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Abstract: Many environmental stresses can affect the accumulation of metabolites in plants, in-
cluding drought. In the present study, we found a great deal of variability in the seed metabolic
profiles of the tolerant (Matterhorn, SB-DT2 and SB-DT3) common bean genotypes in comparison
to the sensitive genotypes (Sawtooth, Merlot and Stampede) using ultrahigh performance liquid
chromatography−tandem mass spectrometry (UPLC-MS). The genotypes were grown in the field
and subjected to drought stress after flowering (terminal drought stress). We aimed to investigate the
accumulation of genotype-specific metabolites and related pathways under terminal drought stress
by comparing tolerant and sensitive genotypes within a race. A total of 26 potential metabolites were
identified across genotype comparisons. Significant metabolic pathways, including monobactam
biosynthesis, flavone and flavonol biosynthesis, pentose phosphate pathway, C5-branched dibasic
acid metabolism, cysteine and methionine metabolism, vitamin B6 metabolism and flavonoid biosyn-
thesis, were derived from the enriched metabolites. Many of these metabolic pathways were specific
and varied with genotype comparisons. SB-DT2 vs. stampede revealed more significant metabolites
and metabolic pathways compared to Matterhorn vs. Sawtooth and SB-DT3 vs. Merlot under termi-
nal drought stress. Our study provides useful information regarding the metabolite profiles of seeds
and their related pathways in comparisons of tolerant and sensitive common bean genotypes under
terminal drought conditions. Further research, including transcriptomic and proteomic analyses, may
contribute to a better understanding of molecular mechanisms and nutritional differences among
seeds of common bean genotypes grown under terminal drought conditions.

Keywords: metabolites; common bean; genotypes; seeds; terminal drought stress

1. Introduction

Metabolites are essential to plant metabolism and impact all biological processes
viz., survival, growth, development, plant defense and response to biotic and abiotic
stresses. These low-molecular-weight compounds (<1500 Da) of primary and secondary
metabolites govern the functional status of plants, which includes plant interaction with
their environment. It has been previously shown that untargeted profiling of metabolites
will contribute to a better understanding of strategies for crop improvement, as metabolites
link the genotype with the phenotype [1–3].

Plants have been known to undergo essential metabolic reprogramming to synthesize
metabolites to adapt to stressful conditions. Several metabolic components of plants
are affected by abiotic stress, and most of these are in plants’ primary and secondary
metabolic pathways. These compounds allow plants to adapt and survive in unfavorable
conditions [4,5]. Metabolic profile changes in response to biotic and abiotic stress have been
reported [6,7]. Additionally, metabolites have often been used in crop breeding as selection
biomarkers [8,9].
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Metabolic responses are specific to the type of stress the organisms undergo. Accu-
mulating specific metabolites, their related pathway, and their metabolic network depends
on the type of stress. Commonly occurring metabolites under different stresses also vary,
depending on the stress conditions and accumulation time of these metabolites. Earlier
studies have reported that drought stress changed the accumulation of metabolites in
peanuts, with sugar, sugar alcohol, organic acids, and fatty acids being the primary metabo-
lites altered [10]. These compounds accumulated specifically to protect against oxidative
damage to cellular components [2]. Thus, the metabolites can be potentially used as a
good candidate to reveal the effect of specific stress [11]. Additionally, plant genotypes
influence the production of metabolites in response to stress conditions. Production of phe-
nolic compounds differed among the peanut genotypes in response to drought stress [12].
Tolerant and sensitive soybean genotypes showed diverse metabolic responses to drought
stress [13]. In the wheat genotypes, differences were observed in the levels of metabolites
accumulated in response to drought [14].

Common bean (Phaseolus vulgaris L.) is an important food legume consumed world-
wide for its nutrition-rich seeds and pods [15,16]. About 47 to 69% of common bean yield
is affected by drought stress. Most bean production is affected by intermittent and ter-
minal droughts, which affect pod development and seed production [17–19]. Drought
affects seed metabolites in several ways, including reallocation of metabolites, formation of
new metabolites, and a reduction in their content [20–22]. Therefore, comprehensive seed
metabolomic profiling is still required to extend the knowledge of metabolite variance in
response to changing environmental conditions [1].

