the resulting KDE curves. For the second step, we use two
established ways to automatically estimate the quality of the
images corresponding to peaks obtained in the first step as a
means to filter out noninformative peaks. Figure 1 summarizes
all parts of our peak picking scheme.

PeakDetection. First, we collect the peakmasses from every
spectrum in one list, mzall, which is then sorted in ascending
order. Centroided spectra are taken as input and peaks with
heights below a very low intensity threshold are discarded to
reduce the impact of background noise. Consequently,mzall will
contain most peak masses from the data set. Depending on data
set size and RAM availability mzall is processed either in
segments or in its entirety. Second, peak clusters in the m/z
dimension are identified using a one-dimensional directional
graph. If the distance between an m/z value, mi, and the next,
mi+1, is smaller than dc, an edge connecting the two is added to
the graph. The connected components in the resulting graph
represent the m/z clusters. We let dc increase with m/z to
account for the peak broadening described by the known
theoretical relationship between peak width (at half-maximum)
and m/z: dc = f(m/z) where f depends on instrument type.12

Suits et al.13 summarized the relationship between peak width
and instrument type. To reduce processing time, we discard
clusters containing fewer than a minimum number of peaks. The
threshold should be set sufficiently low to retain peaks
representing meaningful anatomical structures in the tissue
and is therefore dependent on the spatial resolution of the
experiment. Finally, to test whether a cluster contains one or
more peaks, a KDE is fitted to the distribution of m/z values
within the cluster. The kernel bandwidth is optimized for each
cluster individually using the normal optimal smoothingmethod
described by Bowman and Azzalini.14 Peaks are detected on the
KDE curve in an iterative fashion: first the local maxima are
detected and added together with their corresponding heights to
a cluster-specific peak list, pkde. The m/z corresponding to the
highest peak in this list, mzmax, is added to the global peak list,
mzref, and all surrounding peaks in pkde, that fall within dkde
including mzmax, are removed. This step is repeated until pkde is
empty. The parameter dkde is proportional to the expected peak
width of the instrument in the same manner as dc. The ion
images are then generated by aligning each centroided spectrum
to the resulting reference spectrum mzref, using a nearest
neighbor method with maximum drift threshold dependent on
the expected theoretical peak width (at half-maximum),
similarly to the threshold used when generating edges between
peaks in the clustering step.

Peak Selection. Although our method is more directed than
slicing the spectra across them/z range (since it only considers a
selection of the m/z regions), it still generates many peaks
representing noise in addition to those correlated with actual
tissue structures, making it essential to separate the former from
the latter. We use the spatial chaos8 (SC) and the principal
component analysis (PCA)-based variance explained15 (VE)
measures to automatically estimate the level of structure in the
ion images. The spatial chaos counts the number of connected
objects in an ion image.More structured ion images are expected
to have fewer disconnected (separate) objects than unstructured
ones. The VE measure is the percentage of total variance
explained by the first pair of singular vectors of each ion image.
This corresponds to howmuch of the variation in intensity along
one axis of the image is explained by the intensities along the
other. The first principal component inherently explains the
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most variance and, thus, if it explains very little, so will all others.
In structured images there is typically an intensity relationship
between the axes and therefore their VE is expected to be higher
than that of images with randomly distributed intensities, i.e.,
unstructured images, in which this relationship is unlikely to
exist.

■ RESULTS AND DISCUSSION

Two data sets were used to assess the performance of our novel
MSI data preprocessing algorithm based on clusterwise peak
detection. The first MALDI-MSI data set (referred to as the
”spiked data set”) was generated by spiking a rat liver section
with 5 mixtures of 4 ground-truth drugs (12 different
compounds in total) in various concentrations. These mixtures
were spotted on a rat liver tissue section at five different locations
in circular areas of the same size (Figure S1) and, after matrix

deposition, the whole tissue section was analyzed by MALDI-
MSI using 50 μm spatial resolution. The concentrations of the
drug compounds covered an intensity range of 3 orders of
magnitude between trametinib (1.70 × 104) and ipratropium
(1.49× 107). Furthermore, some of the ground-truth drugs such
as erlotinib and dasatinib, were spotted at multiple loca-
tions in different concentrations. The second data set, originally
from Römpp et al.,10 comes from a mouse bladder section and
was downloaded from ProteomeXchange (XD001283). This
MSI data set was generated by a LTQ Orbitrap instrument with
an ion source built in-house used to scan the mouse bladder
section with 10 μm spatial resolution. The authors of this study
presented the ion images of 11 compounds. These images were
generated with a narrow bin width of 0.01 Da. For this data set,
we use the mass of these compounds as ground truth, i.e., peaks
known to be present.

