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Abstract

Background: Host selection is an important determinant of vectorial capacity because malaria transmission
increases when mosquitoes feed more on humans than non-humans. Host selection also affects the outcome of
long-lasting insecticidal nets (LLIN). Despite the recent nationwide implementation of LLIN-based malaria control
program in Papua New Guinea (PNG), little is known about the host selection of the local Anopheles vectors. This
study investigated the host selection of Anopheles vectors in PNG.

Methods: Blood-engorged mosquitoes were sampled using the barrier screen method and blood meals analyzed
for vertebrate host source with PCR-amplification of the mitochondrial cytochrome b gene. Abundance of common
hosts was estimated in surveys. The test of homogeneity of proportions and the Manly resource selection ratio
were used to determine if hosts were selected in proportion to their abundance.

Results: Two thousand four hundred and forty blood fed Anopheles females of seven species were sampled from
five villages in Madang, PNG. Of 2,142 samples tested, 2,061 (96.2%) yielded a definitive host source; all were
human, pig, or dog. Hosts were not selected in proportion to their abundance, but rather were under-selected or
over-selected by the mosquitoes. Four species, Anopheles farauti (sensu stricto) (s.s.), Anopheles punctulatus (s.s.),
Anopheles farauti no. 4 and Anopheles longirostris, over-selected humans in villages with low LLIN usage, but over-
selected pigs in villages with high LLIN usage. Anopheles koliensis consistently over-selected humans despite high
LLIN usage, and Anopheles bancroftii over-selected pigs.

Conclusions: The plasticity of host selection of an Anopheles species depends on its opportunistic, anthropophilic
or zoophilic behavior, and on the extent of host availability and LLIN usage where the mosquitoes forage for hosts.
The high anthropophily of An. koliensis increases the likelihood of contacting the LLIN inside houses. This allows its
population size to be reduced to levels insufficient to support transmission. In contrast, by feeding on alternative
hosts the likelihood of the opportunistic species to contact LLIN is lower, making them difficult to control. By
maintaining high population size, the proportion that feed on humans outdoors can sustain residual transmission
despite high LLIN usage in the village.
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Background
Host selection is an outcome of the combined effects of a
mosquito’s intrinsic (genetic) host preference for a par-
ticular host species modulated by extrinsic factors [1, 2].
That is, even though a mosquito may intrinsically prefer a
host species due to genetic factors, environmental factors
such as availability or accessibility of the preferred host
may cause the mosquito to resort to an alternative one.
Therefore, host selection is an important determinant of
vectorial capacity, because it influences the extent to
which mosquitoes in populations feed predominantly on
humans or non-humans, [3, 4]. Thus, an Anopheles popu-
lation whose members intrinsically prefer humans are po-
tential vectors of malaria. However, the vectorial capacity
of the mosquito population depends on whether extrinsic
conditions allow the mosquitoes to feed on humans.
Knowledge of host selection is not only important for

evaluating the vectorial capacity of a vector population,
but also for guiding vector-based malaria control pro-
grams, such as the distribution of long-lasting insecticidal
nets (LLIN). The implementation of LLIN is appropriate if
we know that local vectors are sufficiently anthropophilic
that LLIN will have the intended effect [5]. The inflexibil-
ity of anthropophilic species to utilize alternative hosts
causes them to pursue humans inside houses and thus in-
creases their likelihood of becoming exposed to the insec-
ticides in the LLIN fabric. The increased likelihood of
contacting LLIN enables reduction of their population size
to levels insufficient to support transmission. In contrast,
if the mosquitoes are opportunistic and exhibit plasticity
in host selection, then LLIN may have little effect because
these mosquitoes can maintain high population size by
feeding on non-human hosts outdoors. By maintaining
high population size, the proportion of opportunistic vec-
tors that feed on human individuals before they go under
their bed nets can sufficiently sustain residual transmis-
sion in the community. Treating the alternative hosts with
endectocides lethal to blood-feeding mosquitoes may be
more appropriate for controlling such opportunistic vec-
tors. By implementing both methods, the anthropophilic
and opportunistic vectors can be successfully controlled.
Human malaria is endemic to Papua New Guinea (PNG)