Metabolites that are formed in response to abiotic stress also possess pharmacological
effects. Several phenolics and flavonoids produced in response to abiotic stresses possess
high antioxidative characteristics [23]. Polyphenol compounds present in the seed coat of
the common bean have demonstrated significant antioxidant activity and protective effects
against oxidative stress [24]. Moderate drought stress increased the levels of phenolic
acids in the leaves of safflower (Carthamus tinctorius L.) [25]. Achillea species exhibited
higher phenolic acids and flavonoids under severe drought conditions [26]. We believe that
utilizing untargeted metabolomics in the present study will enable us to identify bioactive
and drought stress-responsive metabolites [23].

The purpose of this study was to understand genotype-specific metabolite accumu-
lation and its associated metabolic pathways in comparing the tolerant genotypes to the
sensitive genotypes of common bean seeds within a race under terminal drought stress. In
our comparison of genotypes, we found a great deal of variation in seed metabolic profiles.
The genotype comparison of SB-DT2 vs. Stampede revealed higher significant metabolites
and their related pathways than the other genotype comparisons. Possibly, our study will
provide new insights into the seed metabolic characteristics of common bean genotypes
grown under terminal drought stress.

2. Materials and Methods
2.1. Experimental Design

Six genotypes of common bean (Phaseolus vulgaris L.) (Table S1) were grown in a field
with silt loam soil (Typic Ustorthents) (41◦56.6′ N, 103◦41.9′ W, 1240 m elevation). The
soil consisted of 75% silt, 15% sand, and 10% clay. It had a cation exchange capacity of
17 meq/100 g, a pH of 7.8, and an organic matter content of 14 mg/g. There was 20.5 kg of
residual nitrogen in the field, and 25.9 kg of nitrogen in the manure credit; therefore, no
additional nitrogen was applied to the field. To draw comparisons between genotypes, we
used the following alphabet. There were three tolerant genotypes: Matterhorn (A1) [27]
SB-DT3 (B1), and SB-DT2 (C1) [28], and three sensitive genotypes: Sawtooth (X1) [29], Merlot
(Y1) [30], and Stampede (Z1) [31]. The genotypes were compared within the same race
(Figure S1, Table S1). The field experiment was conducted according to [28]. Briefly, the soil
was prepared uniformly and plowed to promote healthy bean growth. The experiments
were conducted in a randomized block design with four replications. Each plot consisted
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of four 3.6 m rows 56 cm apart. Plants were harvested from the middle two rows (10 feet)
of each plot at the end of the drought treatment. The different entries had been randomized
with random numbers to avoid any bias. Drought stress was induced after flowering as a
terminal drought treatment. At least 50% of the plants reached anthesis (flowering) before
a terminal drought was imposed. Until then, drip irrigation was used to irrigate the plants.
A total of 135.1 mm of precipitation was recorded during the period prior to flowering. This
includes irrigation of the plants twice (101.6 mm) and precipitation of 33.5 mm. There was
a total of 16.3 mm of precipitation recorded after flowering, and no irrigation was provided
to the plants. A total of 18 samples were collected from 3 sensitive and 3 tolerant genotypes
in 3 replicates after 2–3 weeks of drought stress during the R7 stage of development.

2.2. Reagents

Acetonitrile, methanol, formic acid, and DL-o-Chlorophenylalanine were purchased
from Merck, LC/MS grade (Kenilworth, NJ, USA).

2.3. Sample Preparation

The samples were lyophilized to dryness and ground to a fine powder in a 5 mL
homogenizer tube at 30 Hz using four 5 mm metal balls on a MM 400 mill mixer. In each
tube, 50 mg of the sample was precisely weighed, and then 800 µL of 80% methanol was
added. Then, samples were vortexed for 30 s, followed by sonication for 30 min at 4 ◦C.
Next, the samples were kept at −20 ◦C for 1 h and centrifuged at 12,000 rpm at 4 ◦C for
15 min. Then, 200 µL of supernatant and 5 µL of DL-o-Chlorophenylalanine (140 µg/mL)
were transferred to a vial for LCMS analysis.

