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ABSTRACT

The HIV positive selection mutation database is
a large-scale database available at http://www.
bioinformatics.ucla.edu/HIV/ that provides detailed
selection pressure maps of HIV protease and
reverse transcriptase, both of which are molecular
targets of antiretroviral therapy. This database
makes available for the first time a very large HIV
sequence dataset (sequences from �50000 clinical
AIDS samples, generously contributed by Specialty
Laboratories, Inc.), which makes possible high-
resolution selection pressure mapping. It provides
information about not only the selection pressure
on individual sites but also how selection pressure
at one site is affected by mutations on other sites. It
also includes datasets from other public databases,
namely the Stanford HIV database [S. Y. Rhee,
M. J. Gonzales, R. Kantor, B. J. Betts, J. Ravela
and R. W. Shafer (2003) Nucleic Acids Res., 31,
298–303]. Comparison between these datasets in the
database enables cross-validation with independent
datasets and also specific evaluation of the effect of
drug treatment.

INTRODUCTION

The HIV-1 virus is the causative agent of AIDS, a growing
worldwide epidemic and also a fascinating system for
studying fundamental scientific questions. For example, one
major clinical problem in the treatment of AIDS is HIV’s
ability to develop resistance to antiviral drugs rapidly, often
within weeks of introduction of a new drug (1–3). Foremost
among the factors responsible for this are the virus’ extremely
high mutation rate (4,5) and replication rate (3,6–8). For this
reason, there is great medical interest in understanding both
the specific causes of drug resistance, and predicting fast ver-
sus slow evolutionary pathways to multiple drug resistance.
At the same time, HIV provides an extraordinary wealth of
data about fundamental scientific questions such as the fitness
landscape for protein evolution (9,10).

Evolutionary biology has developed a powerful and gen-
eral approach for investigating such problems: metrics of
selection pressure that measure whether a particular genetic
change is selected for or against during evolution. Such met-
rics can reveal important selection forces either constraining
or driving evolution of a protein, directly from raw sequence
variation data (11,12). One very widely used metric of selec-
tion pressure on amino acid mutations is known as Ka/Ks or
dn/ds (13,14) and measures the ratio of observed amino
acid mutations over observed synonymous mutations, nor-
malized by the ratio expected under a neutral model. Thus
a Ka/Ks ¼ 1 value indicates neutral selection. Ordinarily
Ka/Ks is � 1, indicating negative selection against amino
acid mutations (far fewer observed than expected under a
neutral model). Ka/Ks > 1 is referred to as positive selection
(i.e. amino acid mutations increase reproductive fitness)
and is observed in rare cases where new evolutionary chal-
lenges create strong pressure for rapid evolution of a protein
(e.g. immune system genes like MHC that are involved in
recognizing pathogenic antigens). Ordinarily, a single Ka/Ks

value is calculated for a whole gene, but with very large
datasets it becomes possible to estimate distinct Ka/Ks values
for individual codon positions or amino acid mutations. This
yields a ‘selection pressure map’ of a gene, revealing its
detailed functional constraints and in rare cases positive
selection peaks that signal important new evolutionary pres-
sures such as drug treatment. We used Ka/Ks because it
provides a powerful tool for detecting positive selection.
Phylogenetic analysis of our HIV sequence dataset using
Phylip (15) shows a star-like topology (data are available
at www.bioinformatics.ucla.edu/HIV/topo.png, but will be
presented in detail elsewhere), in agreement with previous
studies (16,17).

We have assembled a large-scale database that provides
researchers detailed selection pressure maps of HIV proteins
involved in drug resistance. These data have many possible
applications, including prediction of mutations contributing
to drug resistance, distinguishing primary drug resistance
mutations from accessory mutations, rate measurements of
fast versus slow evolutionary pathways to multiple drug resis-
tance, and the evolutionary dynamics of different types of
mutations as the virus moves from untreated to drug-treated
conditions and back. This database makes available for the
first time a very large HIV sequence dataset (sequences
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from �50 000 clinical AIDS samples), which makes possi-
ble high-resolution selection pressure mapping, as well as
smaller datasets from other public databases. The methods
and most of the data described herein have been published
previously (12,18).