[6]. The main vectors are members of the Anopheles punc-
tulatus (sensu lato) (s.l.) species complex [7, 8], primarily
Anopheles punctulatus (sensu stricto) (s.s.), Anopheles
koliensis, Anopheles farauti (s.s.) (formerly Anopheles far-
auti no. 1), Anopheles farauti no. 4, and Anopheles hine-
sorum (formerly Anopheles farauti no. 2) [9–14]. Anopheles
bancroftii and Anopheles longirostris are also vectors of
malaria in PNG [12]. Nationwide, an LLIN-based vector
control program has been implemented in PNG over
the last decade [15–17] to help alleviate the burden of
malaria. However, little is known about the host selec-
tion behavior of these vectors and their relationship

with LLIN usage. This study addresses this knowledge
gap and provides guidance on existing as well as new
vector control strategies in PNG.

Methods
Study sites
The study presented here was conducted in five rural
villages in Madang Province, PNG (Fig. 1). Four of the
villages are located on the north coast of Madang Prov-
ince. Two of these, Mirap (4°45′67″S, 145°39′59.2″E)
and Matukar (4°53′48.9″S, 145°47′04.3″E), sit on a nar-
row coastal plain, which extends 2–4 km inland before
terminating at the foothills of the interior highlands.
They are separated by a distance of 22 km, are at an ele-
vation just above sea level, and share similar landscape
features of coastal location, secondary forest with brack-
ish swamp, village gardens, and coconut plantations.
The two others, Wasab (4°53′28.2″S, 145°45′28.9″E)
and Dimer (4°46′33.0″S, 145°37′42.4″E) are located on
inland hilltops about 300 m above sea level. Wasab is
situated 3 km West of Matukar whilst Dimer is 5.5 km
West of Mirap. These inland villages have similar land-
scape features, consisting of steep-sided, forested hills
with streams draining into rivers in nearby valleys. The
fifth village, Kokofine (5°41′54.0″S, 145°28′54.0″E), is
located on the floodplain of the Ramu River, about 39
km from the nearest coastline. The vegetation consists
mainly of lowland swamp and upland secondary forest.

Demographic survey
A simple household demographic survey was conducted
once in each village right at the beginning of the study
in 2012. Heads of households were interviewed to gather
demographic data that included number of people per
household, sex, age, number of LLIN owned, number of
people that slept under an LLIN the night before the
survey, and number and species of domestic animals
owned by the household.

Mosquito sampling
Blood-engorged mosquitoes were sampled using the bar-
rier screen (BS) method [18] in the year 2012, 2013 and
2015 with multiple visits to each village. Each visit con-
sisted of 2–6 consecutive nights (see Additional file 1:
Table S1 for the exact dates of mosquito sampling). Each
BS consisted of a 20 m long, polyethylene shade cloth
(70% shading grade) fastened to wooden poles and
erected vertically to a height of 2 m (Fig. 2a). Each BS
was positioned at locations between the village perimeter
and the adjacent bush, with one side facing the bush and
the other side facing the village (Fig. 2a). The number of
BS per village per night varied from 2 to 10. To reduce
sampling biases associated with same sampling location,
screens were moved to new locations in each village on

Keven et al. Parasites & Vectors  (2017) 10:95 Page 2 of 11



consecutive nights. Two trained mosquito collectors
were assigned to each BS. One collected from 6:00 pm
to midnight before being replaced by the other who con-
tinued from midnight to 6:00 am. Collectors sat c.20 m
away, often in a house with more than one occupants, and
visited the BS every 20 min to collect the resting mosqui-
toes. Mosquitoes were collected using a mouth aspirator
with the aid of a hand-held flashlight (Fig. 2b). Captured
mosquitoes were placed into a holding container labeled
according to the hour of collection. With the aid of a light
microscope, non-anophelines and males were separated
from female anophelines and blood-engorged female
anophelines were identified and separated from the unfed

ones. Mosquitoes were kept individually in 1.5 ml micro-
centrifuge tubes and stored dry on silica gel desiccant at
room temperature until processing.