2.4. Biomolecules Quantification and Agronomic Characters

Lipid and starch contents were determined according to [32] with modifications.
Briefly, the seed samples were dried at 105 ◦C and ground into powder. In total, 1~2 g of
samples was extracted with petroleum ether at 65 ◦C for 1 hr. The samples were dried
again at 105 ◦C and the fat contents were determined. For starch quantification, 0.1 g
of powdered samples was extracted with 80% ethanol-H2O to release starch. Then, the
samples were subjected to acid hydrolysis (sulfuric acid) in order to release glucose. The
glucose concentration was determined using a microplate reader at 620 nm. In addition,
agronomic characteristics such as yield, days to flowering and harvest maturity, and
100 seed weight were also measured.

2.5. UPLC-MS (Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry)

Separation was performed by Ultimate 3000LC combined with Q Exactive MS (Ther-
moFisher, Waltham, MA, USA) and screened with ESI-MS. The LC system is comprised of an
ACQUITY UPLC HSS T3 column (100 × 2.1 mm × 1.8 µm) with Ultimate 3000LC (Waters
Corp, Milford, MA, USA). The mobile phase is composed of solvent A (0.05% formic acid water)
and solvent B (acetonitrile) with a gradient elution (0–1 min, 95%A, 1–12 min, 95–5% A,
12–13.5 min, 5% A, 13.5–13.6 min, 5–95% A, 13.6–16 min, 95% A). The flow rate of the mo-
bile phase was 0.3 mL·min−1. The column temperature was maintained at 40 ◦C, and the
sample manager temperature was set at 4 ◦C. Experimental design flow chart (Figure S2).

Mass spectrometry parameters in ESI+ and ESI−mode are listed as follows:

ESI+: Heater Temp 300 ◦C; Sheath Gas Flow rate, 45 arb; Aux Gas Flow Rate, 15 arb; Sweep Gas
Flow Rate, 1 arb; spray voltage, 3.0 kV; Capillary Temp, 350 ◦C; S-Lens RF Level, 30%.
ESI−: Heater Temp 300 ◦C, Sheath Gas Flow rate, 45 arb; Aux Gas Flow Rate, 15arb; Sweep Gas
Flow Rate, 1 arb; spray voltage, 3.2 kV; Capillary Temp, 350 ◦C; S-Lens RF Level, 60%.

2.6. Statistical Analysis

The raw data were acquired and aligned using the Compound Discover (3.0, Ther-
moFisher Waltham, MA, USA) based on the m/z value and the retention time of the ion
signals. Compound discovery software, which uses a variety of plant and animal databases,
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was used to identify the chemical structures of significant metabolites based on mass and
MS/MS fragment data. Additional confirmation was obtained, when necessary, by com-
paring retention times and MS/MS fragmentation patterns to authentic standards. For
multivariate analysis, ions from both ESI− or ESI+ were merged and imported into the
SIMCA-P program (version 14.1). As a first step toward visualizing data and identifying
outliers, principal components analysis (PCA), an unsupervised method, was used for data
visualization and outlier identification. PCA emphasizes variation and highlights patterns
in a dataset [33]. Supervised regression modeling was then performed on the extensive
dataset using partial least squares discriminant analysis (PLS-DA) or orthogonal partial
least squares discriminant analysis (OPLS-DA) to visualize the important metabolites. Then,
the significant metabolites were filtered and identified by combining the results of VIP > 1.5
and p < 0.05 (t-test).

Figure 1 illustrates a schematic diagram of the manuscript overview.
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Figure 1. Overview of the untargeted metabolomic profiles of common bean seeds.

