
R E V I E W

Etiology of Hypospadias: A Comparative Review 
of Genetic Factors and Developmental Processes 
Between Human and Animal Models

This article was published in the following Dove Press journal: 
Research and Reports in Urology

Jun Chang 1,2 

Shanshan Wang1 

Zhengui Zheng1

1Department of Physiology, School of 
Medicine, Southern Illinois University 
Carbondale, Carbondale, IL 62901, USA; 
2School of Life Science, Jiangxi Science & 
Technology Normal University, 
Nanchang, Jiangxi 330013, People’s 
Republic of China 

Abstract: Hypospadias is a congenital anomaly of the penis with an occurrence of approxi-
mately 1 in 200 boys, but the etiology of the majority of hypospadias has remained unknown. 
Numerous genes have been reported as having variants in hypospadias patients, and many 
studies on genetic deletion of key genes in mouse genital development have also been 
published. Until now, no comparative analysis in the genes related literature has been reported. 
The basic knowledge of penile development and hypospadias is mainly obtained from animal 
model studies. Understanding of the differences and similarities between human and animal 
models is crucial for studies of hypospadias. In this review, mutations and polymorphisms of 
hypospadias-related genes have been compared between humans and mice, and differential 
genotype–phenotype relationships of certain genes between humans and mice have been 
discussed using the data available in PubMed and MGI online databases, and our analysis 
only revealed mutations in seven out of 43 human hypospadias related genes which have been 
reported to show similar phenotypes in mutant mice. The differences and similarities in the 
processes of penile development and hypospadias malformation among human and commonly 
used animal models suggest that the guinea pig may be a good model to study the mechanism 
of human penile development and etiology of hypospadias. 
Keywords: hypospadias, genetic factors, external genital development, animal models

Introduction and Review Objectives
Hypospadias is one of the most common congenital penile malformations, with an 
occurrence of approximately 1 in 200 male newborns.1 Patients with hypospadias 
confront serious psychological problems and physical difficulties with urination and 
sexual functions. Generally, hypospadias represents a disruption of normal penile 
development between 8 and 14 weeks of gestation, resulting in the abnormal urethral 
opening on the ventral surface of the penis.2 Based on the severity, hypospadias can be 
divided into three degrees: mildest anterior forms, with the urethral opening on the 
glandular or subcoronal position of penis, more severe middle hypospadias, in which 
the meatus opens on the midshaft of the penis, and the most severe posterior forms 
containing penoscrotal, scrotal, and perineal openings.3

Unfortunately, the etiology of hypospadias in the majority patients has remained 
unknown. Genetic and environmental factors are the main susceptibilities. Although 
androgen is known to be essential for the sexual differentiation and penile development, 
only a small percentage of severe hypospadias can be explained by the genetic syndromes 
or defects involving the androgen receptor (AR) gene.4 Interactions between genes and 
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environmental factors, including placental insufficiency, exo-
genous endocrine-disrupting chemicals, such as vinclozolin5 

and di-n-butyl phthalate,6 acting on polymorphic genes or 
inducing epigenetic changes, may greatly contribute to hypos-
padias development. The mechanism of external genital devel-
opment, and genetic and environmental factors underlying 
hypospadias and animal models had been intensively reviewed 
by different research groups.7–11

Our knowledge about penile development and hypos-
padias is mainly based on the studies in animal models. 
Mice12 and rats13 are the most commonly used labora-
tory animals for hypospadias modeling, in addition, other 
animals such as guinea pigs,14 rabbits,15 and dogs16 have 
also been used in hypospadias research. Unfortunately, 
differences exist between human and animal models in 
the mechanisms of normal penile development and 
hypospadias malformation. Without considering the dif-
ferences, results derived from animal models of hypos-
padias are less reliable. Therefore, understanding the 
differences and similarities between human and animal 
models is crucial to the mechanism study of hypospa-
dias. This paper reviews the etiology of hypospadias, 
including the influences of genetic, epigenetic factors, 
as well as animal models and their differences and simi-
larities compared with humans.