Figure 2. (a) The distribution ofm/z peak values within the cluster containing erlotinib (m/z 394.176). (b−e) The ion images that correspond to the
four peaks on the KDE curve. (f) The ion image obtained by binning the spectra between 394.15 and 394.20 m/z; this image demonstrates how four
signals can be mixed in the same ion image and even when a relatively narrow m/z window is used.
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Recall of Known Compounds. We applied Cardinal,
MALDIquant, slicing the spectra into 0.05 Da bins, and our
clusterwise peak detection method to the spiked data set to
compare their ability to recall compounds. The difference
between the known mass of each ground-truth drug and the
mass of the closest detected peak is used as the measure of
accuracy for Cardinal and our method. The ion images
corresponding to the monoisotopic peak of the ground-truth
drugs were manually evaluated to confirm that a compound had
been correctly found. First, we ran Cardinal and detected 4751
peaks; we did not filter out those with too low pixel frequency.
The corresponding ion images were generated by binning
around each peak. Eight of the 12 compounds were detected
with a mass deviation ranging between 4.23 and 198.85 ppm
(mean 83.983 ppm). Figure S2 shows the ion images of the drug
compounds generated by Cardinal. The ion images of erlotinib
(394.176 Da) and geftinib (447.160 Da) are contaminated with
signal from other compounds while sunitinib (399.220 Da),
imatinib (494.267 Da), and trametinib (616.086 Da) are
completely missed. Second, we usedMALDIquant to compute a
mean spectrum on which we detected 521 peaks. Only the peak
from the drug with the highest measured intensity, ipratropium,
was found with a mass deviation of 4.7145 ppm. The ion image
corresponding to the monoisotopic peak of iptratropium
indicates that this compound has diffused from the spotting
location and because of this covers a significantly larger region of

the tissue than the other compounds; this might contribute to its
presence in the mean spectrum which favors signals that have
high intensity and/or pixel frequency. Third, we sliced the
spectra with a bin width of 0.05 Da across the 150−1000 m/z
range resulting in 17 000 slices. To asses the sensitivity of the
slicing approach we manually examined the ion images
corresponding to the slices containing the m/z of the spiked-
in drug compounds (Figure S3). The signal from trametinib
(616.086) is missed and those from erlotinib (394.176 Da) and
imatinib (494.267 Da) are mixed with others, resulting in
contaminated ion images. Finally, when applying our method,
we identified 3148 m/z clusters in the data set peak list and on
the KDEs of these we detected 6088 peaks. We used a value of
0.2 times the theoretical peak width at half-maximum for dc, the
parameter controlling the maximum distance between con-
nected points that form the m/z clusters. Decreasing or
increasing dc between 0.1 and 0.5 results in a higher or lower
number of clusters, respectively, but ultimately has little impact
on the final peak list. All of the 12 spiked-in compounds are
detected with mass deviations ranging between 1.00 and 4.29
ppm (mean 2.598 ppm). Figure S4 shows the ion images
corresponding to the monoisotopic peaks of the drug
compounds generated by our method. The signal from
trametinib is weak but detected nevertheless; it had the lowest
measured intensity which can explain its absence in some of the
spectra. Generally, the quality of images generated with our