3. Results
3.1. Morphological Traits and Analysis of Starch and Fat Content

SB-DT3 and Sawtooth had a reduction in yield under the drought stress. All genotypes
had similar flowering and maturity days (45 to 49 days and 87 to 89 days, respectively)
except Matterhorn, which reached maturity at 82 days. All genotypes had a similar 100 seed
weight (33 to 35 g) except the Matterhorn genotype, with a low 100 seed weight of 30.8 g,
and the Sawtooth genotype, with a high 100 seed weight of 37.3 g (Table S2). Genotype
Stampede had a relatively low starch and fat content compared to other genotypes. Merlot
and SB-DT2 had a higher starch content than other genotypes, while SB-DT3 and Merlot
had a higher percentage of fat content (Figure S3).

3.2. Metabolic Profiling and Quality Control

Metabolites were obtained in both negative and positive ionization modes. However,
in the negative ionization mode, the total metabolites obtained were higher, 184, whereas, in
the positive mode, it was 121 (Table S3). Genotype comparisons are detailed in the Materials
and Methods section and Figure S1. The metabolites with a fold change of >2 were greater
in the negative ionization mode than in the positive (Table S4). More metabolites were
identified in SB-DT2 (C1 vs. Z1) and SB-DT3 (B1 vs. Y1) genotypes with a fold change
(FC) greater than 2 compared to other genotypes. Syringic acid, cosmosiin soyasaponin
A1, abscisic acid, and ferulic acid were common metabolites observed in both ionization
modes across the genotypes (Figure S4). Several metabolites with FC > 3 were identified
in Matterhorn genotypes, including ribosylzeatin phosphate, syringic acid, piscidic acid,
and jasmonic acid. The SB-DT3 genotype with FC > 3 contained cosmosiin, eriodictyol,
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mevalonic acid, and vanillin. Several metabolites with FC > 3 were detected in SB-DT2,
including cyanidin 3-sambubioside, quercetin 3-arabinoside 7-glucoside, luteolin, xanthine,
procyanidin B1, soyasaponin A1, ferulic acid and rutin.

3.3. Metabolic Changes in the Genotypes

We used PCA (principal component analysis) to analyze all observations in both
ion modes for the metabolite variations. The unsupervised PCA plot in Figure 2 clearly
shows the separation between the metabolites with the percentage of variance in the
principal components (PC1) and principal components (PC2) for the tolerant and sensitive
genotypes. A supervised PLS-DA (partial least squares discriminant analysis) and an OPLS-
DA (orthogonal partial least squares discriminant analysis) also showed distinct group
separations supporting the PCA analysis (Figure S5). This further allows for a comparison
of significantly changed metabolites between two groups.
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3.4. Variable Importance Projection (VIP)

The VIP values (VIP > 1.5) were used to filter out significantly changed metabo-
lites between the tolerant and sensitive genotypes. There were 79 metabolites in total
identified in negative ionization mode and 61 metabolites in positive ionization mode.
There were more significantly altered metabolites in the genotypes SB-DT2 (C1 vs. Z1)
than in others. Metabolites such as linolenic acid, avicularin, homocysteine, ribosylzeatin
phosphate, dibutylmalate, pyroglutamic acid, N-Acetyl-L-glutamate 5-semialdehyde, D-
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glucuronic acid, linolenic acid, eriodictyol, soyasaponina1, homocysteine, retinoic acid,
ophthalmic acid, pyridoxine, d-fructose were detected in both ionization mode across all
the genotypes (Table S5).