Literature Search and Data 
Synthesis
We conducted a literature search using PubMed for all pub-
lications before September 1, 2020 for hypospadias related 
genes with key words “hypospadias and gene”, “hypospadias 
and polymorphism”, “hypospadias and mouse”, and “mouse 
external genitalia and genes”, we also use “hypospadias” and 
several domestic animals to find out the other animal models, 
such as “rabbit”, “dog”, and “horse”, of hypospadias. We 
included systematic reviews of all literature and revealed 
reported hypospadias related genes identified from humans 
and mice. Phenotypic data of mouse mutants were acquired 
through both the literature searching using PubMed and 
checking the Mouse Genome Informatics online database 
resource (http://www.informatics.jax.org/).

Genetic and Epigenetic Factors of 
Hypospadias
Genetic inheritance has long been inferred to be one of the 
causes of hypospadias.17 Hypospadias was found to have 
a strong familial component and also to aggregate within 

more distant relatives. One large sample cohort study found 
0.45% of boys had hypospadias; among these patients, 
4.2% had at least one family member with a history of 
hypospadias, and the inheritance of hypospadias was trans-
mitted equally through the paternal and maternal sides.18 

Hypospadias fathers were deemed to have high potential to 
have hypospadias sons, the incidence of hypospadias for 
those whose fathers were affected by hypospadias was 27% 
as reported.19 And first degree relatives of hypospadias 
infants had more malformations other than hypospadias 
than controls.20 In recent years, a lot of gene polymorph-
isms/mutations and some epigenetic marks have been 
revealed in hypospadias patients, with more and more stu-
dies suggesting multifactorial inheritance for the majority 
cases of hypospadias.

Current epidemiology and laboratory studies have sug-
gested that epigenetic alterations may contribute to abnor-
mal male sexual differentiation including hypospadias. 
Higher methylation level of AR gene in the foreskin, 
resulting in a decreased expression of the AR protein, 
might be involved in the pathogenesis of hypospadias.21 

Ohsako et al22 reported a negative association of methyla-
tion level of the SRD5A2 gene with the mRNA expression 
levels of CYP1 family genes in the preputial tissue of 
patients with hypospadias and suggested it is likely to 
indicate the involvement of chemical exposure and epige-
netic change in the onset of hypospadias. Significant asso-
ciations were observed between methylation levels of 
individual CpG sites and hypospadias, and DNA methyla-
tion patterns have been used in identifying and evaluating 
new candidate genes that may be involved in the etiology 
of hypospadias.23 Nevertheless, data about the effect of 
methylation of genes on the development of hypospadias 
are limited, and the relation between other epigenetic 
factors involved in DNA or histone modifications with 
hypospadias is mostly unknown.

Mutations and Polymorphisms in 
Hypospadias Patients and Mice
Polymorphism in biology refers to the occurrence of two 
or more genetically phenotypes in a certain population. 
The polymorphisms of certain genes have been reported 
to cause hypospadias in humans, the comparison of key 
gene mutations and polymorphisms associated with hypos-
padias, and the relevant phenotypes between humans and 
mice are summarized in Table 1.
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Table 1 Gene Variants and Relevant Phenotypes in Hypospadias Patients and Mice

Gene 
Name

Phenotype of EG (or Urogenital System) 
in Knockout Male Mice

Gene Variants in Hypospadias 
Patients

Clinical Hypospadias 
Type

Reference

AKR1C3 

(HSD17B5)▲
Not available c.643G>A Penile [51]

AR▲ Phenotypes vary from female-like EG, 

ambiguous genitalia to hypospadias, 

micropenis24,25

Methylation Glandular [21]

c.2519G>A, c.2564G>A Perineal [27]

c.2525T>C Scrotal

c.1991C>T Glandular

c.2577C>A Penile

CAG repeat Variable in different 
races

[28]

GGN repeat Penile [30]

c.1789G>A Perineal [46]

ATF3▲ No obvious phenotype100 rs11119982, rs3125289, rs1877474 Hypospadias [101]

BNC2▲ Distal hypospadias in newborn mice102 c.916C>G, c.1735C>T, c.719A>G, 
c.847A>G, c.2768C>T, c.1240C>G, 

c.455A>G

Distal [102]

BMP4▲ Hypoplasia of genital tubercle77 c.619C>G, c.668G>A, c.751C>T Penoscrotal and penile [80]

BMP7▲ Arrest in cloacal septation, and severe defects 
in genital urethra and mesenchyme78

rs6070007 Moderate [74]

rs6127980 

rs6127978, rs6127985

Severe and mild 

Severe

c.907C>T Glandular [80]

CDH11▲ No obvious phenotype114 Loss of function mutation Elsahy-Waters 

syndrome with 

hypospadias

[103]