Figure 3. Distribution of peak m/z values within the cluster containing PC (32:1) (770.5109 m/z) and SM(18:0) (770.5609 m/z). The ion images
corresponding to the two highest peaks on the KDE curve are shown in the bottom left and bottom right.
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approach is higher than that of the images generated with
Cardinal or by slicing. The drug signals are clearly visible against
the background, and there is no contamination with signals from
other compounds, background, or matrix. Table S1 shows the
mass deviations of the detected peaks corresponding to the
spiked-in drugs obtained with Cardinal and our algorithm. The
corresponding ion images are shown in Figure S2 and Figure S4,
respectively.
An example of a cluster with densely located molecule signals

is that containing erlotinib (394.176 Da) (Figure 2a). There are
four distinctive signals within this relatively narrowm/z window
(0.04 Da) at 394.161, 394.166, 394.172, and 394.176 m/z with
interpeak distances of 13, 15, and 10 ppm. The peak at 394.161
m/z is tissue-derived while those at 394.166 m/z and 394.172
come from a fragment molecule of imatinib and the matrix,
respectively. Using our method we are able separate the four
peaks and generate a clean image for each of them. Figure 2b−e
shows the ion images related to these peaks. If the spectra are
binned between 394.150 and 394.200 m/z instead, the signals
from three of the four compounds appear in the same ion image,
i.e., they are incorrectly combined into one ion-image while that
from the peak at 394.172 m/z is invisible (Figure 2f) due to its
low intensity compared to the other three. We found that a value

between 0.25−0.5 times the theoretical peak width at half-
maximum is a good choice for dkde, the parameter controlling the
minimum distance between two adjacent peaks on the KDE
curve. Using a higher value results in fewer noise peaks, however,
we lose true peaks, e.g., those from imatinib and erlotinib.
Because of this, we recommend using a small dkde to delay
filtering out noise peaks until after alignment by using one of the
spatial distribution based peak selection methods. The kernel
bandwidth used when generating the cluster KDEs is optimized
for each cluster individually to account for the variability in peak
density. This parameter determines the level of smoothing when
estimating the distribution of the peak masses within the
clusters. Similarly to dkde, using a higher bandwidth results in less
noisy data, however, may lead to losing true peaks or mixing
signals from multiple compounds.
We also applied our cluster-based peak detection method to

the high spatial resolution mouse bladder data set. In this data
set we detected 1702 m/z clusters and 6482 peaks. We then
filtered out peaks which were present in fewer than 200 of the
33 000 spectra, resulting in a final list of 1024 data set peaks. The
original paper reported 11 ion images that were manually
generated by binning around peaks with knownm/z using a very
narrow bin width of 0.01 Da. All peaks corresponding to these

Figure 4. Number of ion images surviving varying thresholds on the VE and SC scores in the two data sets. Dashed lines mark the lowest scores
(excluding the low quality image form/z 616.127) of the ion images corresponding to the drugs in the spiked data set (top) and known compounds in
the mouse bladder data set (bottom).
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ion images are found by our peak detection method in an
unsupervised fashion, including the two densely located peaks at
770.5097 and 770.5698 m/z originating from the K+ adduct of
PC(32:1) [phosphatidylcholine] and an isotope of the K+

adduct of SM(36:1), [sphingosylphosphorylcholine], respec-
tively (Figure 3). Figure S5 shows the ion images related to the
11 detected peaks.
Peak Selection. As previously mentioned, we find more

than 6000 peaks in the rat liver data set with our cluster-based
peak detection, resulting in an equal number of ion images.
Manually evaluating each image is impractically slow, but by
computing the spatial chaos (SC) and the variance explained
(VE) for all ion images, including those of the compounds
known to be present, we can estimate how much we can reduce
the number of images without losing relevant information. For
each data set, we took the VE and SC scores of the ion images
corresponding to the known compounds and used their mean
scores minus two standard deviations as low-end thresholds.
The number of peaks whose images had scores above these
thresholds indicates how many of the detected peaks should be
kept and how many can be rejected as noise. In the spiked data
set this filtering resulted in a final list of 843 and 2170 peaks
when we filtered based on VE and SC scores, respectively. The
numbers of peaks obtained for the mouse bladder data set are
418 and 288 for VE and SC, respectively. The number of ion
images whose VE or SC score is above various thresholds is
shown in Figure 4. The number of peaks can potentially be
further reduced if off-tissue regions are available; biologically
irrelevant peaks, such as those coming from solvents or the

matrix, can be filtered out since their signal often is stronger in
these regions.15