Mosquito species identification
Female anophelines were identified to species or species
groupings based on morphological keys [19, 20]. How-
ever, morphological keys are insufficient to allow
adequate identification of the species within the An.
punctulatus (s.l.) complex [8]. Therefore, each mosquito
identified morphologically as An. punctulatus, An.
koliensis, or An. farauti was subjected to polymerase
chain reaction (PCR) analyses [8, 21] to identify its true
species. DNA template for these reactions was obtained
from abdomens of full or partially-fed mosquitoes,
extracted using DNeasy Blood & Tissue Kit (Qiagen,
Valencia, CA, USA). An. longirostris and An. bancroftii
are each known to consist of several genotypes [22, 23]
but whether these genotypes are separate species is still
a matter of debate. In this study, their identification was
limited to the traditional morphological species.

Identification of vertebrate host species in mosquito
blood meals
To determine the vertebrate species that were fed upon
by the mosquitoes, the genomic DNA of each mosquito

Fig. 1 Map of Papua New Guinea showing the five study villages Mirap (red), Dimer (orange), Matukar (dark green), Wasab (blue) and Kokofine
(purple) located in the Madang Province

Fig. 2 A barrier screen situated at the edge of a hamlet (a). Mosquitoes
were intercepted on their way into or out of the village and were
captured by a trained mosquito collector as they temporarily rested on
the surface of the barrier screen (b)
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extracted as noted above was analyzed. A multiplex PCR
assay was conducted using a universal reverse primer
(UNREV1025 5′-GGT TGT CCT CCA ATT CAT GTT
A-3′) and three forward primers targeting a specific re-
gion of the mitochondrial cytochrome b (cytb) gene of
three likely hosts: human (Homo sapiens), pig (Sus
scrofa) and dog (Canis lupus familiaris), (human741F
5′-GGC TTA CTT CTC TTC ATT CTC TCC T-3′,
pig573F 5′-CCT CGC AGC CGT ACA TCT C-3′, and
dog368F 5′-GGA ATT GTA CTA TTA TTC GCA ACC
AT-3′) [24]. Approximately 20 ng of DNA template of
each mosquito was added to a PCR tube (25 μl reaction
volume) containing 10 mM Tris at pH 8.3, 50 mM KCl,
1.5 mM MgCl2, 0.01% gelatin, 1.0 mM dNTP, 0.5 units
of Taq polymerase, and 50 pmol of each primer pair. The
PCR cycling conditions consisted of one cycle of 95 °C for
5 min (initial denaturation) followed by 35 cycles of 95 °C
for 1 min (denaturation), 58 °C for 1 min (annealing), and
72 °C for 1 min (extension), and one cycle of 72 °C for 7
min (final extension). Ten μl of each PCR product was
run on an ethidium bromide-stained 2% agarose gel, and
visualized using an ultraviolet transilluminator. The host
blood source was identified, based on the size of the DNA
bands, as human (334 bp), pig (453 bp), or dog (680 bp).
Samples that failed to amplify in the multiplex PCR

were subjected to a standard PCR reaction using a gen-
eric mammalian primer pair (forward: 5′-CCA TCC
AAC ATC TCA GCA TGA TGA AA-3′ and reverse: 5′-
GCC CCT CAG AAT GAT ATT TGT CCT CA-3′)
which targeted a 395 bp region of the cytb gene [25].
The primer pair and approximately 20 ng of a mosqui-
to’s blood meal DNA was added to a 50 μl reaction mix-
ture containing the same reagent concentrations and
cycling parameters described for the multiplex PCR
above. Samples that failed to amplify with the mammal
primer pair were finally tested with a generic avian pri-
mer pair (forward: 5′-GAC TGT GAC AAA ATC CCN
TTC CA-3′ and reverse: 5′-GGT CTT CAT CTY HGG
YTT ACA AGA C-3′) which targeted a 508 bp region of
avian cytb gene [25] using the same PCR mixture and
cycling condition as the mammalian primer pair. Ampli-
cons of the PCR positive samples were purified using
QIAquick PCR Purification Kit (Qiagen) and sequenced
by direct sequencing. The DNA sequence of each sample
was subjected to BLAST search (http://www.ncbi.nlm.-
nih.gov/blast/Blast.cgi) against vertebrate hosts mitochon-
drial cytb DNA sequences in the GenBank database.
Subject sequence that had ≥ 99% sequence similarity to
the query sequence was considered the likely host from
which the mosquito fed.