CTNNB1▲ Hypoplasia or hypospadias79 347TCT→CCT, Ser45→Pro Hypospadias [81]

CYP11A1▲ Female EG47 c.666T>C Mid-shaft [48]

DGKK▲ Not available rs1934179, rs7063116 Anterior or middle [105]

rs11091748, rs12171755 Anterior or middle [104]

EMX2▲ Degeneration of the Wolffian duct and 

mesonephric tubules97

10q25.3-q26.12 microdeletion Ranging from 

hypospadias to 
complete sex reversal

[98]

EPHRIN-B2∆ 

and 

EPHB2∆

Hypospadias and anorectal malformations84 Not available

ESR1▲ No obvious phenotype33 PvuII and XbaI C-A haplotype 

(rs2234693, rs9340799)

Mild [34]

(Continued)
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Table 1 (Continued). 

Gene 
Name

Phenotype of EG (or Urogenital System) 
in Knockout Male Mice

Gene Variants in Hypospadias 
Patients

Clinical Hypospadias 
Type

Reference

AGATA haplotype (SNPs 10–14: 

rs926779, rs3020364, rs6932902, 
rs3020371, rs3020375)

Hypospadias [35]

ESR2▲ No obvious phenotype33 rs944050, rs3832949 Hypospadias [37]

FGF8▲ No obvious phenotype75 c.590C>G, c.582–62G>A 

(rs3218238)

Hypospadias [73]

FGFR2▲ Hypospadias69 c.550+27C>T, c.727+180T>G, c.382 

+52→G, c.2454C>T

Hypospadias [73]

c.830T>C (rs755793) Mid-penile

FGF10∆ Hypospadias68 rs1482679 Severe [74]

rs16901816, rs2973644, rs2973646 Moderate*

rs6892212 Moderate* and severe*

FKBP4Δ Penile Hypospadias31 No variants found Not available [32]

GLI1▲ Not available rs10783827, rs3825077*, rs3782126, 
rs2292657, rs4760259, rs2228226

Moderate and severe [74]

GLI2▲ Widely opened urethra and preputial fusion 
defects71

rs4848125*, rs4143116, rs4848126* Moderate [74]

GLI3▲ No obvious phenotype71 rs6974655 

rs9886211*

Mild 

Severe* and moderate#

[74]

rs3801223 Moderate

HAAO▲ Abnormal seminal vesicle morphology; external 
genital phenotype not available115

rs3816183 Anterior/middle and 
posterior

[106]

HOXA13▲ Hypospadias86 Mutation or polyalanine expansions Hand–foot–genital 
syndrome with 

hypospadias not 

defined

[89,90]

HOXD13▲ Abnormal male accessory sex organs87 Polyalanine duplication at 5ʹ-end Distal penile, mid-shaft, 

and penoscrotal (HM)/ 
Distal (HZ)

[88]

HOXA4▲ No obvious phenotype94 rs6962314 Hypospadias [95]

c.385G>T, c.869C>G Penoscrotal and penile [80]

HOXB6▲ No obvious phenotype93 c.124C>A, c.367T>C Scrotal and penile [80]

HSD3B2▲ Not available S213T Scrotal [49]

S284R Midshaft

HSD17B3▲ Not available rs2066479 Hypospadias [50]

IRX6▲ Not available rs6499755 Anterior/middle [106]

(Continued)
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Table 1 (Continued). 

Gene 
Name

Phenotype of EG (or Urogenital System) 
in Knockout Male Mice

Gene Variants in Hypospadias 
Patients

Clinical Hypospadias 
Type

Reference

INSL3▲ Bilateral cryptorchidism without obvious penile 

phenotype52

C-19G, V18M, and R105H Hypospadias with 

cryptorchidism

[53]

LAMA5∆ Hypospadias117 Not available

LSM1▲ Not available rs775468919 Hypospadias [107]

MAMLD1 
(CXorf6) ▲

No obvious phenotype54 c.370G→T(E124X), c.589C→T 
(Q197X), c.1957C→T(R653X)

Penoscrotal [56]

c.1295T>C(V432A), 325delG Penoscrotal and 
proximal

[55]

CAG10→CAG13 Subcoronal

MTHFR▲ Not available C677T Middle and posterior [109]