DATABASE CONTENT, INTERFACE AND
APPLICATIONS

Datasets

The primary dataset consists of sequences for HIV protease
and reverse transcriptase (RT) for �50 000 clinical AIDS
patient samples from the United States, collected during
1999–2003 (12), and mostly under drug treatment. These
data cover 1.4 kb each [300 000 chromatograms; six overlap-
ping reads per sample, including both strands; see (12) for
details] and were generously contributed by Specialty Labor-
atories Inc. Owing to HIV’s high mutation rate, on average
each sequence contains 32 mutations/kb [with respect to
the Los Alamos reference sequence (12)], for a total of more
than 2 million mutation observations in the dataset (12). Over
5000 distinct codon mutations were observed, each with an
average count of 364 samples (12). For comparison, this den-
sity of polymorphism information is equivalent to sequencing
�1 million people. This very large dataset, made available
publicly for the first time, has made detailed selection pres-
sure mapping possible. Of the samples, 99.3% are subtype
B; non-subtype-B samples were excluded from the analysis
(12). The dataset is fully HIPAA-compliant; all information
concerning the source patients was removed by Specialty.

The database currently includes two additional datasets,
also covering HIV protease and RT. These datasets were
obtained from the Stanford HIV database (19). The Stanford-
Treated dataset consists of 1797 subtype B samples with
known drug treatments. This dataset provides a useful com-
parison with the Specialty results, for validating whether a
specific mutation is reproducibly selected by drug treatment.
The Stanford-Untreated dataset consists of 2628 subtype
B samples not under drug treatment. By comparing results
from this dataset with Specialty and Stanford-Treated, users
can assess whether a specific mutation is more likely to be
associated with drug resistance or other types of phenotypic
fitness effects (e.g. interactions with the immune system).

The Specialty raw sequence data are available as a
gzip’ed FASTA file at http://www.bioinformatics.ucla.edu/
HIV/Specialty_sequences.fasta.gz.

Amino acid selection pressure mapping

The first aspect of the database is mapping of Ka/Ks selection
pressure at each codon position in HIV protease and the first
381 codon positions of RT (Figure 1). Further positions in RT
were not sequenced in this dataset. Codon-specific selection
pressure (12) was calculated using the following formula:

Ka

Ks

¼ Na/Ns

ðna‚t ft þ na‚v fvÞ/ðns‚t ft þ ns‚v f Þ
‚

where Na and Ns are the number of amino acid mutations
and synonymous mutations observed at the codon, na,t is
the number of possible transition mutations in the codon
that would change the resulting amino acid, ns,t is the number
of possible transition mutations that are synonymous, na,v and
ns,v are the equivalent numbers for transversions, and ft and fv
are the transition and transversion frequencies, respectively.
We calculated an LOD confidence score for a codon to be
under positive selection pressure according to the following
formula:

LOD ¼ � log10p

�
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where N is the total number of mutations observed in the
codon and q is calculated as follows:

q ¼ na‚t ft þ na‚v fv
3 ft þ 6 fv

:

This analysis includes Ka/Ks values for 2946 individual amino
acid mutations (12) at 399 codon positions with LOD scores
>2. These data have many applications. For example, strong
positive selection (Ka/Ks > 1) indicates drug-resistance muta-
tions or important fitness effects. Experimental validation
data in HIV protease (where causes of drug resistance are
well characterized) showed that 19 of 23 known drug resis-
tance codons were correctly predicted by our database,
which also accurately predicts the mutant enzyme’s activity
phenotype (12,20). Of the 47 positively selected sites found
in the Specialty dataset, 28 were also found in the Stanford-
Untreated dataset, possibly indicating that those sites can
harbor fitness mutations (18). The database has a simple
graphical interface (Figure 1): users can peruse the codon-
position selection pressure map directly, click on a position,
and inspect detailed tabular results grouped either by codon

Figure 1. The interface to the positive selection mutation database is a clickable imagemap. Clicking on any codon position performs a query and returns
the results in an easy-to-read format. (Specialty dataset is shown.)
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position, individual amino acid mutations or individual nucle-
otide mutations (e.g. to see whether two different nucleotide
mutations producing the same amino acid replacement show
the same Ka/Ks value).

