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A pair of Y-organs (YOs) are the molting glands of decapod crustaceans. They synthesize
and secrete steroid molting hormones (ecdysteroids) and their activity is controlled by
external and internal signals. The YO transitions through four physiological states over the
molt cycle, which are mediated by molt-inhibiting hormone (MIH; basal state), mechanistic
Target of Rapamycin Complex 1 (mTORC1; activated state), Transforming Growth
Factor-b (TGFb)/Activin (committed state), and ecdysteroid (repressed state) signaling
pathways. MIH, produced in the eyestalk X-organ/sinus gland complex, inhibits the
synthesis of ecdysteroids. A model for MIH signaling is organized into a cAMP/Ca2+-
dependent triggering phase and a nitric oxide/cGMP-dependent summation phase,
which maintains the YO in the basal state during intermolt. A reduction in MIH release
triggers YO activation, which requires mTORC1-dependent protein synthesis, followed by
mTORC1-dependent gene expression. TGFb/Activin signaling is required for YO
commitment in mid-premolt. The YO transcriptome has 878 unique contigs assigned to
23 KEGG signaling pathways, 478 of which are differentially expressed over the molt
cycle. Ninety-nine contigs encode G protein-coupled receptors (GPCRs), 65 of which
bind a variety of neuropeptides and biogenic amines. Among these are putative receptors
for MIH/crustacean hyperglycemic hormone neuropeptides, corazonin, relaxin, serotonin,
octopamine, dopamine, allatostatins, Bursicon, ecdysis-triggering hormone (ETH),
CCHamide, FMRFamide, and proctolin. Contigs encoding receptor tyrosine kinase
insulin-like receptor, epidermal growth factor (EGF) receptor, and fibroblast growth
factor (FGF) receptor and ligands EGF and FGF suggest that the YO is positively
regulated by insulin-like peptides and growth factors. Future research should focus on
the interactions of signaling pathways that integrate physiological status with
environmental cues for molt control.

Keywords: Y-organ, molting (control of), mTOR - mammalian Target of Rapamycin, ecdysteroid, neuropeptide,
insulin, growth factor, G protein coupled receptor (GPCR)
INTRODUCTION

The progression of decapod crustaceans through the molt cycle depends on ecdysteroids
synthesized by the Y-organ [YO; reviewed in (1)]. The molt cycle is unidirectional, progressing
from the intermolt stage through premolt, ecdysis, and postmolt stages to the next intermolt stage
[reviewed in (2, 3)]. Molting encompasses the preparatory processes during the premolt stage,
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Mykles Y-Organ Signaling
culminating with the actual shedding of the exoskeleton
(ecdysis), followed by restorative processes during the postmolt
stage. Rising titers of ecdysteroids in the hemolymph initiate and
coordinate premolt processes, such as synthesis of the new
exoskeleton, degradation and resorption of the old exoskeleton,
claw muscle atrophy, and limb regenerate growth (2, 4, 5). A
precipitous drop in hemolymph ecdysteroids at the end of
premolt triggers ecdysis (1). The low ecdysteroid titer during
postmolt allows claw muscle growth and completion of
exoskeleton synthesis and its calcification. Intermolt can last
from weeks to years in adult decapods.

Molt stage transitions are determined by phenotypic changes
in the activity and properties of the YO. In the intermolt stage
(stage C4), inhibitory neuropeptides produced in the X-organ/
sinus gland complex, such as molt-inhibiting hormone (MIH)
and crustacean hyperglycemic hormone (CHH), maintain the
YO in the basal state (Figure 1). A proposed model for MIH
signaling couples a cAMP/Ca2+-dependent triggering phase with
a NO/cGMP-dependent summation phase [reviewed in (2)]. The
prolonged activation of a calmodulin-dependent NO synthase
and NO-dependent guanylyl cyclase (GC-I) represses
ecdysteroidogenesis between MIH pulses (2, 6–9). The decision
to molt, or enter premolt, is determined by integration of
environmental and physiological cues by the central nervous
system that are not completely understood (10). A decrease in
MIH release by the X-organ/sinus gland complex, which can be
experimentally induced by eyestalk ablation (ESA), triggers YO
activation and entry into early premolt (stage D0) (2, 3, 11).
Multiple limb autotomy (MLA) also induces molting, as limb
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regenerates only become functional appendages when extended
at ecdysis (4, 12, 13). It is hypothesized that MLA-induced
molting is mediated by a stimulatory factor, designated limb
autotomy factor – anecdysis (LAFan), produced by the
developing limb buds (3). YO activation requires mechanistic
Target of Rapamycin Complex 1 (mTORC1) activity, as
rapamycin inhibits YO ecdysteroidogenesis in vitro and
prevents YO activation in vivo (14, 15). mTORC1-dependent
protein synthesis drives the initial increase in ecdysteroid
synthesis by the YO. The activated YO remains sensitive to
MIH, CHH, and other factors, giving the animal the flexibility to
suspend or delay molting when conditions turn unfavorable (2).

A critical decision point occurs at the end of early premolt,
when the animal becomes committed to molt. The transition of
the YO from the activated to the committed state is mediated by
transforming growth factor beta (TGFb)/Activin signaling, as
SB431542, an inhibitor of Activin receptor signal transduction,
prevents progression of animals from early premolt to mid-
premolt (stage D1; Figure 1) (15). mTORC1 activity affects the
mRNA levels of thousands of genes, including those in the
mTORC1 and TGFb/Activin signaling pathways (Figure 1)
(16). An invertebrate Myostatin (Mstn)-like factor, first
described in scallop and crustacean muscles (17–19), appears
to be the ligand for the Activin receptor. It is highly expressed in
the YO and its mRNA levels are highest in the activated YO (15,
20, 21). The committed YO increases ecdysteroid synthesis,
resulting in increasing ecdysteroid titers in the hemolymph
during mid-premolt and reaching a peak in ecdysteroid titer at
the end of late premolt (1). The committed YO also becomes
FIGURE 1 | Organization of the signaling pathways mediating YO phenotype transitions over the molt cycle. Cyclic nucleotide-mediated MIH signaling maintains the
YO in the basal state by inhibiting mTOR signaling. Reduction in MIH, such as by eyestalk ablation (ESA), stimulates mTOR activity, which is inhibited by rapamycin.
mTOR stimulates ecdysteroid synthesis and up-regulates mTOR and TGFb/Activin signaling genes, and down-regulates MIH signaling genes. Activin/myostatin
signaling, which is inhibited by SB431542, up-regulates mTOR signaling genes and controls expression of commitment genes that determine the committed
phenotype. High ecdysteroid titers in late premolt may trigger the repressed phenotype in postmolt. From (2).
June 2021 | Volume 12 | Article 674711
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Mykles Y-Organ Signaling
insensitive to MIH and CHH (2). Limb bud autotomy, which
suspends molting processes in early premolt, is no longer
effective in mid- and late premolt animals (2, 12, 13).

The signaling mechanisms controlling the transition of the
committed YO to the repressed YO at the end of late premolt and
the transition of the repressed YO to the basal YO at the end of
postmolt are not well understood. It is hypothesized that the
large peak in hemolymph ecdysteroid titer triggers the transition
to the repressed phenotype (Figure 1), as the YO expresses the
ecdysteroid receptor (EcR/RXR) and ecdysteroid-responsive
genes (2). The repressed YO has low ecdysteroid synthetic
activity, which results in low hemolymph ecdysteroid titers
during postmolt (1). Most of the 478 differentially-expressed
genes assigned to signal transduction pathways are down-
regulated to their lowest levels during the postmolt stage (21).
Among these are critical components of the MIH, mTORC1, and
TGFb/Activin signaling pathways (21). These data suggest
that the YO is not inhibited by MIH during postmolt and that
repression of the YO involves transcriptional regulation that
prevents premature reactivation of the YO until exoskeleton
synthesis and calcification are completed (2). The model assumes
that normal MIH control is not restored until the YO returns to
the basal state in intermolt.