Statistical analyses
Whether the mosquitoes in each of the 5 study villages se-
lected blood hosts in proportion to their relative

abundance in the village was determined using two differ-
ent approaches. Because most hosts utilized by mosqui-
toes were humans, pigs and dogs (see Results), these
analyses were confined to those three hosts. First, a χ2 test
for homogeneity of proportions was applied on a 3 × 2
frequency table where the rows represent the 3 host spe-
cies and the 2 columns represent the observed and ex-
pected frequencies of blood meals on those hosts.
Mosquitoes were considered to have selected hosts dis-
proportionally if the test was statistically significant. Sec-
ond, the Manly resource selection ratio design II [26] was
calculated. It is estimated as the proportion of host i of all
hosts selected, divided by the proportion of available host
i of all hosts available to be selected in the community
where the sampling was conducted. The ratio equals 1
when host selection is proportional to host availability,
greater than 1 when a host is selected greater than its pro-
portionate availability, and less than 1 when a host is se-
lected at less than its proportionate availability. The
selection ratio and its 95% confidence interval were calcu-
lated using adehabitat package in R statistical software
(version 3.3.1, R Foundation for Statistical Computing,
Vienna, Austria).
The level of LLIN usage for each village was expressed

as the proportion of people who reported to have slept
under an LLIN the night before the interview. To deter-
mine if LLIN affect the success of feeding on human host,
logistic regression was used to test whether the probability
of feeding on humans versus non-human hosts by a mos-
quito species was lower in a village with high LLIN usage
and higher in a village with lower LLIN usage.

Results
Anopheles species distribution
A total of 2,440 blood-engorged Anopheles mosquitoes, of
seven different species, were sampled (Table 1). Consistent
with previous findings [14, 27], the distribution of these
species was not homogeneous across the five study villages.
More than one species was found in 4 of the 5 villages but
they varied greatly in their relative abundance (Table 1).
Anopheles farauti (s.s.) was predominant in the coastal vil-
lages whereas An. punctulatus (s.s.) was predominant in the
inland villages. Anopheles farauti no. 4 was sampled only in
Kokofine but at high abundance. Anopheles koliensis was
sampled in low numbers at multiple sites. Anopheles
bancroftii was sampled mostly in Mirap but was uncom-
mon, and absent at most sites. Anopheles longirostris was
sampled in low numbers in Mirap but was one of the two
dominant species in Wasab. Anopheles hinesorum was
found only in Matukar and Mirap in very low numbers.

Host selection
Two thousand four hundred and twenty-two of the
2,440 anophelines (99.0%) yielded DNA for analysis. Of
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these, 2,142 (88.4%) were tested for source of host blood
meal, and 2,061 (96.2%) yielded an interpretable gel
phenotype or satisfactory BLAST search result for host
source. Thus, 84.5% of the original, field-caught, blood-
fed anophelines were successfully tested for host source.
Eighty-six (4.2%) had mixed blood meals (44, human-
pig; 30, human-dog; and 12, dog-pig). The remainder fed
on a single host species. From our demographic surveys,
there were six visually obvious vertebrate species
(humans, pigs, dogs, cats, chickens and ducks) present
in all of the villages (Fig. 3a). However, only humans,
pigs, and dogs were found in the blood meals (Fig. 3c).
The generic primers did not detect other mammal or

avian species other than humans, dogs and pigs in the
blood meals. The relative proportions of each of the three
hosts by count is shown in Fig. 3b. Tests of the propor-
tions of hosts available compared with the proportion ac-
tually utilized as reflected by blood meal analyses showed
that for five of the six combinations of species and villages
analyzed [An. punctulatus (s.s.) in Dimer; An. punctulatus
(s.s.) in Wasab; An. longirostris in Wasab; An. farauti (s.s.)
in Mirap; and An. farauti no. 4 in Kokofine], the relative
proportion of the three hosts in the blood meals was not
proportional to their relative proportion in the village
(Table 2). Only An. farauti (s.s.) in Matukar showed a pro-
portional association between host selection and host