MID1▲ No urogenital abnormalities113 c.712G>T, c.1679A>G, c.1230G>A 

(1230A, rs16986145)

Hypospadias [108]

MYRF▲ Not available c.2336+1G>A Penoscrotal [110]

NR5A1/ 
SF1▲

Abnormal gonad and adrenal gland 
development58

(CTGCAGCTG)×2 
c.74A>G 

c.814A>C

Severe proximal 
Penoscrotal 

Ambiguous genitalia

[63,64,66]

c.319C>T, c.103–3C>A, c.31G>T Penoscrotal/scrotal [65]

PGK2▲ No obvious phenotype STR in the 3ʹ flanking region Perineal [111]

SHH∆ Agenesis72 or hypospadias70 rs9333613 Moderate [74]

SMADIP1▲ Not available 935delG, deletion Hypospadias and 

agenesis 
of the corpus callosum

[112]

SPRY1∆ and 
SPRY2∆

Absence of internal tubular urethra, and 
hypospadias-like phenotype76

Not available

SRD5A2▲ No obvious phenotype41 V89L (rs523349), A49T (rs9282858) Hypospadias [43]

c.168G>C, p.V89L 

rs7562326

Severe perineoscrotal 

Penoscrotal

[42,44]

c.123G>A Perineoscrotal [45]

c.16C>T, c.211C>T, c.59T>C, 

c.586G>C, c.607G>A, c.680G>A, 

c.737G>A, 218delT

Posterior [46]

SRY▲ Sex reversal59 mosaic SRY mutation Hypospadias and 

cryptorchidism

[67]

STARD3▲ Not available rs1877031 Penoscrotal [42]

STS▲ Not available rs5934740, rs5934842, rs5934913, 

rs6639811, rs3923341, rs17268974, 

rs5934937

Penoscrotal [42]

rs17268974 Penile

(Continued)
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Androgen masculinizes genital development through 
AR. Male mice with mutations in Ar gene develop feminized 
external genitalia (EG),24 and disrupting AR in the androgen 
sensitive time window induces hypospadias.25 In humans, 
mutations in AR underlie different forms of androgen insen-
sitivity syndrome.26 Polymorphism in AR gene contributes to 
susceptibility to severe hypospadias. Point mutation in exon 
7 causes perineal or scrotal hypospadias.27 Adamovic and 
Nordenskjold28 have provided evidence that a higher number 
of the CAG repeat in the sequence of AR gene has a clear 
effect on the risk of hypospadias in Caucasians, while some 
other literature reported that there was no significant differ-
ence in CAG length between cases with hypospadias and 
controls in Japanese.29 GGN repeat is another polymorphism 
of AR gene and was found to be associated with hypospadias 
in Iranians and Swedes, whereas the length of CAG repeat 
showed no significant difference between hypospadias cases 
and controls in the same group.30 FK506-binding protein 4 
(FKBP4) gene, also known as FKBP52, is an important AR 
activator, male mice with targeted ablation of Fkbp4 develop 
hypospadias,31 but no mutation was found in hypospadias 
patients.32 The varieties of the populations and sample sizes 
may account for the inconsistency of the results. Clearly, the 
polymorphism of AR is complicated, and large sample sizes 
are necessary for the future studies in humans.

Estrogen receptor (ESR) has two major isoforms, 
ESR1 and ESR2. Deletion of either of them or double 
knockout caused no obvious external genital phenotype 
in mice.33 But single nucleotide polymorphisms (SNPs) 
of ESR1 and ESR2 in humans were reported to have 
significant relationship with hypospadias.34 

Watanabe et al35 have reported that the frequency of 
“AGATA” haplotype of ESR1 is significantly higher in 

patients with hypospadias than in controls, which may 
enhance the ESR1 signaling and finally facilitate the 
development of hypospadias in the Japanese population. 
ESR2 is expressed in fetal and adult testes.36 The CA 
repeat in ESR2 was found to be significantly prolonged 
in hypospadias patients compared with the controls, and 
the genetic variant of rs944050 in the heterozygous form 
in ESR2 was more frequent in hypospadias patients than in 
controls.37,38 Although deletion of Esr1 and Esr2 in mice 
has not shown detectable phenotypic change in EG, pre-
natal estrogen treatment in mice dramatically reduces 
penile size and induces a phenotype similar to human 
micropenis,25,39 and there has been more evidence of 
estrogen’s detrimental effects on penile masculinization; 
sequence variations in estrogen receptors may contribute 
to the development of hypospadias through increasing 
estrogen signaling. And, given genetic polymorphisms 
such as SNPs in hypospadias patients are variable, we 
think more data from hypospadias patients are necessary 
to draw clear conclusions.