Transcriptomics and proteomics have revolutionized
crustacean physiology (22, 23). These approaches have shown
that the YO undergoes molt stage-specific changes in phenotype
that differ quantitatively and qualitatively in mRNA and protein
levels (2, 16, 21, 24). mTORC1 activity plays a critical role in
controlling ecdysteroid synthesis at the transcriptional and
translational levels (2, 14, 16). Transcriptomics and proteomics
can also be tools for discovery. Analysis of the MLA Gecarcinus
lateralis YO transcriptome identified 878 unique contigs
Frontiers in Endocrinology | www.frontiersin.org 3
assigned to 23 KEGG signaling pathways, including those for
MIH/CHH, mTOR, and TGFb/Activin [Table 1; (21)]. The YO
also expresses MAP kinase, AMP kinase, ErbB, Hedgehog,
HIF-1, Jak-STAT, Hippo, NF-kappa B, Notch, TNF, and Wnt
signaling pathway genes among others, raising the possibility
that ecdysteroidogenesis is regulated by a great many factors (20,
21). Proteomic analysis has revealed that anti-radical oxygen
species, cytoskeletal, vesicular secretion, immune response,
protein homeostasis proteins contribute to G. lateralis YO
function (24). This review presents the current knowledge of
the signaling pathways that control ecdysteroid synthesis by the
YO and identifies areas for future research. It includes relevant
research on signaling mechanisms that control the insect
prothoracic gland.
G PROTEIN-COUPLED RECEPTOR-
MEDIATED SIGNALING

Transcriptomic analysis has revealed that a large number ofGprotein-
coupled receptors (GPCRs) are expressed in decapod crustacean
tissues. GPCRs are characterized by seven transmembrane domains,
an externalN-terminal domain, andaC-terminal cytosolic domain
(25). These are divided among three large classes: rhodopsin-like
(Class A),which represents the largest number ofGPCRs; secretin-
like (Class B); and metabotropic glutamate (Class C) (25–44).

All three GPCR classes are expressed in the YO, but represent
a subset of those cataloged in decapod tissues (25, 29). In green
shore crab Carcinus maenas, 62 contigs encoding GPCRs were
identified in the central nervous system (29). The YO expresses
37 GPCRs annotated to 17 ligand clusters (Table 2). Thirty-two
contigs are Class A and 5 contigs are in Class B; no Class C
TABLE 1 | Number of total and differentially expressed annotated contigs in the G. lateralis YO transciptome assigned to KEGG signal transduction pathways. From (21).

Signaling Pathway Pathway ID Number of annotated contigs Number of DE contigs (percentage)

AMPK signaling pathway k04152 86 53 (62%)
Calcium signaling pathway k04020 92 49 (53%)
cAMP signaling pathway k04024 104 65 (63%)
cGMP-PKG signaling pathway k04022 94 51 (54%)
ErbB signaling pathway k04012 48 24 (50%)
FoxO signaling pathway k04068 79 46 (58%)
Hedgehog signaling pathway k04340 36 21 (58%)
HIF-1 signaling pathway k04066 50 26 (52%)
Hippo signaling pathway k04390 95 52 (55%)
Jak-STAT signaling pathway k04630 26 12 (46%)
MAPK signaling pathway k04010 106 66 (62%)
mTOR signaling pathway k04150 92 54 (59%)
NF-kappa B signaling pathway k04064 33 16 (48%)
Notch signaling pathway k04330 28 17 (61%)
Phosphatidylinositol signaling system k04070 86 47 (55%)
Phospholipase D signaling pathway k04072 83 50 (60%)
PI3K-Akt signaling pathway k04151 128 69 (54%)
Rap1 signaling pathway k04015 115 63 (55%)
Ras signaling pathway k04014 105 57 (54%)
Sphingolipid signaling pathway k04071 98 60 (61%)
TGF-beta signaling pathway k04350 32 18 (56%)
TNF signaling pathway k04668 40 23 (58%)
Wnt signaling pathway k04310 79 51 (65%)
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Mykles Y-Organ Signaling
contigs were identified in the C. maenas YO (Table 2) (29).
Eleven GPCRs are enriched in the YO compared to the
epidermis; these were identified as gonadotropin-releasing
hormone receptor, tachykinin-like R86C, relaxin R1, two
rhodopsin G0-coupled receptors, two methuselah-like R1,
dopamine D2-like receptor, opsin UV-sensitive receptor,
serotonin R4, and GPCR161 (29). In addition, seven GPCRs
are differentially expressed over the molt cycle; these include
short neuropeptide F, Bursicon R2, CHHa R1, relaxin R3, ITPR-
like, Moody-like, and Ast-B/MIP-R1 (29). Deep high throughput
RNA sequencing and de novo assembly of the intermolt G.
lateralis YO identified 99 putative GPCRs, 65 of which were
annotated to 32 ligand clusters (Table 2) (25). The ligands are
mostly neuropeptides, but also include biogenic amines, such as
Frontiers in Endocrinology | www.frontiersin.org 4
dopamine, octopamine, and serotonin (Table 2). These data
suggest that the YO can potentially respond to a wide variety of
ligands. The possible roles of some of these GPCRs are discussed
in the sections below.

Surprisingly, the YO expresses a variety of peptide hormones.
In C. maenas, contigs encoding 19 full-length peptides were
identified (29). The six peptides that are expressed at the highest
levels are Neuroparsin-1, -3, and -4; CHH-1, inotocin/
vasopressin, and Eclosion Hormone-2 (29). Further research
should determine if the transcripts are translated into peptides
and the peptides are secreted into the hemolymph. If so, it would
provide compelling evidence that the YO has endocrine
functions beyond that of ecdysteroid production.

Putative G Protein-Couple Receptors
for CHH Family Neuropeptides
Peptides in the CHH family are divided into two types that differ
in the amino acid sequences of the precursor proteins. Members
of this family, which includes insect ion transport peptide (ITP),
have a 66-amino acid “CHH family motif” in the mature peptide
with six conserved cysteines that form three intramolecular
disulfide bridges to stabilize the structure of the native protein
(46–50). Type I peptides, which include CHH and ITP, are
characterized by a signal peptide sequence followed by CHH/ITP
precursor-related peptide (CPRP) and mature peptide sequences.
Type II peptides, which include MIH, gonad-inhibiting hormone
(GIH), and mandibular organ-inhibiting hormone (MOIH), lack
a precursor-related sequence and have a glycine inserted between
residues #11 and #12 and an invariant valine at position #20 in
the mature peptide (46). Recently, a comprehensive phylogenetic
analysis of crustacean ITPs proposed that ITPs be assigned to a
third group (Type III) distinct from Type I CHHs (48, 50). The
solution structures of MIH and CHH are similar, except that a
short alpha-1 helix at positions #10 through #13 in MIH is
lacking in CHH (49, 51). It is thought that the Gly12 contributes
to the formation of the alpha-1 helix in Type II peptides (51).
The surface structures of the N- and C-terminal regions confer
specificity of binding to distinct receptors in the YO membrane
(47, 49, 51–54).

The identification and characterization of the MIH receptor
has remained elusive for more than three decades (46, 55). It is
hypothesized that the receptors for the CHH family are GPCRs,
given the similar native structures of Type I and Type II peptides
(49, 51) and signal transduction mediated by cyclic nucleotide
second messengers (56). In insects, studies of silk moth GPCRs
(Bombyx neuropeptide G-protein coupled receptors, or BNGRs)
identified BNGR-A2 and -A34 as ITP receptors, and BNGR-A24
is an ITP-like receptor (57). Based on this discovery, two full-
length contigs (Pc-GPCRA52 and A53) and one partial contig
(Pc-GPCRA63) from the transcriptome of adult Procambarus
clarkii were identified as putative CHH-like receptors (CHHRs)
(58). Subsequently, CHHR orthologs from more than ten other
decapod crustacean species have been identified (25, 27, 29).