Despite its simplicity, the VE score proved to be very effective
in ranking the quality of the ion images generated from both the
spiked and mouse bladder data sets. Specifically, VE favors
images which have intensities localized to small regions, e.g., all
of the spiked-in compounds in the spiked data set and heme b,
M+ at m/z = 616 (Figure S5c) in the mouse bladder data set. In
contrast, ion images with high levels of structure across the
entire scanned region tend to be rewarded with the highest SC
scores, making it suitable as a general measure of image quality
but less effective than the VE score in identifying ion images with
localized structured intensity patterns. The two scores appeared
to be partially complementary to each other; the Pearson
correlation between the VE and SC scores in the spiked and
mouse bladder data sets were 0.6158 and 0.4821, respectively.
Tables 1 and 2 show the VE and SC scores of the ion images
corresponding to the ground truth compounds in the spiked and
mouse bladder data sets, respectively.

Detection of Fragments and Isotopes. MALDI-MSI is
an important tool often used to investigate the distribution of
drugs and drug metabolites in tissue during pharmaceutical
research, and obtaining comprehensive lists of interacting
molecules is crucial during their development. To this end, we
further assessed the performance of our peak detection method
by searching for molecules colocalized with the drugs in the
spiked data set. Colocalization analysis can be performed by
computing the Pearson correlation coefficient between the ion
image of a peak of interest and all other images.5,16,17 For each

Table 1. VE and SC Scores of the Ion Images Corresponding to the Spiked-in Drug Compound in the Spiked Data Set and Their
Corresponding Rank among the 4771 Ion Images That Remain after Removing Those with Fewer Than 400 Nonzero Pixels

compound mass VE percentile rank (VE) SC percentile rank (SC)

ipratropium 332.223 0.5997 99.43 27 0.9997 99.94 3
vatalanib 347.107 0.7183 99.79 10 0.9952 79.29 988
erlotinib 394.177 0.7837 99.85 7 0.9775 61.04 1859
sunitinib 399.220 0.6845 99.73 13 0.9921 72.23 1325
pazopanib 438.171 0.8853 99.98 1 0.9837 64.60 1689
gefitinib 447.160 0.8362 99.92 4 0.9948 78.22 1039
sorafenib 465.094 0.8328 99.90 5 0.9951 79.04 1000
dasatinib 488.164 0.6400 99.62 18 0.9980 92.10 377
imatinib 494.267 0.7611 99.81 9 0.9766 60.64 1878
dabrafinib 520.109 0.5499 97.78 106 0.9964 83.29 797
lapatinib 581.143 0.6715 99.69 15 0.9775 60.97 1862
trametinib 616.086 0.1696 70.72 1397 0.9038 53.07 2239

Table 2. VE and SC Scores of the Ion Images Corresponding to the 11 Compounds Reported by Ro ̈mpp et al.10 and Their
Corresponding Rank among the 1053 Candidate Ion Images That Remain after Removing Those with Fewer Than 200 Nonzero
Pixels

compound mass VE percentile rank (VE) SC percentile rank (SC)