The mutation of steroid 5 alpha reductase (SRD5A), 
especially SRD5A2, is one of the main causes of pseudo-
hermaphroditism in humans.40 Interestingly, male Srd5a2 
knockout or Srd5a1 and Srd5a2 double knockout mice 
show fully formed EG.41 As many different SNPs or 
mutations of human SRD5A2 have been reported to corre-
late with severe hypospadias,42–46 we believe different 
mechanism may exist in action of DHT in penile urethral 
development between humans and mice.

Steroidogenic genes also play important roles in nor-
mal genital development and sex differentiation. It has 
been known that deletion of cytochrome P450 family 11 
subfamily A member 1 (Cyp11a1) induces to form female 

Table 1 (Continued). 

Gene 
Name

Phenotype of EG (or Urogenital System) 
in Knockout Male Mice

Gene Variants in Hypospadias 
Patients

Clinical Hypospadias 
Type

Reference

TGFBR2▲ Increased prostate gland adenocarcinoma and 

intraepithelial neoplasia incidence; penile 
phenotype not available83

rs6785358 (G allele) Hypospadias [82]

WT1▲ Deletion causes the failure of gonad and kidney 
development,60 

no gross abnormalities of EG were observed in 

conditional knockout males61

rs1799937, rs5030277, rs3858449, 
rs5030234 

rs16574 

rs12293750

Severe  

Severe and mild 

Mild

[74]

Notes: *The risk was restricted to non-Hispanic whites. #The risk was restricted to Hispanics. ▲ or ∆. The hypospadias related genes were first identified from human 
patients (▲) or mutant mice (∆). “Not available” for mutant mouse phenotypes indicates either the phenotypes of EG in mutant male mice have not been recorded, or the 
mutant mouse strains are not available; for clinical hypospadias type indicates no relevant studies have been reported. If the severity of the human hypospadias was not 
defined, we use “hypospadias”. Deletion regions involving multiple genes are not included.
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EG in male mice,47 but no study on external genital 
development in steroid sulfatase (Sts), hydroxy-delta 
-5-steroid dehydrogenase (Hsd3b2), hydroxysteroid 17- 
beta dehydrogenase 3 (Hsd17b3), Hsd17b5, or StAR 
related lipid transfer domain containing 3 (Stard3) gene 
knockout mice has been reported, although in humans, 
genetic variations in these genes have been found to be 
associated with different types of hypospadias.42,48–51 

Insulin-like hormone 3 (INSL3) gene, another Leydig- 
associated gene encoding a member of the insulin-like 
hormone superfamily produced mainly in gonadal tissues, 
was proved to be a cryptorchidism causal gene in mice,52 

mutations of this gene in humans were identified to be 
associated with cryptorchidism, and maybe hypospadias 
and micropenis as well.53

In addition, mastermind like domain containing 1 
(MAMLD1), also known as chromosome X open reading 
frame 6 (CXorf6), is a causative gene for 46,XY disorders of 
sex development with hypospadias as a salient clinical 
phenotype and involved in the testosterone production, but 
mutant male mice exhibit normal genital and reproductive 
development.54 Polymorphisms of this gene in humans are 
highly associated with hypospadias.55,56 Ratan et al57 indi-
cated that Indian boys with isolated hypospadias had sig-
nificantly higher incidence of MAMLD1 polymorphism 
than a control group.

Genetic sex determination pathway genes control sex 
determination and gonad development, deletion of sex- 
determining region Y (Sry), the steroidogenic factor 1 
(Sf-1) or Wilms tumor 1 (Wt1) in mice induces abnormal 
gonad development or male-to-female sex reversal.58–61 It 
has been revealed that human mutations in any one of 
these genes cause impaired testis development,62 and 
some of the genetic variations or duplications in these 
sex determination genes also induce severe hypospadias, 
but these hypospadias patients usually have other repro-
ductive organ defects63–67 (Table 1).