Three putative CHHRs, designated Gl-GPCR-A9, -A10, and
-A12, are expressed in the G. lateralis YO transcriptome (25).
Two CHH/ITP-like receptors were identified in the C. maenas
TABLE 2 | Classification and number of contigs encoding G protein-coupled
receptors in the Gecarcinus lateralis and Carcinus maenas Y-organ transcriptomes.

Predicted receptor G. lateralis C. maenas

Class A (Rhodopsin-like)
Adenosine 1 0
Allatostatins 3 4
CCAP 1 3
CCHamide 2 3
CHH/ITP 3 2
Corazonin 2 2
Dopamine 0 1
ETH 1 2
FMRFamide 2 1
HPR1 4 0
Leucine-rich repeats family
Type A (GPA2/GPB5) 2 3
Type B (Lgr2; Bursicon) 1 3
Type C1 (Lgr3; Dilp8) 1 3
Type C2 (GRL101-like) 1 0

Moody 1 2
Myosuppressin 0 1
Octopamine 1 0
Peropsin 1 0
Proctolin 1 2
Prostaglandin 4 0
Serotonin (5-HT) 2 0
sNPF 1 1
Tre-1 (formerly TIE) 1 0
TRH 1 0
Class B (Secretin-like)
DH31 1 4
DH41 1 0
Latrophilin 3 0
Lipoprotein 4 0
Methuselah 12 0
Parathyroid 1 0
PDF 3 1
Class C (Metabotropic glutamate)
Boss 1 0
Mangetout 1 0
Metabotropic glutamate 1 0
CCAP, crustacean cardioactive peptide; CHH, crustacean hyperglycemic hormone; DH,
diuretic hormone; ETH, ecdysis triggering hormone; HPR1, protein receptor in
hepatopancreas 1; 5-HT, 5-hydroxytryptamine; ITP, ion transport peptide; PDF,
pigment dispersing factor; sNPF, short neuropeptide F; Tre-1, trapped in endoderm-1;
TRH, thyrotropin-releasing hormone. Data from (25, 29, 45).
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YO transcriptome (29). Further phylogenetic analysis showed
that the arthropod CHH/ITP GPCRs formed three clusters,
designated CHHR1, CHHR2, and CHHR3/ITP-like R/tachykinin
R (Figure 2). As Gl-GPCR-A9 and -A10 were grouped in the
CHHR1 cluster, they are renamed Gl-CHHR-1A and -1B,
respectively; Gl-GPCR-A12 is renamed Gl-CHHR-2 (Figure 2).
Modeling the 3-dimensional structures of the G. lateralis CHHRs
gave a highly conserved outcome of a predicted cleft at the N-
terminus, suggesting a common role in binding CHH family
hormones (Figure 2). End-point PCR showed that neither Gl-
CHHR-1A or -2 are exclusively expressed in the YO, as would be
expected for the MIH receptor; Gl-CHHR-1B was not examined
(25). Interestingly, the YO is the only tissue to express both CHHRs.
Eyestalk ganglia, thoracic ganglion, gill, heart, and midgut only
express Gl-CHHR-1A; testis, hindgut, and hepatopancreas only
express Gl-CHHR-2; and claw muscle does not express either
CHHR (25). The three G. lateralis CHHRs are differentially
expressed in the YO over the molt cycle, which suggests altered
sensitivities to CHH neuropeptides associated with YO phenotypic
changes. Gl-CHHR-1A has higher expression in intermolt and
decreases during premolt stages; Gl-CHHR-1B is expressed during
intermolt with higher expression during premolt stages; and Gl-
CHHR-2 is expressed at high levels at late premolt (25). None of the
Gl-CHHRs are expressed during postmolt (25). One of the CHH/
ITP-like receptors in the C. maenas YO is differentially expressed
over the molt cycle, with highest expression in late premolt (29).
Frontiers in Endocrinology | www.frontiersin.org 5
Future research must use a functional assay to establish which, if
any, of the GPCR candidates is the MIH receptor.

Corazonin Receptor
Corazonin (CRZ) is a conserved 11- amino acid neuropeptide with
an amidatedC-terminus andpGluat theN-terminus. The sequence
(pQTFQYSRGWTNa) is highly conserved among insect and
crustacean species, although variants with single amino acid
substitutions occur in some insects (59, 60). In Drosophila
melanogaster, CRZ neurons modulate prothoracicotropic
hormone (PTTH) action on basal ecdysteroidogenesis by the
prothoracic gland (PG), thus controlling larval growth without
affecting metamorphosis (61). C. maenas corazonin receptor (Cm-
CRZR) isprimarily expressed in theYO, suggesting thatCRZplays a
role in regulating ecdysteroidogenesis (45). However, CRZ peptide
(50 nM), which is produced in the eyestalk ganglia and other areas
of the central nervous system, has only a small stimulatory effect on
YO ecdysteroidogenesis in postmolt (stages A-B) C. maenas (45).

Leucine-Rich Repeat Receptor
and Insulin-Like Peptides
Tissue loss or injury delays molting, allowing time for
regeneration or regrowth of tissues or organs prior to the next
ecdysis. Molting delay by limb bud autotomy (LBA) in
crustaceans and injury to imaginal discs in insects allows time
for tissue regeneration, while growth of remaining or undamaged
FIGURE 2 | Comparison of decapod putative CHH and insect and mite ITP-like/tachykinin GPCRs. Left: A phylogram (left) of arthropod neuropeptide GPCRs
showing three clusters designated CHHR1 (red), CHHR2 (green), and CHHR3/ITP-like R/tachykinin R (black). G. lateralis (Gec_lat) CHHR1A and 1B, originally
designated Gl-GPCR-A9 and -A10, respectively (25), are within the CHHR1 cluster (red arrows) and CHHR2, originally designated Gl-GPCR-A12 (25), is within the
CHHR2 cluster (green arrow). Species: Bm, Bombyx mori; Dm, Drosophila melanogaster; Nl, Nilaparvata lugens; Pen van, Penaeus (Litopenaeus) vannamei;
Procambarus, P. clarkii; Sv, S. verreauxi; and Tu, Tetranychus urticae (red spider mite). Right: Structural models comparing the putative CHHR1 proteins from two
decapod species predicted by GPCR-I-TASSER (27): S. verreauxi (Sv-GPCRA11) and G. lateralis Gl-CHHR1A. Gold indicates the N-terminal neuropeptide binding
cleft in the extracellular domain. Blue indicates the transmembrane domain containing the 7 a-helices characteristic of GPCRs and the C-terminal intracellular
domain. Figure provided by Dr. Tomer Ventura.
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tissues slows or stops (12, 13, 62–66). In crustaceans, LBA during
early premolt (stage D0) suspends premolt two to three weeks by
lowering hemolymph ecdysteroid titers, so that animals can
regain a full set of functional claws and legs at ecdysis (13, 67).
In G. lateralis, secondary LBs produce a factor, designated Limb
Autotomy Factor – proedysis (LAFpro), that lowers hemolymph
ecdysteroid (3, 12, 13). In insects, regenerating imaginal discs
produce a factor, identified as Drosophila insulin-like peptide 8
(Dilp8) in D. melanogaster, that delays metamorphosis by
lowering ecdysteroid synthesis by the prothoracic gland (PG)
(64, 68–70). Dilp8 also delays molting by activating Lgr3 neurons
in the brain, which inhibit PTTH synthesis in PTTH neurons
(71–74).