Table 1 Number of sampled blood-engorged mosquitoes sorted according to their species and the village from which they were
collected. Number in parenthesis represents the percent proportion of the corresponding species relative to the other species col-
lected from a village

Mosquito species Matukar
n (%)

Mirap
n (%)

Wasab
n (%)

Dimer
n (%)

Kokofine
n (%)

An. bancroftii 0 (0) 66 (4.2) 3 (1.1) 1 (2.2) 0 (0)

An. farauti (s.s.) 55 (85.9) 1,443 (91.9) 20 (7.2) 2 (4.3) 0 (0)

An. hinesorum 3 (4.7) 5 (0.3) 0 (0) 0 (0) 0 (0)

An. farauti no. 4 0 (0) 0 (0) 0 (0) 0 (0) 483 (100)

An. koliensis 0 (0) 22 (1.4) 31 (11.2) 4 (8.7) 0 (0)

An. longirostris 2 (3.1) 19 (1.2) 99 (35.7) 4 (8.7) 0 (0)

An. punctulatus (s.s.) 4 (6.3) 15 (1) 124 (44.8) 35 (76.1) 0 (0)

Total 64 (100) 1,570 (100) 277 (100) 46 (100) 483 (100)

Fig. 3 Bar charts showing the relative abundance of six vertebrate host species that were surveyed in Matukar (n = 950), Mirap (n = 1,121), Wasab
(n = 523), Dimer (n = 992) and Kokofine (n = 488) village (a), the relative proportions of the three primary hosts in each village (Dimer: n = 874;
Kokofine: n = 325; Matukar: n = 575; Mirap: n = 954; and Wasab: n = 330) (b) and the proportion of the three primary hosts in the mosquito
blood meals for each village (Dimer: n = 42; Kokofine: n = 443; Matukar: n = 51; Mirap: n = 1,232; and Wasab: n = 220) (c)
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availability with this test, but the sample size of blood fed
mosquitoes was modest (n = 43). For An. hinesorum, six
fed on human, one fed on pig, and one on dog.
The Manly resource selection ratio revealed variation

in host selection among different species within the
same village and among different populations of the
same species amongst villages. For Mirap, the most
dominant species, An. farauti (s.s.), over-selected pigs
compared to dogs and humans (Fig. 4b). The same was
true for three of the other species in Mirap, i.e. An.
bancroftii, An. longirostris and An. punctulatus (s.s.)
(Fig. 4a, d and e), while An. koliensis over-selected humans
(Fig. 4c) although sample size was modest (n = 14). For
Wasab, An. koliensis, An. longirostris and An. punctulatus
(s.s.) (Fig. 4g, h and i) over-selected humans, whereas An.
farauti (s.s.) (Fig. 4f) selected hosts in proportion to their
relative abundance. In Matukar, An. farauti (s.s.) under-
selected pigs but selected humans and dogs in proportion
to their relative abundance (Fig. 4j); and at Dimer, An.
punctulatus (s.s.) over-selected dogs (Fig. 4k). In Kokofine,
where sample size was generous (n = 441), An. farauti no.
4 over-selected pigs (Fig. 4l).