Most early external genital developmental genes also 
play important roles during sex differentiation. Deletion of 
any one of the fibroblast growth factor pathway genes 
Fgf10, Fgfr2, or hedgehog pathway genes Shh, Gli2, and 
Gli3 in mice induces hypospadias.68–72 And SNPs of these 
genes and some other genes in the same pathways, such as 
GLI1, have been found in hypospadias patients.73,74 Fgf8 
knockout mice form normal EG,75 however SNPs in FGF8 
in hypospadias patients have been reported,73 which may 
suggest the different function of this gene in external 
genital development between humans and mice, but 

further investigation on larger sampling is required to 
clarify the causal role of FGF8 in the development of 
hypospadias in humans. Sprouty (SPRY) genes are critical 
regulators of FGF signaling during embryonic patterning 
of the male GT, and the combined deletion of Spry1 and 
Spry2 in the male mouse embryo affected genital 
morphogenesis.76 Until now, the variation of SPRY1 or 
SPRY2 in hypospadias patients has never been reported. 
In addition, deletion of bone morphogenetic protein path-
way genes Bmp4, Bmp7, or Wnt/β-catenin signaling genes, 
such as Ctnnb1, can also induce external genital malfor-
mation including hypospadias in mice.77–79 As expected, 
polymorphisms of all these genes, and transforming 
growth factor beta receptor 2 (TGFBR2) as well, have 
been detected in hypospadias patients,74,80–82 although no 
obvious penile phenotype was observed in Tgfbr2 knock-
out mice.83 EPHRIN-B2 and its receptor EPHB2 play 
major roles in cell adhesion and tubular urethra formation, 
and male mice carrying the mutations develop severe 
hypospadias and incomplete midline fusion of the primi-
tive cloaca.84 How these early developmental genes inter-
act with steroid hormone signaling and how they regulate 
sexual differentiation are interesting questions.

Hox genes regulate the vertebrate body plan.85 Several 
Hox genes such as Hoxa13 and Hoxd13 are strongly 
expressed in developing EG, and deletion of them in mice 
causes hypospadias or male accessory sex organ 
malformation.86,87 Mutation of HOXA13 or polyalanine 
expansions in this gene in humans results in hand–foot– 
genital syndrome with hypospadias of variable severity in 
male patients, and mutation in human HOXD13 can also 
lead to hypospadias in various forms in males.88–90 Hoxa4 
gene was found to be expressed in mouse testis,91 and 
Hoxb6 may be expressed in male reproductive organs.92 

No obvious phenotypic change in reproductive organs has 
been observed in mutant mice deficient in either Hoxa4 or 
Hoxb6,93,94 but genetic variants of both genes have been 
found to be associated with human hypospadias.80,95 Empty 
spiracles homeobox 2 (Emx2) gene is a transcriptional target 
of HOXA10 regulation in the reproductive tract,96,97 muta-
tion of this homeobox gene in humans induces hypospadias 
and concomitant other genital malformations.98 More patient 
research is required to understand the roles of HOX genes 
and other homeobox genes in hypospadias malformation.

Activating transcription factor 3 (ATF3) is upregulated in 
penile tissue in hypospadias patients and estrogen-treated 
mice.99 Atf3 knockout mice are available, but no external 
genital phenotype has been reported.100 We assume that 
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maybe there is no obvious external genital phenotype in Atf3 
knockout mice. However, in humans, the variants of ATF3 
have been identified as risk factors for hypospadias.101

Variants in human BNC2,102 CHD11,103 DGKK,104,105 

HAAO and IRX6,106 LSM1,107 MID1,108 MTHFR,109 

MYRF,110 PGK2,111 SMADIP1,112 and some other genes 
have also been reported to be associated with hypospadias. 
Although distal urethral defects were observed in Bnc2 
knockout newborn mice,102 no urogenital abnormalities 
were present in Mid1 knockout mice,113 and also no external 
genital phenotype has been reported in Cdh11,114 Dgkk, 
Haao,115 Lsm1, Myrf, Pkg2,116 or Irx6 knockout mice. In 
addition, Lama5 was found to be required for urethral and 
external genital development, and deletion of Lama5 induced 
hypospadias in mice, suggesting it may be a potential hypos-
padias causal gene;117 until now, no SNP or mutation of 
LAMA5 has been reported in hypospadias patients (Table 1).