The LAFpro signaling pathway has not been fully
characterized, but parallels with the action of Dilp8 on the
insect PG suggest a common mechanism. Dilp8 is one of eight
insulin-like peptides (ILPs) in D. melanogaster (74–78). The ILP
superfamily consists of insulin, insulin-like growth factors
(IGFs), and relaxin-like peptides (38, 71). Dilp 1 to 6 are in the
insulin/IGF clade and bind to receptor tyrosine kinase receptors;
Dilp 7 and 8 are in the relaxin-like clade and bind to leucine-rich
repeat GPCRs (71, 74, 75). LAFpro is a peptide that is distinct
fromMIH. MIH is resistant to boiling in deionized water or weak
acids (see (13) for references). LAFpro is stable when boiled
15 min in deionized water, but is inactivated by boiling in 0.1 M
acetic acid (pH 2.9) and by proteinase K digestion (13). Dilp8
action is mediated through relaxin receptor Lgr3 and activation
of NOS (73, 74, 79). NO donors inhibit ecdysteroidogenesis in
both insect and crustacean molting glands (80–82). Dilp8
binding to Lgr3 stimulates production of cAMP in Drosophila
cells (71). Up-regulation of Dilp8 delays expression of Halloween
genes disembodied (Dib) and phantom (Phm) in the PG (68, 69).
Moreover, targeted tissue damage or NOS overexpression in the
PG lowers the expression of Halloween genes spookier (Spok)
and Dib (79). These data suggest that Dilp8-induced NO
inhibition of ecdysteroid synthesis is mediated by the down-
regulation of cytochrome P450 enzymes, but it is unclear how
NO represses gene transcription. A Lgr3-like GPCR is expressed in
theG. lateralis andC.maenasYOtranscriptomes (Table 2) (25, 29).
An ILP2 is an ortholog of Dilp8 that is primarily expressed in
nervous tissue, such as brain and eyestalk ganglia of Eastern spiny
lobster (Sagmariasus verreauxi); brain and thoracic ganglionof red-
claw crayfish (Cherax quadricarinatus); and in eyestalk ganglia,
brain (males), thoracic ganglion (males), and sperm duct in ornate
spiny lobster (Panulirus ornatus) (42, 83). It is not known if ILP2 is
expressed in limb regenerates, and if there is higher expression in
secondary than primary regenerates, as only 2˚ regenerates have
LAFpro activity (13). Taken together, these data suggest that LAFpro
is an Dilp8-like peptide that binds to Lgr3, activating the MIH
signaling pathway to inhibit YO ecdysteroidogenesis (Figure 3).

Ca2+/Diacylglycerol/Protein Kinase
C Signaling
In the canonical pathway, ligand binding to a GPCR activates
phospholipase C (PLC) via a Gq protein anchored in the cell
membrane. PLC converts phosphatidylinositol to diacylglycerol
Frontiers in Endocrinology | www.frontiersin.org 6
(DAG) and inositol trisphosphate (IP3). DAG and IP3-initiated
release of Ca2+ from smooth endoplasmic reticulum activate
protein kinase C (PKC), which phosphorylates downstream
targets to effect metabolic changes. All these components are
represented in the KEGG calcium and phosphatidylinositol
signaling pathways (Table 1) (21). Moreover, the YO has PKC
activity (85).

Activation of PKC stimulates ecdysteroid synthesis and
secretion by the YO. Studies using pharmacological reagents
show that the pathway activating PKC is distinct from the MIH
signaling pathway (Figure 3). A DAG analog or phorbol 12-
myristate 13-acetate (PMA) stimulate PKC activity and
ecdysteroid secretion by the Cancer antennarius YO in vitro
(85). PMA counters the inhibitory effects of reagents that
stimulate MIH signaling, such as forskolin, dibutyryl cAMP,
and cyclic nucleotide phosphodiesterase inhibitor IBMX, and has
no effect on cAMP levels (85). By contrast, PMA has the opposite
effect on crayfish YO by inhibiting ecdysteroid secretion (86).
PLC inhibitor U-73122 has no effect on crab and crayfish YO
ecdysteroid production in vitro, and there are no changes in IP3
and DAG contents of YOs from intact and eyestalk-ablated crabs
(86), suggesting that PKC is not involved in YO activation in
early premolt. The downstream targets of PKC are unknown.
mTORC1 signaling is likely involved, as PMA stimulates protein
synthesis in the YO (84, 85, 87). A potential target of PKC is Akt
in the mTOR signaling pathway (Figure 3).

The ligand and GPCR for the PKC pathway have not been
identified. An intriguing possibility is that PKC is activated by
serotonin (5-hydroxytryptamine) and other biogenic amines. The
YO expresses serotonin, dopamine, and octopamine GPCRs
(Table 2) (25, 29). Serotonin, dopamine, and octopamine function
as neurotransmitters and neuromodulators in the crustacean central
nervous system, but they may also act as neurohormones (46, 60,
88–91). Interestingly, there is evidence that the YO can synthesize
serotonin (92). Much of the research of biogenic amines functioning
as neurohormones has been focused on their roles in regulating
decapod reproduction. For example, serotonin stimulates ovarian
maturation, whereas octopamine delays gonadal development and
inhibits ovarian maturation (93–95). Serotonin stimulates YO
ecdysteroid production in vitro in mud crab (Scylla serrata) (96). In
insects, serotonergic neurons directly innervate the PG and stimulate
ecdysteroidogenesis (97–99). Octopamine acts as an autocrine factor
that enhances PG ecdysteroidogenesis (100), but its effect on YO
ecdysteroidogenesis is unknown. In C. maenas, dopamine D2-like
and 5-hydroxytryptamine receptor 4 are up-regulated in the YO
relative to their levels in the epidermis, although the receptors are not
differentially expressed in the YO over the molt cycle (29). In
G. lateralis YO, two serotonin receptors, designated Gl-GPCR-A30
and -A32, and an octopamine receptor, designated Gl-GPCR-A34,
show different patterns of expression over the molt cycle (dopamine
receptorwas not identified in theG. lateralisYO transcriptome) (25).
Gl-GPCR-A30 shows higher expression in early premolt and no
expression in postmolt animals, whileGl-GPCR-32 is expressed in all
five molt stages with higher expression in postmolt (25). Gl-GPCR-
A34 is expressed in all molt stages, with higher expression during
premolt (25). These data suggest that serotonin and octopamine are
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tropic factors in the YO. However, the signaling pathways activated
by biogenic amines differ between insects and crustaceans. In the PG,
serotonin and octopamine increase cAMP (97, 98), while in the YO,
serotonin and octopamine action may be mediated by Ca2+/DAG
(Figure 3). Future research should be directed to establishing the
mode of action of biogenic amines on the YO.
RECEPTOR TYROSINE KINASES

The receptor tyrosine kinase (RTK) superfamily regulates animal
development and homeostasis (101). There are about 58 RTKs in 20
subfamilies in mammals, with fewer in arthropods.D. melanogaster,
for example, has 20 RTKs distributed among 14 subfamilies (76).
RTKs have an extracellular ligand-binding domain, a single-pass
transmembrane domain, and an intracellular tyrosine kinase
domain (TKD). Most RTKs are heterodimers with each subunit
consisting of a single polypeptide. By contrast, the insulin receptor is
a heterotetramer, consisting of heterodimers of alpha and beta
chains linked by disulfide bonds; the a-chain is completely
extracellular and, together with the extracellular domain of the
b-chain, binds ligand (101). Ligand binding activates RTK activity;
autophosphorylation of the TKD activatesMAPK, PI3K/Akt, PLCg-
Frontiers in Endocrinology | www.frontiersin.org 7
PKC, JAK/STAT, or Rac-Rho signaling cascades (76, 101). The YO
expresses both ILP receptors and growth factor receptors (Table 3).

Insulin-Like Peptide Receptor Signaling
In insects, ILPs are among the many factors that coordinate
organismal growth and organ size and determine the timing of
molting and metamorphosis (74, 78, 98, 102–105). A target of
ILPs is the PG. Insulin-producing neurons in the brain secrete
ILPs, in particular Dilp2, 3 and 5, that stimulate ecdysteroid
production by the PG (74, 76, 102, 106). ILP/insulin-like protein
receptor (InsR) signaling in the PG is mediated by PI3K/Akt/
mTOR (74, 97, 106, 107). The role of ILP/InsR signaling in
development and growth of crustaceans is not well understood,
but it is likely that it has similar actions. Much of the research on
crustacean ILP/InsR signaling has focused on reproduction
(108, 109).