3.5. Volcano Plot

Volcano plots was performed with selected metabolites based on VIP > 1.5, FC > 2.0,
and p < 0.05. SB-DT2 showed increased upregulation of metabolites, followed by Matter-
horn and SB-DT3. The number of downregulated metabolites was higher in Matterhorn
than in SB-DT2. Compared to other genotypes, SB-DT3 (B1 vs. Y1) exhibited fewer upregu-
lated and downregulated metabolites in both ionization modes (Figure 3).
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3.6. Cluster Analysis

The abundance and correlation of metabolites in the tolerant and sensitive geno-
types were analyzed with hierarchical cluster analysis (HCA). The metabolites with FC > 2,
VIP > 1.5, and p < 0.05 were considered significant. More potential metabolites were iden-
tified in the SB-DT2 (C1 vs. Z1) than in other genotypes. Heatmap analysis revealed
that ribosylzeatin phosphate, pyroglutamic acid, Deoxyribose, and traumatic acid were
increased in Matterhorn (A1 vs. X1), deoxyribose, cosmosiin, eriodictyol, quercetin, vanillin,
sorbitan laurate were enriched in SB-DT3 (B1 vs. Y1), vanillic acid, uridine, syringic acid
xanthine, cyanidin 3-sambubioside, quercetin 3-arabinoside 7-glucoside, soyasaponin a
pyridoxine, homocysteine, ferulic acid, ophthalmic acid, catechin, rutin, l-aspartic acid,
sinapic acid and luteolin were accumulated in SB-DT2 (C1 vs. Z1). Dibutyl malate, de-
oxyribose, vanillic acid, sorbitan laurate, cosmosiin, rutin, pyridoxin, neocnidilide, and
ophthalmic acid were common in all the comparisons in both ionization modes (Figure 4).
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Figure 4. Hierarchical cluster analysis of metabolome data from the tolerant and sensitive genotypes
in both ionization modes. SB-DT2 and stampede comparisons (C1 vs. Z1) show a higher accumulation
of metabolites.

3.7. Identification of Potential Metabolites

Potential metabolites were selected with VIP > 1.5, log2 (fold change) > 1 or FC > 2,
and p < 0.05 (Cai et al., 2020, Weljie et al., 2011, Zhang et al., 2019). We identified
28 potential metabolites in both ionization modes. Genotypes SB-DT2 (C1 vs. Z1)
accumulated more metabolites. Metabolites such as ribosylzeatin phosphate, syringic
acid, pyroglutamic acid, and deoxyribose were found in Matterhorn (A1 vs. X1), while
SB-DT3 (B1 vs. Y1) contained quercetin, cosmosiin, eriodictyol, vanillin, sorbitan
laurate metabolites. Cyanidin 3-sambubioside, quercetin 3-arabinoside 7-glucoside,
sorbitan laurate, xanthine, soyasaponin A1, uridine, rutin, syringic acid, and vanillic
acid were detected in SB-DT2 (C1 vs. Z1). All these metabolites were detected at
negative ionization. The following metabolites were identified in each genotype using
positive ionization. Homocysteine, c-pyridoxine, and ferulic acid were present in
Matterhorn (A1 vs. X1). SB-DT3 contained only cosmosiin, while SB-DT2 contained
catechin, luteolin, rutin, sinapic acid, and ophthalmic acid. We observed cosmosiin
and rutin in both ionization modes. As a result, 26 were identified as possible potential
metabolites (Table 1).



Metabolites 2022, 12, 944 8 of 14

Table 1. Identification of potential metabolites in both ionization modes. These were selected with
VIP > 1.5, log2 (fold change) > 1, and p < 0.05. A total of 26 metabolites was identified. Genotype
SB-DT2 showed a higher accumulation of potential metabolites.

Negative Ionization Positive Ionization

A1 vs. X1
(Matterhorn)

B1 vs. Y1
(SB-DT3) C1 vs. Z1 (SB-DT2) A1 vs. X1

(Matterhorn)
B1 vs. Y1
(SB-DT3)

C1 vs. Z1
(SB-DT2)