Effect of LLIN usage on mosquito host selection
LLIN usage varied among the study villages. Kokofine
had the highest usage (91% of people used LLIN)

followed by Mirap (82%), whilst usage was lower in
Wasab (53.6%), Matukar (53%) and Dimer (43%) (Fig. 5).
Logistic regression analysis showed that the odds of
feeding on humans by An. farauti (s.s.) was statistically
lower in Mirap compared to Matukar (odds ratio, OR =
0.25; 95% confidence interval (CI): 0.12–0.47; P < 0.001)
or Wasab (OR = 3.04; 95% CI: 1.16–9.5; P = 0.03).
Similarly, the odds of feeding on humans for this species
was higher in Wasab compared to Mirap (OR = 3.04;
95% CI = 1.16–9.5; P = 0.03). The odds of feeding on
humans by An. longirostris was higher in Wasab com-
pared to Mirap (OR = 7.4; 95% CI: 2.26–27.1; P =
0.001). A weak statistical difference in the odds of feed-
ing on humans by An. punctulatus (s.s.) for villages with
high or low LLIN usage was observed. No statistical dif-
ference was observed for An. koliensis in Wasab versus
Mirap. Anopheles bancroftii and An. farauti no. 4 were
not tested as they were found in only a single village.

Discussion
This study found that humans, pigs, and dogs were the
primary hosts of malaria vectors in PNG. The narrow
host range observed here is consistent with previous
studies [10, 28–31], although some previous studies also
detected a small number of mosquitoes that had fed on
cats, chickens, opossums and bats. This difference may

Table 2 Results for homogeneity of proportion (3 × 2 contingency table) test comparing the relative number of the three primary
hosts in the village with their number in the mosquito blood meals. Mosquito feeding is considered disproportional to the host
availability when the χ2 test appeared statistically significant and proportional when insignificant

Village Anopheles species Host species No. of hosts
in the village

No. of hosts
in the blood
meals

χ2 test statistic P-value Feeding outcome

Matukar An. farauti (s.s.) humans 432 33 χ2 = 2.62 0.25 proportional

pigs 67 2

dogs 76 8

Mirap An. farauti (s.s.) humans 732 541 χ2 = 281.9 0.0005 disproportional

pigs 110 522

dogs 112 94

Wasab An. punctulatus (s.s.) humans 211 76 χ2 = 7.2 0.02 disproportional

pigs 71 10

dogs 48 17

Wasab An. longirostris humans 211 57 χ2 = 8.7 0.015 disproportional

pigs 71 14

dogs 48 2

Dimer An. punctulatus (s.s.) humans 622 20 χ2 = 11.26 0.009 disproportional

pigs 158 2

dogs 94 9

Kokofine An. farauti no. 4 humans 167 221 χ2 = 70.7 0.0005 disproportional

pigs 70 189

dogs 88 33

Note: degrees of freedom is irrelevant to report along with the Pearson’s χ2 result because the P-value was computed by Monte Carlo simulation
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be due to the use of different mosquito sampling
methods but those hosts were uncommon in all cases,
compared to the three primary ones.
A number of studies [10, 28–31] have described the

host preference of PNG vectors based on the patterns of
host selection using human blood index (HBI), which is
the proportion of mosquito blood meals obtained from
human hosts [4, 32]. A mosquito species that had
consistently high HBI was classified as anthropophilic
(“human loving”), whilst those with consistently low HBI
as zoophilic (“animal loving”); a variable HBI was co-
nsidered opportunistic (i.e. selects hosts indiscrimin-
ately) in its host preference. However, the HBI does not
take into account the relative abundance of the different
host species within a mosquito’s foraging range. Various

Fig. 4 Graphs showing the Manly host selection ratio with 95% confidence interval bar for humans, pigs and dogs by five Anopheles species from
Mirap (a-e) four species from Wasab (f-i) and one species each from Matukar (j), Dimer (k) and Kokofine (l). Mosquito species are abbreviated: AB,
An. bancroftii; AF1, An. farauti (s.s.); AK, An. koliensis; AL, An. longirostris; AP, An. punctulatus (s.s.); AF4, An. farauti no. 4. The broken horizontal line
marks the Manly ratio value 1. The asterisks indicate Manly ratio that are significantly greater than 1 (over-selection of the host species) or less
than 1 (under-selection)