Only a Small Portion of the Human 
Hypospadias Related Gene 
Mutations Have Been Reported to 
Show Similar Phenotypes in Mutant 
Mice
In the 49 hypospadias related genes we listed in Table 1, 
the majority of them (41) were first identified from human 
patients. Mutations in 13 out of the 49 genes were shown 

to cause hypospadias in mice (Figure 1), thus far, only 
mutations in seven out of the 13 genes (AR, BNC2, 
CTNNB1, FGFR2, FGF10, HOXA13, and SHH) have 
been associated with an increased risk of hypospadias in 
humans, variations of the other six genes (EPHRIN-B2, 
EPHB2, FKBP4, LAMA5, SPRY1, and SPRY2) have not 
yet been identified in human hypospadias patients, we 
suggest more investigations of the association between 
genetic variance of these genes and hypospadias risk 
should be conducted in hypospadias patients. Among the 
43 human hypospadias related genes we listed in Table 1 
(at least one mutation or polymorphism of the gene has 
been reported to be associated with hypospadias in groups 
of patients) (Figure 1), only mutations in seven genes (AR, 
BNC2, CTNNB1, FGFR2, FGF10, HOXA13, and SHH) 
have been shown to cause hypospadias in both humans 
and mice, no typical hypospadias but other or even more 
severe urogenital anomalies were observed in the knock-
out male mice of 12 genes (BMP4, BMP7, CYP11A1, 
EMX2, GLI2, HAAO, HOXD13, INSL3, NR5A1/SF1, 
SRY, TGFBR2, and WT1), male mice deficient in 12 
genes (ATF3, CDH11, ESR1, ESR2, FGF8, GLI3, 
HOXA4, HOXB6, MAMLD1, MID1, PKG2, and 
SRD5A2) displayed no obvious phenotypic external genital 
abnormalities, and data of the external genital develop-
ment in mouse mutants of the remaining 12 human hypos-
padias related genes (AKR1C3, DGKK, GLI1, HSD3B2, 

Figure 1 Genetic mutations found in hypospadias patients and mice. The figure shows the numbers of gene mutations found so far in hypospadias patients and mice. The 
x-axis indicates the number of genes, and the y-axis indicates the different groups. All the data were based on publications and online resources before September 1, 2020.
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HSD17B3, IRX6, LSM1, MTHFR, MYRF, SMADIPI, 
STARD3, and STS) are still not available. There may be 
multiple reasons for the phenotypic differences caused by 
these gene mutations between mice and humans, the dif-
ferences in the mechanisms of external genital develop-
ment and hypospadias malformation between the two 
species are likely to be the main reasons.

Other Animal Models in Studies of 
the Etiology of Hypospadias
Mouse is the most commonly used animal model to investi-
gate the etiology of hypospadias. However, due to the differ-
ence in the developmental mechanisms of penile urethra 
between mice and humans, mid-shaft or perineal hypospa-
dias has only been observed in human hypospadias patients 
but never seen in mice.118 Except for mice, rats have also 
been widely used in hypospadias related research, but the 
majority of the studies focused on the effect of environmental 
endocrine disrupting chemicals.119,120 Hypospadias related 
genetic mutation in rats has never been reported. The detailed 
comparison of mice, rats, and humans was reviewed by 
Cunha et al,118 and they suggested that mouse and rat models 
do not fully reflect the human condition. Rabbits are another 
useful model for hypospadias, and the fetal development of 
the rabbit phallus is relatively more analogous to that of the 
human.15 A literature search suggests that the rabbit model is 
more commonly used for hypospadias repair studies, rather 
than for etiologic research of hypospadias.121

Hypospadias were also found in other domestic animals 
such as dogs,122 cats,123 sheep,124 cattle,125 and horses.126 

Moreover, polymorphisms were also found in MAMLD1, 
SRD5A2, and AR genes in hypospadias dogs.127 Mice 
mutant for Insl3 has no obvious penile phenotype, but the 
dogs with a heterozygous base change in INSL3 gene 
showed similar hypospadias and cryptorchidism phenotypes 
to those of human C-19G, V18M, or R105H 
variants.52,53,128 Dogs are the most widely used domestic 
animal model for hypospadias research, and the majority of 
the hypospadias studies using domestic animal models were 
case reports,129,130 or focused on surgical repair.131