Ribosylzeatin
phosphate Quercitrin Cyanidin

3-sambubioside Homocysteine Cosmosiin Catechin

Cosmosiin Quercetin 3-arabinoside
7-glucoside Pyridoxine Luteolin

Syringic acid Eriodictyol Sorbitan laurate Ferulic acid Rutin

Pyroglutamic acid Vanillin Xanthine Sinapic acid

Deoxyribose Sorbitan laurate Soyasaponin A1 Ophthalmic acid

Uridine L-Aspartic acid

Rutin

Syringic acid
Vanillic acid

3.8. Dot Plot

The dot plot network illustrates the connection between the highly correlated metabo-
lites with potential functional relationships. These metabolites were selected based on the
MBRole (Metabolites Biological Role, Ibanez et al., 2016) with a p≤ 0.05. As seen in Figure 5,
the nodes with red color were enriched metabolites more important in the pathway. SB-DT2
contained more significant metabolites followed by Matterhorn and SB-DT3 (Table 2).
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Table 2. Significant metabolites identified in each genotype comparison shared the potential func-
tional relationship. These are the enriched metabolites more important in pathways.

Negative Ionization Positive Ionization

A1 vs. X1 B1 vs. Y1 C1 vs. Z1 A1 vs. X1 C1 vs. Z1

Pyroglutamic acid Cytidine Oxoglutaric acid Homocysteine L-Aspartic acid

L-malic acid Vanillin 2-Ketobutyric acid Pyridoxine Pyridoxine

Uridine 5′-monophosphate Eriodictyol Xanthine Trans-Ferulic acid Luteolin

Vanillic acid D-Xylose Uridine

Oxoadipic acid

Vanillic acid

Syringic acid

3.9. Correlation Network of Metabolites

The interrelationship among metabolites accumulated in the genotypes was an-
alyzed by generating correlation networks. The correlation network diagram was
constructed based on KEGG databases and MBRole. We obtained categorical an-
notations for pathways, enzyme interactions, and other biological processes from
the significant metabolites. Monobactam biosynthesis, sulfur metabolism, pentose
phosphate pathway, citrate cycle (TCA cycle), carbon fixation in photosynthetic organ-
isms, tryptophan metabolism, glyoxylate and dicarboxylate metabolism, pyrimidine
metabolism, purine metabolism, flavone and flavonol biosynthesis, flavonoid biosyn-
thesis, arginine biosynthesis, alanine, aspartate and glutamate metabolism, glycine,
serine, and threonine metabolism were metabolic pathways found frequently in both
ionization modes (Table S6). SB-DT2 (C1 vs. Z1) has more enriched metabolic path-
ways, whereas SB-DT3 (B1 vs. Y1) results in fewer metabolic pathways (Figure 6).
We also identified significant metabolic pathways with a p ≤ 0.05. These included
monobactam biosynthesis and vitamin B6 metabolism in Matterhorn, cysteine and
methionine metabolism (A1 vs. X1), flavone and flavonol biosynthesis in SB-DT3
(B1 vs. Y1), and pentose phosphate pathway, c5-branched dibasic acid metabolism,
flavone and flavonol biosynthesis, cysteine and methionine metabolism, flavonoid
biosynthesis and monobactam biosynthesis in SB-DT2 (C1 vs. Z1) (Table 3).

Table 3. Significant metabolic pathway with p < 0.05 across the genotype comparisons.

Pathways p < 0.05 Genotypes Comparisons

Monobactam biosynthesis 0.044826 Matterhorn (A1 vs. X1)

Flavone and flavonol biosynthesis 9.88 × 10−4 SB-DT3 (B1 vs. Y1), SB-DT2
(C1 vs. Z1)

Pentose phosphate pathway 0.0073327 SB-DT2 (C1 vs. Z1)

C5-Branched dibasic
acid metabolism 0.042084 SB-DT2 (C1 vs. Z1)

Cysteine and
methionine metabolism 0.0098777 Matterhorn (A1 vs. X1),

SB-DT2 (C1 vs. Z1)

Vitamin B6 metabolism 0.038646 Matterhorn (A1 vs. X1)

Flavonoid biosynthesis 0.027047 SB-DT2 (C1 vs. Z1)
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4. Discussion

A limited amount of research has been conducted on metabolomics studies related
to the accumulation of seed metabolites in common bean plants under terminal drought
stress [1]. This study compared three genotypes with different levels of drought tolerance to
three sensitive genotypes in an attempt to understand the accumulation of genotype-specific
metabolites in seeds under terminal drought conditions. Fold change of metabolites was
deduced from comparisons between the tolerant and susceptible genotypes. The negative
ionization mode observed more metabolite accumulation due to improved sensitivity and
lower detection limits [1].