LPC (16:0), [M + K]+ 535.296 0.1770 92.76 74 0.9897 94.52 56
LPC (18:0), [M + K]+ 562.327 0.2732 98.14 19 0.9964 99.12 9
heme b, M+ 616.177 0.2385 96.67 34 0.9261 70.84 298
unknown 713.452 0.0911 75.93 246 0.9444 73.68 269
SM (16:0) 742.531 0.2140 95.50 46 0.9953 98.24 18
unknown 743.548 0.1921 94.42 57 0.9691 84.34 160
PC(32:1), [M + K] 770.507 0.2688 97.95 21 0.9814 88.85 114
SM(18:0), [M + K] 770.565 0.1439 87.87 124 0.9849 90.90 93
PC (32:0),[M + K]+ 772.525 0.3177 98.83 12 0.9975 99.80 2
PC (34:1), [M + K]+ 798.541 0.3383 99.02 10 0.9979 99.90 1
PE(38:1) 812.557 0.1623 91.39 88 0.9909 95.21 49
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drug compound, we computed the correlation coefficient
between the ion image corresponding to its monoisotopic
peak and every ion image from the full image sets generated
using the peaks found with our clusterwise peak detection
method and that generated by slicing, without performing peak
filtering based on spatial distribution. We manually assessed
images whose correlation coefficient was ≥0.5 to search for
candidate fragments and isotopes with spatial intensity
distributions matching those of the drugs. The m/z of the
matching images and existing knowledge about the theoretical
fragmentation pattern of the drugs were then used to identify the
fragments. This resulted in the identification of 46 isotopes and
fragments in the ion image set generated by our method and 32
in the set generated by slicing. We gain an additional 14
fragments and isotopes when using our peak detection approach
compared to when slicing the spectra with a bin width of 0.05
Da.
The correlation analysis result of dasatinib is shown in Figure

5. In total, 12 ion images have a correlation coefficient≥0.5. The
nine most correlated images (≥0.75) consist of three isotopes of
dasatinib with an m/z of 489.165, 490.159, and 491.162, and six

fragments with an m/z of 319.133, 387.078, 401.094, 402.097,
403.091, and 427.110. The fragments’ and isotopes’ ion images
show minimal signal mixing with other compounds as shown in
Figure 5. The remaining three consist of another fragment of
dasatinib with anm/z of 429.106 and a correlation coefficient of
0.5422 and two ion images related to sorafinib. The indentified
fragments and results of the correlation analysis are presented in
Supporting Information spreadsheet and Figures S6−S16. We
also assessed the most anticorrelated images to investigate
whether there was evidence of ion suppression from any of the
ground-truth drugs. However, no images uniquely anticorre-
lated to any one of the spiking spots were found. Instead, these
images were anticorrelated to all spiking spots simultaneously,
indicating that they are the result of washing or ion suppression
from the solvent used in the drug mixtures.

■ CONCLUSIONS

In this paper we have presented an efficient peak picking
approach combining a novel peak detection algorithm with
filtering based on spatial information to automatically identify
ion images corresponding to isotopic peaks of both endogenous

Figure 5.Top: The ion images of the 12most correlated peaks to dasatinib’s monoisotopic peak. Panels a−i and l are isotopes or fragments of dasatinib
while panels j and k are related to sorafenib. Bottom: Sorted Pearson correlation between all ion images and that of the monoisotopic peak of dasatinib.
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and drug compounds in high-resolution MSI data sets. It should
be noted that these data sets were generated using high-
resolution Orbitrap MSI, which is low-pass-filtered during
acquisition by default. Applying our method to noisier data such
as that generated by QTOF MSI would require additional
preprocessing such as baseline removal and smoothing. Our
KDE clusterwise peak detection algorithm enables us to find low
intensity and localized peaks with minimal contamination from
other peaks close inm/z, resulting in high ion image quality. We
believe that implementing our MSI preprocessing algorithm in
an interactive tool would be valuable to experimentalists who
aim to identify a priori unknown endogenous compounds, reveal
drug distributions in tissue, or find compounds that spatially
correlate to known ones. Such a tool could help users gain
deeper insight into the effect of drugs in tissue and considerably
reduce the number of ion images that have to be examined
manually.
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Marko-Varga, G. Proteomics 2014, 14, 862−871.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.9b02637
Anal. Chem. 2019, 91, 11888−11896

11896

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.analchem.9b02637
http://pubs.acs.org/doi/abs/10.1021/acs.analchem.9b02637
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.9b02637/suppl_file/ac9b02637_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.9b02637/suppl_file/ac9b02637_si_002.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.9b02637/suppl_file/ac9b02637_si_003.pdf
mailto:p.l.horvatovich@rug.nl
http://orcid.org/0000-0003-4373-5616
http://orcid.org/0000-0003-2218-1140
http://dx.doi.org/10.1021/acs.analchem.9b02637