Guinea Pig Is Another Optional 
Animal Model to Study Human 
Penile Development and 
Hypospadias
Appropriate animal models are important to study penile 
development and hypospadias. In humans, the male genital 

tubercle development involves an initial opening of the 
urethral plate to form a urethral groove from proximal to 
distal, and subsequent fusion of the proximal region to 
close the urethral and penile epithelia and extend the 
closed urethra distally (distal opening proximal closing 
zipper). Females show a similar urethral plate opening to 
form a urethral groove, but lack the following urethral 
closure seen in males (the single opening zipper), both 
males and females form urethral grooves before sex differ-
entiation and tubular urethra formation.132,133 In com-
monly used mice and rats, the penile tubular urethra 
forms by direct canalization of the urethral plate within 
the penis body134–136 without forming an obvious urethral 
groove,137 moreover, the penile urethral closing from 
proximal to distal accomplishes during embryonic 
development14,132 in humans, but the process still con-
tinues after birth in mice and rats.138

Guinea pig has been used as an effective model to 
study sexual differentiation and the role of exogenous 
and endogenous steroid hormones in sexually dimorphic 
organ and behavioral development since decades 
before.14,–139–141 Wang et al14 elucidated the embryonic 
early development and sex differentiation of guinea pig 
EG and the pharmaceutical induction of male hypospadias 
and female penis in guinea pigs, revealing that fetal devel-
opment of the guinea pig phallus is homologous to that of 
humans; the key steps in human external genital develop-
ment, urethral groove formation (in both sexes), and sub-
sequent “distal opening and proximal closing” (in males), 
which have never been shown in commonly used animal 
models such as mice and rats, were presented in guinea 
pigs; antiandrogen bicalutamide treatment in different time 
periods around the urethral tube closing stage successfully 
induced hypospadias with various severity in guinea pigs, 
the phenotypes were similar to those of human hypospa-
dias (eg, penosrotal hypospadias); compared to mice and 
rats, guinea pigs have a relatively longer gestation (on 
average 68 days), the EG of newborn guinea pigs is well 
developed, and the antiandrogen-induced hypospadias 
phenotypes can be detected at birth, suggesting the key 
sexual differentiation process of the guinea pig EG occurs 
prenatally as well as that of humans; the findings suggest 
that the guinea pig is a good model to study the mechan-
isms of human penile urethral formation (eg, distal open-
ing and proximal closing) and to evaluate the 
pathophysiological processes of hypospadias. In addition, 
Wang and Zheng142 showed the differential expression 
pattern of Shh between the guinea pigs during urethral 
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groove formation and the mice at the comparable stage: 
Shh mRNA expression domain shifts out to the ventral 
surface of genital tubercle from proximal throughout to 
distal in guinea pigs, but is excluded from the ventral 
surface epithelium in midshaft and distal of mouse genital 
tubercle; suggested Shh expression in ventral surface 
epithelium of genital tubercle may play a causal role in 
urethral groove formation in guinea pigs, maybe in 
humans as well. Although the penile development in gui-
nea pigs is similar to that in humans at early tubular 
urethral forming stage, there are some differences in the 
urethral closure process and penile development between 
guinea pigs and humans at later embryonic and postnatal 
stages, eg, guinea pigs, but not humans, form a baculum 
before birth, and develop penile spines after birth.14 

Nevertheless, the literature studying hypospadias based 
on a guinea pig model is still very limited.

Conclusion and Future Directions
In general, the knowledge about genetic factors underlying 
hypospadias is very limited, and the majority of variants 
discovered in hypospadias patients did not show similar 
phenotypes in mouse mutants. As we know, most genetic 
polymorphisms in hypospadias patients were identified by 
single gene sequencing, not considering whether the other 
gene(s) had sequence variants or not meanwhile. As technol-
ogies are available, and the genome sequencing is getting 
cheaper, whole genome sequencing of hypospadias patients 
should be performed in the future to reveal hypospadias 
causal genes in humans. The environmental factors may 
induce hypospadias through affecting developmental gene 
expression, which can be detected by transcriptome sequen-
cing (RNA-seq), but the up or down expression levels of the 
affected genes may not be detected in hypospadias patients 
after birth; to understand the deep mechanisms of hypospa-
dias, reliable animal models are required. We need to under-
stand the similarities and differences in the processes of 
penile development and hypospadias malformation among 
humans, mice, and other animal models, and carefully select 
animal models based on specific research questions. For 
studies of mechanisms of urethral groove formation and the 
“distal opening and proximal closing” in tubular urethral 
formation, guinea pig may be one good choice.
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