The accumulation of metabolites differs significantly by genotype, with specific
metabolites increasing or decreasing based on genotypes [10]. There were significant
increases in ribosylzeatin phosphate, pyroglutamic acid in Matterhorn, eriodictyol in SB-
DT3, cyanidin 3-sambubioside, quercetin 3-arabinose 7-glucoside, and xanthine in SB-DT2.
Each genotype likely has a different metabolic activity under drought stress [10,34]. SB-DT2
(C1 vs. Z1) had a higher accumulation of metabolites than other genotypes, demonstrating
that genotype significantly influences metabolism [35]. Similarly, [36] (Guo et al., 2020)
reported a higher accumulation of metabolites in the tolerant genotypes of wheat (Triticum
aestivum) in response to drought stress. Moreover, metabolic response to drought stress is
a dynamic and multifaceted process that depends on the strength, duration, and sensitivity
of cultivars to stress [37].

Many of the accumulated metabolites play an influential role in drought stress. Pyrog-
lutamic acid promotes drought tolerance by enhancing photosynthesis, antioxidant effects,
and maintaining osmotic balance in lettuce (Lactuca sativa) plants [38]. Eriodictyol is a class
of flavonoids (Flavanones). The content of eriodictyol in sorghum grains increased during
water stress, and water stress and genotype interaction affected eriodictyol proportions and
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amounts [39]. Cyanidin 3-sambubioside and anthocyanin pigments protect from oxidative
stress and metal toxicity in roselle [24]. Xanthine enhances drought tolerance in Arabidop-
sis [40]. In lentil (Lens culinaris Medik.), significant changes in xylose accumulation were
observed during osmotic drought stress [41].

The abundance and correlation of potential metabolites were determined between the
tolerant and sensitive genotypes. Ribosylzeatin phosphate, syringic acid, pyroglutamic
acid, deoxyribose, homocysteine, pyridoxine, and ferulic acid were abundant in Matter-
horn when compared to susceptible Sawtooth genotype. Similarly, quercetin, cosmosiin,
eriodictyol, vanillin, and sorbitan laurate were increased in SB-DT3 compared to Merlot.
The SB-DT2 genotype showed an increased accumulation of metabolites in comparison to
Stampede. SB-DT2 is pinto germplasm developed through shuttle breeding and adapted
to broad temperate and tropical conditions. Compared to SB-DT2, SB-DT3 has a lower
geometric mean (GM), and its yield was reduced to 33.8% under drought stress [28]. We
identified metabolites such as syringic acid, sorbitan laurate, cosmosiin, and rutin across
genotypes. A substantial increase in syringic acid and rutin levels was observed in Amaran-
thus leafy vegetables during moderate and severe drought stress [42]. These compounds
appear to contribute to a defense response associated with increased cell wall lignification
in response to biotic and abiotic stresses [43].

Potential metabolites identified in the present study also play a crucial role in our
health. Soyasaponins accumulated in SB-DT2 have strong adjuvant properties [44]. Cos-
mosiin is reported to have beneficial effects on diabetic complications by enhancing
adiponectin secretion, tyrosine phosphorylation of insulin receptor-β, and GLUT4 translo-
cation [45]. Syringic acid exhibits antioxidant, antimicrobial, anti-inflammatory, and antien-
dotoxic properties [46]. Additionally, syringic acid has been reported in Rosa damascena to
protect from oxidative stress in water-limiting conditions [47].