Selection pressure interaction mapping

The massive size of the Specialty dataset makes it possible to
measure how selection pressure for one amino acid mutation
Y is affected by amino acid mutations at other sites X. Specif-
ically, the database computes Ka/Ks for mutation Y condi-
tioned on the presence of amino acid mutations at site X
versus the absence of any mutation at site X. This ‘conditional
Ka/Ks’ (18) calculation is performed as follows:�
Ka

Ks

�
YjXa

¼ NYaXa
/NYsXa

ðna‚t ft þ na‚v fvÞ/ðns‚t ft þ ns‚v fvÞ
‚

where NYaXa
and NYsXa

are the numbers of amino acid
mutations and synonymous mutations at site Y observed in
the presence of amino acid mutations at site X and all other

variables retain their previous definitions. Dividing this result
by the one obtained in the absence of any mutation at site X
to arrive at the ‘conditional selection ratio’ (18) results in the
following expression:

�
Ka

Ks

�
YkX

¼
ðKa/KsÞYjXa

ðKa/KsÞYjXo

¼ NYaXa
/NYsXa

NYaXo
/NYsXo

‚

where NYaXo
and NYsXo

are the numbers of samples containing
either an amino acid mutation or synonymous mutation at Y
and no mutation at X. The LOD score by which we evaluated
the significance of apparent positive conditional selection was
calculated using the following:

LOD ¼ � log10 p

�
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�
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Figure 2. Selection pressure interaction map. The degree to which a mutation at one site X (horizontal axis) affects the selection pressure at another site Y
(vertical axis) is shown as the condtional selection ratio for all amino acid mutations at site Y conditioned on any amino acid mutation at site X. The color coding
scale indicates increasing values of positive conditional selection ratio. Interactions showing conditional selection ratios >1 (positive conditional selection) with
LOD scores >3 are shown, with blue indicating stronger interactions and yellow indicating weaker ones. Clicking any particular square provides details on the
numbers used in the calculation.
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where N ¼ NYaXa
þ NYsXa

and q as defined above. For experi-
mental validation, this database correctly predicted 80 of 92
known mutation positive interaction pairs identified in HIV
protease by independent experimental studies (P-value ¼
10�70) (11,18). The database again provides a graphical
interface (Figure 2) as a 2D heatmap showing all pairwise
interactions, which users can click at any position to inspect
detailed tabular results.

These data can yield useful insights into HIV drug resis-
tance. For example, the data show a significant interaction
between protease site 90 (a known drug resistance mutation
site) and site 10 (Figure 3). Amino acid mutations at 90
displayed strong, unconditional positive selection, indicating
that they directly cause drug resistance. In contrast, mutations
at 10 are negatively selected in the absence of the 90 muta-
tion, but become positively selected in the presence of the
90 mutation (Figure 3). These results closely match previous
experimental studies showing that mutations at 90 cause drug
resistance, while mutations at 10 have an accessory effect
of compensating for the destabilizing effect of mutations at
90 (21). Thus, our database can help users by providing
information that can distinguish primary drug-resistance
mutations from accessory mutations (18). Users can navigate
through links on every result page, to see mutations that
strongly select for a given mutation, mutations that are
strongly selected for by this mutation, or links to the Stanford
(22) and Los Alamos HIV databases (23) giving further
information about mutations at this site.

Comparison between the independent datasets in the data-
base can shed additional light on such questions. For exam-
ple, users can assess whether positively selected mutations
in the Specialty dataset are really due to drug resistance, by
comparing with the Stanford-Treated and Stanford-Untreated
datasets. As shown in Figure 3b and c, the Stanford-Treated
data strongly corroborate the Specialty result, while the
Stanford-Untreated data show that 90 is indeed involved in
drug resistance; it becomes strongly negatively selected in
the absence of drug treatment. These data can help users
distinguish genuine drug-treatment mutations from those
that affect phenotype in other ways, e.g. interactions with
the host immune system. Detailed analysis of these datasets
demonstrates that the Ka/Ks results are highly reproducible:
independent datasets from different sets of patients show
strong quantitative agreement (18).

FUTURE ADDITIONS

We are currently working to add new data and features to
the database. We will add a number of new datasets to the
database. First, we will add data for additional HIV genes,
such as the env gene, which is important for HIV immune
evasion (24); although these datasets have smaller numbers
of sequences, our analysis has shown that useful Ka/Ks

mapping information can be obtained from such counts.
Second, we will analyze mutation data from patients under
specific drug-treatment to compare selection pressures caused
by different drugs. Third, we will add datasets for other HIV
subtypes (e.g. subtype C) to reveal, where selection pressure
patterns appear to be consistent with those seen in subtype
B (allowing diagnostic criteria from subtype B to be applied
to other subtypes) versus where there are important differ-
ences. Fourth, we will add a new very large dataset for the
Hepatitis C core gene, consisting of approximately 60 000
samples, generously donated by Specialty Laboratories.
Lastly, we will add new analyses and graphical interfaces
to the database, including phylogenetic analysis and clickable
pathway diagrams.
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