Insulin/ILPs are synthesized as a single polypeptide with an
N-terminal signal peptide sequence, followed by B, C, and A
chains (75, 77, 109). Proteolytic processing removes the signal
peptide and excises the C chain, producing a B chain/A chain
heterodimer stabilized by inter- and intra-chain disulfide bonds
between conserved cysteines (75, 77, 109). In some ILPs, the C
chain is not completely removed, producing a polypeptide, in
FIGURE 3 | Proposed G protein-coupled receptor-mediated signaling pathways regulating ecdysteroidogenesis in the YO. MIH and limb autotomy factor -
proecdysis (LAFpro) activate cyclic nucleotide/NO-dependent signaling via distinct receptors. It is hypothesized that LAFpro, secreted by secondary limb regenerates
during early premolt, is an insulin-like peptide similar to dILP8 in Drosophila that binds to Lgr3. Cyclic phosphodiesterase (PDE) activity inhibits MIH and LAFpro
signaling by hydrolyzing cAMP and cGMP to AMP and GMP, respectively. An unknown ligand, possibly serotonin or other biogenic amines (see Ca2+/Diacylglycerol/
Protein Kinase C Signaling Section), binds a GPCR to activate the Ca2+/diacylglycerol (DAG)/protein kinase C (PKC) pathway. Both pathways converge on mTOR
signaling, possibly by phosphorylation of tuberous sclerosis complex (TSC) by protein kinase G (PKG) to inhibit ecdysteroid synthesis or by phosphorylation of Akt by
PKC to stimulate ecdysteroid synthesis (2, 12, 50, 84).
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which part of the C chain is retained (77). ILPs have been
identified in decapod crustacean transcriptomes (28, 32, 33, 38,
83, 110–114). One of the best characterized ILP is the insulin-like
androgenic gland hormone (IAG); it is expressed primarily in the
androgenic gland and determines adult male characteristics (42,
83, 108, 109, 115, 116). In Portunus trituberculatus, Pt-IAG is
expressed at very low levels in the YO (116). Other crustacean ILPs
are expressed in most tissues, but at differing levels. In the oriental
river prawn, Macrobrachium nipponense, Mn-ILP is expressed in
brain, eyestalk ganglia, nerve cord, gonads, hepatopancreas, and
muscle in adults (117). Mn-ILP expression is highest during the
rapid growth stage in younger individuals and during the
intermolt stage in older individuals (117). Sv-ILP1 and Cq-ILP1
are relaxin-like ILPs that are expressed in brain, antennal gland,
gonads, and hepatopancreas (females only) (83, 113).

It is generally accepted that decapod crustaceans, like most
invertebrates, express a single functional insulin receptor (InsR)
(118). InsR has been biochemically characterized in gill, muscle,
and hepatopancreas (119–121). InsR b-chain is expressed in many
tissues, including the androgenic gland of male Macrobrachium
rosenbergii (Mr-IR) (122), Fenneropenaeus chinensis (Fc-IAGR)
(123), and S. verreauxi (Sv-TKIR) (124). Orthologs ofMr-IR have
been identified in the neuropeptidomes of six other decapod
species (33). Interestingly, silencing of Mr-IR led to androgenic
gland hypertrophy and increasedMr-IAG production, but had no
effect on somatic growth or sex determination, suggesting that
molting and sexual differentiation are not solely dependent on the
insulin receptor (122). S. verreauxi tyrosine kinase insulin receptor
(Sv-TKIR), when expressed in a COS-7 cell reporting system, is
activated by recombinant Sv-IAG and, to a lesser extent,
recombinant human insulin, followed by recombinant Mr-IAG
and Cq-IAG (124). In the YO, ESA results in a down-regulation of
G. lateralis-InsR, which is blocked by rapamycin, suggesting that
mTORC1 activity represses Gl-InsR expression (16).

Remarkably, there are no studies on the effects of insulin or
ILPs on YO ecdysteroidogenesis. However, studies of other
crustacean tissues indicate that insulin/ILP action is mediated
through PI3K/Akt or MAPK/ERK signaling. Bovine insulin
increases Sp-vitellogenin (Sp-Vtg) mRNA levels in hepatopanceas
explants from Scylla paramamosain (125). Relatively high
concentrations of bovine insulin were needed to elicit a response
(>200 ng/ml). The insulin-induced increase in Sp-Vtg is blocked
by PI3 kinase inhibitor (LY294002) and mTORC1 inhibitor
rapamycin (125). Their respective recombinant IAGs increase
MAPK/ERK phosphorylation in M. rosenbergii, S. verreauxi, and
Frontiers in Endocrinology | www.frontiersin.org 8
Cherax quadricarinatus testis explants in vitro (124). In insects,
ILPs (e.g., Dilps1-6 in D. melanogaster and Bombyxin in Bombyx
mori) stimulate PI3K/Akt signaling and mTORC1-dependent
ecdysteroidogenesis in the insect PG (78, 97, 106, 107, 126–129).
Based on these data, a model for ILP signaling in the YO is
proposed (Figure 4). Binding of ILPs, such as ILP2, to InsR
activates PI3K/Akt signaling, leading to mTOR activation and
increased ecdysteroid synthesis. Alternatively, or perhaps in
conjunction with PI3K/Akt signaling, ILP activates MAPK/ERK
signaling (Figure 4). Both pathways converge onmTOR in animal
cells (130, 131).

Growth Factor Receptor Signaling
Growth factor signaling is mediated by the Ras/Raf/MAPK and
PI3K/PDK1/Akt pathways (Figure 4) (132). In insects, growth
factors, such as epidermal growth factor (EGF), fibroblast growth
factor (FGF), platelet-derived growth factor, (PDGF) and
vascular endothelial growth factor (VEGF), serve many
functions crit ical for embryogenesis , molt ing, and
metamorphosis (76). Activation of the Ras/Raf/MAPK pathway
stimulates ecdysteroidogenesis in the insect PG (97, 106).
Although not a growth factor, prothoracicotropic hormone
(PTTH) activates this pathway by binding to an RTK encoded
by Torso (97, 98, 102, 106, 133). PTTH is the primary factor that
initiates larval molts in most insects. However, a recent study has
shown that EGF receptor (EGFR) signaling supports PG
ecdysteroidogenesis during the 3rd larva to pupa transition in
D. melanogaster (134). The function of growth factors in YO
ecdysteroidogenesis is unknown. Growth factor signaling
pathways are well represented in the YO. These include the
ErbB, MAPK, PI3K/Akt, and Ras KEGG signaling pathways
(Table 1). Contigs can be assigned to two or more of the KEGG
pathways (Figure 4) (21). The G. lateralis YO transcriptome has
contigs encoding 106 MAPK signaling components, 66 of which
are differentially expressed over the molt cycle (Table 1) (21).
Forty-eight contigs assigned to the ErbB pathway, which includes
EGFR signaling, have been identified (Table 1).

Knowledge of growth factors and their functions in
crustaceans is limited. Unfortunately, there are no studies
determining the effects of EGF, FGF, or VEGF on YO
ecdysteroidogenesis. Immunohistochemical analysis indicated
that eyestalk ganglia express a VEGF-like protein and VEGF
receptor (135). The broad scale application of transcriptomics
has aided the identification of growth factors and their receptors
in decapod crustacean tissues. VEGFR is expressed in the
TABLE 3 | Tyrosine receptor kinases and ligands expressed in G. lateralis MLA or ESA Y-organ transcriptomes (16, 20, 21).