There were differences in the metabolic pathways between genotypes based on in-
dividual comparisons. SB-DT2 and Matterhorn have more enriched metabolic pathways
than SB-DT3. Monobactam biosynthesis was enriched for differentially expressed genes
in climbing vine swallowworts (Cynanchum auriculatum) during salt stress and in foxtail
millet (Setaria italica) under drought stress [48,49]. In the fruit body of Auricularia auricula
(wood ear), the pentose phosphate pathway occurred as part of the survival response to
drought stress [50]. Tryptophan metabolism was reported in chickpea (Cicer arietinum) in
response to long term drought stress [51]. Abiotic and biotic stresses enhance flavonoid
biosynthesis [52]. Flavonoids act as radical scavengers in Arabidopsis, protecting it from
oxidative stress and drought [53].

5. Conclusions and Future Perspectives

The current study investigates the metabolic changes in common bean seeds of dif-
ferent genotypes under terminal drought stress. We compared tolerant and sensitive
genotypes within the same race to better understand genotype-specific responses. Po-
tential metabolite accumulation and related pathways were different in each comparison.
Ribosylzeatin phosphate, syringic acid, pyroglutamic acid, deoxyribose in Matterhorn,
quercetin, cosmosiin, eriodictyol, vanillin, sorbitan laurate in SB-DT3, and cyanidin 3-
sambubioside, quercetin 3-arabinoside 7-glucoside, sorbitan laurate, xanthine, soyasaponin
A1, uridine, rutin, syringic acid, vanillic acid in SB-DT2 were the potential metabolites
accumulated under terminal drought stress. Several of these metabolites also have health
benefits for humans besides alleviating drought stress. Possible metabolic pathways under
terminal drought stress were identified in each comparison. Among them are monobactam
biosynthesis, flavone and flavonol biosynthesis, pentose phosphate pathway, C5-branched
dibasic acid metabolism, cysteine and methionine metabolism, flavonoid biosynthesis, and
vitamin B6 metabolism with p < 0.05. These pathways are unique to each comparison.
Overall, the SB-DT2 vs. Stampede comparisons showed enriched accumulation of potential
metabolites and significant metabolic pathways. Thus, the present study will assist in
understanding potential metabolites and their related pathways in the seeds of common
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bean tolerant genotypes in comparison to the sensitive genotypes under terminal drought
stress. Further, this study will encourage transcriptomic and proteomic analyses to identify
and understand the key metabolic genes and proteins in common bean seeds under drought
stress. By conducting integrated studies, it becomes easier to understand the molecular
mechanisms that govern drought stress responses, as well as changes in seed nutritional
quality across genotypes.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/metabo12100944/s1, Figure S1: Genotypes comparisons. Figure S2: Flowchart
of experimental design. Figure S3: Estimation of starch, protein contents and lipid percentage of
genotypes. Mean values of three biological replicates with standard errors. Figure S4: Comparative
accumulation of metabolites across genotypes with a fold change >2. Yellow indicates the common
metabolites identified across genotypes. Green indicates the specific metabolites identified in each
comparison. Figure S5: PLS-DA and OPLS-DA score plots of each comparison in both ionization modes
showed clear separation of tolerant and sensitive genotypes for each comparison. Table S1: Listed below
are the common bean genotypes and races grown in the field and subjected to terminal drought stress.
Table S2: Mean yield (lbs/acre), days to flowering and maturity and 100 seed weight (SW) of the six
genotypes evaluated near Scottsbluff, Nebraska, USA. Table S3: List of the metabolites obtained through
negative and positive ionization modes provided in the table along with fold change and p values.
Table S4: List of the metabolites with fold change >2. Across all genotype comparisons, negative
ionization metabolites were found to be higher. Table S5: Variable importance in projection (VIP) > 1.5
was used in order to filter out metabolites significantly different between the tolerant and sensitive
genotypes. In total, 79 metabolites were identified in negative ionization mode and 61 metabolites in
positive ionization mode. The genotype SB-DT2 (C1 vs. Z1) contained more metabolites than the other
genotypes. Table S6: Inferred metabolic pathway from accumulated metabolites using KEGG databases.
There were more metabolic pathways associated with genotype SB-DT2. No pathways were found for
SB-DT3 in the positive ionization mode.
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