Fig. 5 Bar graph showing the proportion of human population of
each village that did and did not sleep under a bed net the night
before the survey
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measures including the forage ratio [33], the feeding
index [34], and the feeding preference index [35]
expressed as the Manly resource selection ratio [36, 37],
have been used to evaluate the mosquito host selection.
These measures are inter-related and each requires some
information of the range of available hosts, their relative
abundance and related attributes. The Manly resource
selection ratio was used in this study because it provides
a statistical test for departure from randomness (i.e.
equal to unity) with the 95% confidence interval.
A range of factors and processes influence mosquito

host selection. These include host availability, host dens-
ity, physical access to hosts, differential host attractive-
ness, behavior of hosts in response to mosquitoes’
attempts to feed, and a mosquito’s intrinsic host prefer-
ence [1, 2]. The first part of this study emphasized rela-
tive abundance of hosts as a determining factor, and
found that mosquito host selection was not merely a
function of relative host abundance. Rather, strong
biases in host selection towards pigs in Mirap and Koko-
fine and towards humans in Wasab, shown by both the
test of proportions and the Manley host selection ratio,
indicated that other factors impinged on it. One likely
factor causing the observed host selection bias was
unavailability of many human hosts due to protective ef-
fects of LLIN. The Anopheles mosquitoes of the different
species within the same village would have been exposed
to the same level of LLIN usage as well as other extrinsic
factors. Thus, any differences among the species in their
host selection can be attributed to variation in the bio-
logical factors, particularly their innate host preference.
Therefore, the observed variation in the host selection
among the five mosquito species within Mirap and four
species within Wasab villages, where mosquito diversity
was sufficient to compare interspecies host selection,
supports the hypothesis that the vector species differ in
their innate host preference. On the other hand, vari-
ation in the host selection of the same species among
different villages can be attributed to the variation in
LLIN usage and host availability among these villages.
The host preference of each Anopheles species was de-

lineated by comparing their host selection in different
villages with the level of LLIN usage. Three species, An.
farauti (s.s.), An. punctulatus (s.s.) and An. longirostris,
can be considered opportunistic as they over-selected pigs
in Mirap, where LLIN usage was high, but over-selected
humans or fed on the three hosts in proportion to their
relative abundance in Wasab and Matukar, where the
LLIN usage was low. That is, the opportunistic nature of
their host preference allows them to respond plastically to
varying LLIN usage. This was supported by logistic regres-
sion test which showed that the low anthropophagy exhib-
ited by these species was associated with higher LLIN
usage (although An. punctulatus (s.s.) was statistically

weak). This assertion is consistent with previous studies,
which found large variations in the HBI of An. punctula-
tus (s.s.), An. farauti (s.s.) and An. longirostris of various
populations [28, 29]. Although An. farauti no. 4 was found
in only one village and its host selection is reported here
for the first time, marked over-selection of pigs indicates
that it is also an opportunistic species, responding plastic-
ally to the high LLIN usage in Kokofine. In contrast to the
opportunistic species, An. koliensis exhibited an anthropo-
philic host preference. It consistently over-selected
humans in both Wasab and Mirap and logistic regression
test showed no association between its high anthropoph-
agy and low LLIN usage. This finding contrast with those
of Charlwood et al. [29] and Burkot et al. [28] who found
some populations of An. koliensis with relatively low HBI.
However, these studies used morphological keys [19], now
known to be unreliable [8, 38], to identify the different
species in the An. punctulatus (s.l.) complex. Their use of
morphological keys may have resulted in grouping of dif-
ferent species of varying host preference into the single
taxon An. koliensis. Molecular based methods for species
identification was used in this study to avoid this problem.
The species An. bancroftii provides a strong contrast to
An. koliensis, showing a highly zoophilic tendency. Its se-
lection of human hosts was low even though humans were
in higher abundance than pigs in Mirap. This finding is
consistent with a previous study [30] which found An.
bancroftii with very low HBI even when the other species
in the same village had high HBI.
The modulation of host selection by bed nets has been