Identity Contig ID Transcriptome ORF (aa) Partial/Full Length Top Hit % Identity

EGF c202604_g1_i1 ESA 197 Partial P. monodon 60%
FGF c189642_g1_i1 MLA 202 Full L. vannamei 91%
EGFR c267955_g1_i3 MLA 1491 Full C. opilio 90%
InsR contig_69766 MLA 1297 Full L. vannamei 29%
FGFR c219909_g2_i1 ESA 746 Full L. vannamei 75%
June
 2021 | Volume 12 | Art
Sequences were identified using a reciprocal BLAST and locating conserved domains with NCBI conserved domain search tool. EGF, epidermal growth factor; EGFR, epidermal growth
factor receptor; FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; InsR, insulin-like receptor b subunit; ORF, open reading frame (amino acids). Species: C. opilio,
Chionoecetes opilio; L. vannamei, Litopenaeus vannamei; and P. monodon, Penaeus monodon.
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embryos of Macrobrachium olfersi (136). The VEGF signaling
pathway is enriched in hemocytes from pathogen-infected
Eriochier sinensis, suggesting that VEGF is involved in
mounting an immune response (137). Lv-EGF, Lv-EGFR, and
Lv-VEGFR are expressed in embryos and larvae of Litopenaeus
vannamei (138). In M. rosenbergii, Mr-EGFR is expressed in
most tissues, with higher expression in thoracic ganglion, ovary,
and testis (139). Knockdown ofMr-EGFR slows accumulation of
mass in juvenile maleM. rosenbergii, but has no effect on ecdysis
frequency (139). Using transcriptomic data, a cDNA encoding
the complete EGFR sequence was cloned from S. parmamosain
ovary; Sp-EGFR is expressed in most tissues, with higher
expression in YO, ovary, stomach, heart, and gill (140).
Human EGF (1 nM and 10 nM) caused a transient increase in
Sp-Vtg receptor and Sp-Cyclin B mRNA levels in ovary explants;
Frontiers in Endocrinology | www.frontiersin.org 9
the increases were blocked by pretreatment with EGFR tyrosine
kinase inhibitors AG1478 and PD153035 (140). The G. lateralis
YO expresses Gl-EGF, Gl-FGF, Gl-EGFR, and Gl-FGFR (Table 3)
(16, 20). These data suggest that EGFR functions in a wide
variety of tissues, including the YO (Table 3). The expression of
Gl-EGF and Gl-FGF suggests that EGF, and perhaps FGF, act as
autocrine factors in the YO as EGF does in the PG (134).
TRANSFORMING FACTOR b/ACTIVIN
SIGNALING

TGFb signaling plays essential roles in animal cell differentiation
and homeostasis, and dysregulation of TGFb signaling
contributes to many diseases including cancer (141–143). In the
FIGURE 4 | Proposed receptor tyrosine kinase (RTK)-mediated signaling pathways stimulating ecdysteroidogenesis in the YO based on data from the insect
prothoracic gland (97, 98). YOs express both types of RTKs (Table 3). Growth factors, such as epidermal growth factor (EGF) or fibroblast growth factor (FGF), bind
to EGF or FGF receptors, respectively, to activate the Ras/Raf/MEK/ERK signaling pathway. Insulin/insulin-like peptide (ILP) binds to insulin receptor (INSR) to
activate PI3K/PDK/Akt and/or Ras/Raf/MEK/ERK signaling. Both pathways converge on mTOR signaling by phosphorylation of tuberous sclerosis complex (TSC) by
Akt or ERK, respectively. ERK, extracellular signal-regulated kinase; IRS, insulin receptor substrate; MEK, MAPK/ERK kinase; PDK, protein 3-phosphoinositide-
dependent protein kinase; PI3K, phosphoinositide 3-kinase (PI3K).
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canonical pathway, a ligand binds to TGF receptor 2 (R2)
homodimer, which associates with TGFR1 homodimer to form
the active heterotetramer receptor complex by TGFR2
autophosphorylation and phosphorylation of TGFR1 and
regulatory (R)-Smad (144, 145). Two phospho-R-Smads bind to
one Co-Smad and the R-Smad/Co-Smad complex translocates to
the nucleus to regulate gene transcription (141, 144, 145). Several
proteins inhibit TGFb signaling. Inhibitory (I)-Smads block TGFb
signaling by either preventing R-Smad phosphorylation by TGFR2
or preventing binding of Co-Smad to phospho-R-Smad. FK-506
binding protein 1A (FKBP12) binds to TGFR1 and prevents
phosphorylation of TGFR1 by TGFR2 (141, 146). BMP and
activin membrane bound inhibitor (BAMBI) acts as a TGFR1
pseudo receptor, as it binds ligand, but lacks the protein kinase
domain for signal transduction. TGFb signaling cross-talks with
many other signaling pathways, such as MAPK, Akt, PKC,
CAMKII, GSK3, JAK, JNK, Wnt, Notch, and Hedgehog (145).

TGFb ligands include bone morphogenic proteins (BMPs),
growth and differentiation factors (GDFs), Activin, anti-
Müllerian hormone, nodal, and TGFbs (143, 147). They often
function as autocrine factors, acting on the same tissue in which
they are synthesized and secreted. TGFb/Activin signaling, in
particular, determines the competency of insect and crustacean
molting glands to respond to neuropeptides (2, 97, 103). Insects
express three Activins: Activin-b (Actb), Myoglianin (Myo)/
Myo-like, and Dawdle (Daw) (148, 149). In D. melanogaster,
knocking out Activin signaling by targeting R-Smad dSmad2,
Type I receptor Baboon (Babo), Type II receptor Punt, or Co-
Smad Medea in the PG leads to 3rd instar arrest and failure of
larvae to metamorphose and down-regulation of signaling genes
Torso and InR and Halloween genes Dib and Spok in the PG
(150). In the German cockroach Blatella germanica, an increase
in Bg-Myo mRNA levels in the PG is associated with increased
ecdysteroid synthesis at the end of the 5th instar (151). These data
indicate that Activin signaling is necessary for the stimulation of
ecdysteroidogenesis by PTTH and ILP. Interestingly, knocking
out any one of the three Activin ligands Actb, Myo, or Daw has
no effect on D. melanogaster molting and metamorphosis (148).
All three ligands must be knocked out in the PG in order to
manifest the developmental arrest phenotype, suggesting some
degree of redundancy between the three ligands and their Babo
receptors (148). Adult decapod crustaceans express a single
myostatin (Mstn)-like/GDF11 that is related to mammalian
Mstn/GDF8 and GDF11 (2, 18). TGFb/Mstn signaling drives
the transition of the YO to the committed state, resulting in the
YO becoming less sensitive to MIH and CHH in mid-premolt
and late premolt (2, 15, 152). Recently, a cDNA encoding a
Dawdle-like factor was characterized in S. paramansosain. Sp-
Daw is expressed primarily in embryos and larvae, suggesting
that it plays a role in developmental processes (153). It may also
be involved in the innate immune response in adults (153).

Mstn is expressed in most crustacean tissues, with generally
higher levels in the YO, heart, and muscle (15, 18, 154–161). Most
studies have focused on the role ofMstn as a negative regulator of
muscle growth, which contributes to organismal growth (5). In
Chinese shrimp F. chinensis, Fc-Mstn mRNA levels are inversely
Frontiers in Endocrinology | www.frontiersin.org 10
correlated with growth traits among individuals from different
genetic lineages (162). It appears that Mstn slows muscle growth
by inhibiting mTORC1-dependent protein synthesis. In G.
lateralis claw muscle, increased protein synthesis during premolt
is correlated with decreased expression of Gl-Mstn and increased
expression ofGl-Rheb, the activator of mTORC1 (17, 163). Several
studies have attempted to knock downMstn expression as a means
to promote growth in aquacultural species. Surprisingly, in several
cases, Mstn ds-RNA injection has just the opposite effect: an
increase in molt interval and/or decrease in growth rate in Penaeus
monodon, L. vannamei, and Fenneropenaeus merguiensis (155,
159, 164). These studies did not consider off-target effects.
Reduced expression of Mstn in the YO could have blocked or
delayed the progression from early premolt to mid-premolt, thus
lengthening the interval between ecdyses. The effects on YOMstn
mRNA levels were not examined in these studies. However,
injection of Es-Mstn-dsRNA or Es-Activin receptor IIB (Es-
ActRIIB) dsRNA into juvenile E. sinensis and injection of Fc-
Mstn-dsRNA into juvenile F. chinensis accelerated molting and
growth when compared to a control group (154, 165, 166).
However, control animals were injected with RNase-free water
or phosphate-buffered saline, rather than an unrelated dsRNA
construct (154, 164–166). Thus, one cannot rule out a nonspecific
response to dsRNA injection. Only two of the studies used dsRNA
products of unrelated sequences as controls, and both those
showed molt inhibition (155, 159).

Molting alters TGFb/Activin signaling gene expression in the
G. lateralis YO. Analysis of RNAseq data of MLA-induced
animals shows increases of Gl-Activin RI, Gl-Smad2/3 (Gl-R-
Smad), and Gl-Smad4 (Gl-Co-Smad) in early premolt to mid-
premolt, while TGFb signaling inhibitors, Gl-Smad6 (Gl-I-Smad)
and Gl-BAMBI, are down-regulated during premolt (21). By
contrast, ESA decreases Gl-Activin RI, Gl-Smad2/3, Gl-Smad4,
Gl-Smad6, and Gl-BAMBI expression (16). The differences
between the MLA and ESA transcriptome results are attributed
to the ESA study focusing on initial YO activation as the animals
did not transition to mid-premolt (16). Neither MLA nor ESA
had a significant effect on the relative expression of Gl-Mstn in
the G. lateralis YO transcriptomes (16, 21), although qPCR
showed that Gl-Mstn mRNA level increases by three days post-
ESA (15). Future research should use qPCR to establish the
precise timing of the effects of ESA ± SB431542 on the expression
of TGFb/Mstn signaling genes.
mTOR SIGNALING

mTOR is a serine/threonine PI3-related protein kinase that
allocates energy in response to nutrients, growth factors, and
stress in eukaryotic cells at transcriptional and post-translational
levels (167–169). mTOR associates with other proteins to form
two complexes: mTOR Complex 1 (mTORC1) and Complex 2
(mTORC2) (169). mTORC1 contains Raptor and controls protein
translation, lipid and nucleotide synthesis, and autophagy (169,
170). mTORC2 contains Rictor and controls cytoskeletal
remodeling, ion transport, and cell survival and proliferation
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(169, 170). mTORC1 is inhibited by rapamycin, mediated by
FKBP12, while mTORC2 is insensitive to rapamycin (167, 169).
mTORC1 is activated by GTP/Ras homolog enriched in brain
(Rheb). Rheb, in turn, is controlled by the tuberous sclerosis
complex (TSC), a heterotrimeric protein composed of Hamartin
(TSC1), Tuberin (TSC2), and TBC1 domain family member 7
(TBC1D7) (169). TSC is a GTPase activating protein (GAP) that
inactivates GTP/Rheb by promoting the hydrolysis of GTP to
GDP (170). Growth factor signaling pathways converge on the
TSC to promote cellular growth (Figure 4) (170). Phosphorylation
of TSC by Akt, ERK, p90 ribosomal S6 kinase 1 (RSK1), and other
protein kinases inhibit the GAP activity to prevent inactivation of
GTP/Rheb, which leads to mTORC1 activation (169).
Phosphorylation of ribosome subunit 6 kinase (S6K) and 4E-
binding protein (4E-BP) by mTORC1 increases translation of
mRNA to protein.

mTORC1 is required for increased ecdysteroidogenesis in the
arthropod molting gland. PTTH stimulates mTORC1-dependent
protein synthesis, which increases ecdysteroid synthesis of the
insect PG (126, 128, 171–178); see (179) for earlier references). In
D. melanogaster, Rheb overexpression or TSC2 knockdown in the PG
reduces the developmental delay in food-limited 3rd-stage larvae,
resulting in lower adult weights (180). Additionally, Rheb
overexpression under food-limiting conditions increases
transcription of Halloween genes Phm and Dib (180). Comparable
studies on decapod crustaceans, such as knockdown of Rheb and
TSC2 with dsRNA constructs, have not been done. Incubation of
hepatopancreas explants with Sp-Akt-dsRNA reduced the insulin-
induced increase in Sp-VtgmRNA level, but had no effect on Sp-Rheb
mRNA level (125). Rapamycin inhibits YO ecdysteroid synthesis and
secretion in vivo and in vitro and blocks entry of intermolt animals
into premolt and delays the transition from early premolt to mid-
premolt in eyestalk-ablated G. lateralis (14, 15).

Molting up-regulates many of the mTOR signaling
components in the YO. In G. lateralis, Gl-mTOR and Gl-Akt
mRNA levels increase in mid-premolt and late premolt stages in
MLA animals and Gl-mTOR, Gl-Akt, and Gl-S6K mRNA levels
increase by three days post-ESA in eyestalk-ablated animals (14,
15). Gl-elongation factor 2 (Gl-EF2) mRNA level is also increased
by MLA and ESA, which is consistent with increased protein
synthesis in the YO (14, 15). By contrast, molt stage (intermolt,
early premolt, and late premolt) has no effect on Cm-EF2, Cm-
mTOR, Cm-Rheb, Cm-Akt, and Cm-S6K mRNA levels in C.
maenas (14). SB431542 injection blocks the ESA-induced
increases in Gl-EF2, Gl-mTOR, and Gl-Akt mRNA levels and
decreases Gl-Rheb mRNA level, which suggest that TGFb/
Activin signaling is required for sustained up-regulation of
mTOR signaling during premolt (15). RNAseq data expands
on the results from qPCR analysis. Gl-mTOR, Gl-Raptor, Gl-
Rictor, Gl-S6K, and Gl-Akt are expressed at high levels during
intermolt and early premolt and at their lowest levels during
postmolt (21). Gl-Rheb expression increases during early premolt
and mid-premolt stages (21). ESA increases expression of Gl-
mTOR, Gl-Raptor, Gl-mLST8, Gl-Rheb, Gl-Akt, Gl-S6, Gl-S6K,
Gl-EIF4E, and Gl-EF2 (16). These increases are inhibited by
rapamycin, suggesting a positive feedback mechanism in which
Frontiers in Endocrinology | www.frontiersin.org 11
mTORC1 activity up-regulates expression of mTOR signaling
genes (Figure 1) (16).

Temperature affects metabolic processes in crustaceans,
including molting, and it is likely that mTORC1 activity
contributes to the response of the YO and other tissues to
temperature. Within normal physiological ranges, increasing
temperature stimulates molting and growth of decapod
crustaceans (3, 181–183). However, when an animal reaches its
upper thermal limit, molting is inhibited, either directly on the YO
or indirectly by inhibitory neuropeptide, such as CHH, secreted by
the X-organ/sinus gland (183–186). The effects of temperature on
survival, molting, and mTOR signaling gene expression in YO,
eyestalk ganglia, and heart were determined in juvenile Dungeness
crab,Metacarcinus magister. Animals at three different molt stages
(12, 19, or 26 days post-ecdysis; these intervals spanned stages C to
D2-3) were transferred from ambient temperature (~15°C) to 5, 10,
15, 20, 25, or 30°C for 14 days (187). None of the animals
transferred to 25 and 30°C survived (187). M. magister molt
successfully at 21°C, but the growth increment is less than that
at 14°C (188); see (187) for additional references). These results
indicate that the upper temperature limit for M. magister molting
success is between 21°C and 25°C. Low temperature (5°C) inhibits
molting (187). Between 10°C and 20°C, molt stage progression
increases with temperature (187). Gene expression in YO, eyestalk
ganglia, and heart is affected by temperature and molt stage, but
there is little or no interaction in gene expression between
temperature and molt stage (187). In eyestalk ganglia, Mm-MIH,
Mm-CHH, Mm-Rheb, Mm-AMP kinase a subunit (AMPka), and
Mm-Akt mRNA levels decrease with increasing temperature,
particularly at 20°C; Mm-S6K mRNA level is not affected by
temperature (187). In heart, mRNA levels of Mm-Rheb, Mm-
S6K, Mm-AMPKa, Mm-Akt, and Mm-mTOR are higher at 10°C
than at 15°C and 20°C. Of the six genes quantified in the YO, only
Mm-Rheb expression is affected by both molt stage and
temperature (Figure 5). Mm-Rheb mRNA level is higher in
premolt stages (Figure 5) and is positively correlated with
hemolymph ecdysteroid titers at all three temperatures (187),
which suggests that Rheb stimulates mTORC1-dependent
ecdysteroid synthesis. Mm-Rheb mRNA level decreases with
increasing temperature at most molt stages (Figure 5). It is
noteworthy that only the mRNA level of Mm-Rheb is negatively
correlated with temperature in all three tissues (Figure 6). It
appears that the down-regulation of mTOR signaling serves as a
compensatory mechanism for higher metabolic rates at higher
temperatures, so that energy allocation to protein synthesis is
maintained at relatively constant levels (Figure 6). Taken together,
the data suggest that Rheb expression can be used as a proxy to
assess the effects of molting and temperature on mTORC1 activity
in crustacean tissues.
CONCLUSIONS AND FUTURE RESEARCH