observed both in PNG and elsewhere. A study in Kenya
showed that the majority of blood meals taken by
Anopheles funestus and Culex quinquefasciatus changed
from humans before permethrin-impregnated bed nets
was distributed to non-humans after the bed net distri-
bution [39]. In a coastal village of Madang, PNG, the
proportion of blood meals taken on humans by An. far-
auti (s.l.) dropped from 70% before permethrin-
impregnated nets were distributed to 38% after the bed
net distribution [40]. In the Wosera district of East Sepik
province, PNG, increased use of insecticide-free bed nets
resulted in a decline of the HBI of An. punctulatus (s.s.),
but not of An. koliensis [31]. The persistently high HBI
of An. koliensis in contrast to An. punctulatus (s.s.) des-
pite the high bed net coverage in Wosera can be inter-
preted in terms of its strong preference for humans and
inflexibility to utilize other hosts. This inflexibility can
cause An. koliensis to pursue humans into the house,
making it more vulnerable to the insecticidal effects of
LLIN than the opportunistic species. Indeed, Hetzel et
al. [13] and Reimer et al. [14] showed that while the
population size of all Anopheles species was reduced
after roll-out of LLIN in PNG, An. koliensis was affected
the most in all their study sites.
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The use of LLIN for controlling mosquito vectors re-
mains the primary malaria intervention method in PNG.
The reduction of malaria incidence, prevalence [13] and
transmission intensity [14] in PNG in recent years have
been attributed to the intensification of nationwide LLIN
campaign over the last decade [15–17]. No resistance to
pyrethroids has been detected in malaria vector popula-
tions in PNG [41, 42], but transmission continues to
persist, perhaps in large part because of the host selec-
tion behavior of the opportunistic vector species de-
scribed whose lack of dependence on human blood
allows them to escape the lethal effect of LLIN. These
vector species live in sympatry and co-transmit malaria
in most of the endemic areas of PNG [12, 14, 27, 29–31,
43–46]. Therefore, while LLIN may affect the more
anthropophilic and vulnerable species such as An.
koliensis, transmission is still sustained by the more
opportunistic and behaviorally plastic species. This con-
dition, when combined with increased outdoor and
early-evening biting observed in some vector population
of PNG ([14] and unpublished data), presents a chal-
lenge to the LLIN program in PNG as well as the rest of
the South West Pacific region where the opportunistic
species An. farauti (s.s.) and An. punctulatus (s.s.) are
the primary regional vectors.
This study was not without limitations. First, although

the statistical analysis of host selection was based on the
total number of the three primary hosts in the village,
there were variations in the relative number of these
hosts among households. Therefore, the household-level
variation can bias the host selection results because
mosquitoes were sampled near a household throughout
the night. This bias was minimized by relocating each
BS to a new location in the village every subsequent
night to try and capture a good representation of the vil-
lage. Secondly, the mobility of domestic hosts, including
humans, throughout the night while mosquitoes were
being sampled on the BS can change the actual availabil-
ity of the hosts and bias the result of host selection.
However, it was observed that although the animals
roamed freely, dogs and pigs were found mostly close to
their owner’s house during the night. Thirdly, readers
may be concerned with bias associated with indoor
resting mosquitoes not sampled by the BS method. The
effect of this bias is minimal as members of the An.
punctulatus (s.l.) group are primarily exophilic [47] even
when they feed indoors.

Conclusions
Except An. koliensis and An. bancroftii, which are
anthropophilic and zoophilic respectively, the rest of the
vector species are opportunistic blood feeders. The host
selection plasticity of the opportunistic vectors of PNG
can potentially limit the success of the LLIN program.

While malaria elimination by the LLIN program is
achievable from areas of PNG where An. koliensis is the
only vector species present, it is difficult for LLIN alone
to achieve malaria elimination from areas occupied by
both An. koliensis and the opportunistic species. The op-
portunistic species will be resilient to the LLIN and con-
tinue to transmit the disease. Because An. koliensis is
always found living in sympatry with the other species,
reliance on LLIN alone is inadequate to achieve local
malaria elimination. Alternative vector control methods
or strategies need to be developed and implemented
alongside the LLIN program in PNG.
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Additional file 1: Table S1. Dates of mosquito sampling in each village
in the years 2012, 2013 and 2015. Shaded cells represent the dates in
which mosquitoes were sampled. Color codes correspond to different
villages. Gradient shades represent villages where mosquitoes were
sampled simultaneously. (XLSX 13 kb)
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