The control of molting involves the integration of a variety of
signals that affects the ecdysteroidogenic capacity and activity of
June 2021 | Volume 12 | Article 674711
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Mykles Y-Organ Signaling
the arthropod molting gland (2, 62, 78, 106). This is reflected by
the diversity and actions of the factors involved. In the insect PG,
tropic factors, such as PTTH, ILPs (e.g., dILP1-6, Bombyxin),
growth factors (e.g., EGF and VEGF), biogenic amines (e.g.,
serotonin and octopamine), and FXPRLamide peptide, stimulate
ecdysteroidogenesis (97, 98, 105). Static factors, such as dILP8,
prothoracicostatic peptides, Bommo-myosuppressin, and
FMRFamide-related peptide, inhibit ecdysteroidogenesis (97,
98, 105). By contrast, the neuropeptides MIH and CHH are
the only known ligands identified for YOs in crustaceans (2, 50,
55, 189, 190). Transcriptomic analysis has revealed that the YO
expresses receptors for ILPs, growth factors, biogenic amines,
Frontiers in Endocrinology | www.frontiersin.org 12
and neuropeptides (Tables 2, 3) (25, 29). The large number of
GPCRs in particular indicates that the YO resembles the insect
PG in being able to integrate a large number of signals to
coordinate organ growth, development, and molting. MIH,
CHH, LAFpro, and perhaps FMRFamide act as static factors on
the YO. Drawing on comparisons with the insect PG, ILPs, EGF,
VEGF, corazonin, and LAFan may act as tropic factors. The
effects of these and other ligands (e.g., serotonin, octopamine,
FGF, dopamine, pigment dispersing factor, allatostatins, ecdysis-
triggering hormone, crustacean cardioactive peptide (CCAP),
CCHamide, diuretic hormones DH31 and DH44, and Bursicon)
on YO ecdysteroidogenesis remain to be determined.
A
B

C D

E F

FIGURE 5 | Effects of temperature and molt stage on gene expression in Y-organs of juvenile Dungeness crab, Metacarcinus magister. mRNA levels of Mm-Rheb
(A), Mm-ribosome subunit 3 (RbS3) (B), Mm-AMPKa (C), Mm-S6K (D), Mm-AKT (E), and Mm- mTOR (F) after 14 days at 10°C, 15°C or 20°C of juveniles in
intermolt (C, white), early premolt (D0, black), mid-premolt (D1, grey), or late premolt (D2-3, lines). Data are normalized to the mean absolute mRNA copy numbers in
stage C at 15°C. Asterisks denote significant differences at P < 0.05. Sample size (n) given in brackets below columns in A also apply to the other genes. Data are
presented as mean ± 1 S.E.M. Mm-Rheb expression is affected by temperature and molt stage. Mm-Rheb mRNA level increases during premolt stages and
decrease with increasing temperature. From (187).
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PTTH and MIH are the primary neuropeptides controlling
molting in insects and crustaceans, respectively (2, 50, 105, 106).
It is remarkable that the control of a process as critical as ecdysis
is to organismal growth would have evolved diametrically
opposite mechanisms in these two major arthropod groups.
PTTH activates the PG, while MIH inhibits the YO. Thus,
molting in insects is initiated by the release of PTTH from
neurosecretory neurons in the brain, while molting in
crustaceans is initiated by reduced MIH release from
neurosecretory neurons in the eyestalk X-organ/sinus gland
complex (2, 11, 105). In D. melanogaster, PTTH stimulates PG
ecdysteroidogenesis by binding to the Torso RTK and activating
the Ras/Raf/MAPK signaling pathway (106). In lepidopterans
(Manduca sexta and Bombyx mori), a PTTH-induced Ca2+ influx
activates both Ras/Raf/MAPK signaling and cAMP-dependent
Frontiers in Endocrinology | www.frontiersin.org 13
signaling and both contribute to a large increase in ecdysteroid
synthesis (97, 105, 179). MIH inhibits YO ecdysteroidogenesis by
binding to a putative GPCR and activating a cyclic nucleotide-
dependent signaling pathway (2, 50). A cAMP/Ca2+-dependent
triggering phase is linked to a NO/cGMP-dependent summation
phase to inhibit the YO between MIH pulses (2, 50, 55). RTKs in
the YO most likely function to stimulate ecdysteroidogenesis, as
they do in the PG (76, 97, 98).

The YO undergoes phenotypic changes over the molt cycle.
The molt cycle is unidirectional, with YO transitions occurring at
critical checkpoints that determine progression to the next molt
stage. Figure 7 presents a working model for the signaling
pathways that control YO basal (intermolt stage), activated
(early premolt stage), and committed (mid- and late premolt
stages) phenotypes. The most important decision is to initiate
FIGURE 6 | Summary of the effects of moderate thermal stress on molting and growth through the mTOR signaling pathway in juvenile Dungeness crabs. In
intermolt, MIH keeps the YO in a basal state with low ecdysteroid secretion by inhibiting mTOR. Low levels of ecdysteroid may stimulate heart muscle
growth via mTOR signaling. Moderate temperature change (10 to 20°C range) allows acclimation of the animals, at least with respect to some physiological
functions. After 14 days, thermal compensation is observed in molt control, i.e. similar ecdysteroid titer across temperatures throughout the molt cycle
(187). Mechanisms include up-regulation or down-regulation of Mm-MIH and mTOR signaling genes (Mm-Rheb, Mm-Akt, Mm-AMPK) during cold (10°C) or
warm (20°C) exposure in the eyestalk ganglia and YO. In the heart, thermal compensation of metabolism is incomplete, as oxygen demand and heart activity
increase with temperature. A sustained mRNA level of Mm-Rheb and Mm-mTOR indicates a greater allocation of energy to maintaining cardiac capacity
during warm exposure. From (187).
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molting, which is determined by the integration of external cues,
most likely mediated by the brain and eyestalk ganglia, which
control the release of MIH from the X-organ/sinus gland
complex, and internal cues, such as nutritional status, organ
size, and limb regeneration, that act directly on the YO (2, 3, 11).
The signaling pathways converge on Rheb/mTORC1 to regulate
ecdysteroidogenesis (Figure 7). Activation of GPCR signaling by
static factors (e.g., MIH and CHH) inhibits Rheb/mTORC1,
maintaining the YO in the basal state. Activation of RTK
signaling by tropic factors (e.g., ILPs and growth factors)
stimulates Rheb/mTORC1. Although RTK signaling can
potentially activate the YO, MIH release prevents molt initiation
until environmental conditions are met. YO activation is mediated
post-translationally by mTORC1-dependent increased global
translation of mRNA to protein, resulting in increased
ecdysteroid synthesis and secretion (Figure 7, dashed lines). The
rising ecdysteroid titers in the hemolymphmark the entry into early
premolt (1). The activated YO remains sensitive to static factors, as
ecdysteroidogenesis is inhibited by MIH, CHH, and LAFpro (2).
Frontiers in Endocrinology | www.frontiersin.org 14
During early premolt, the YO synthesizes and secretes Mstn-like
factor, which binds to Activin receptors to activate Smad
transcription factors, leading to down-regulation of MIH
signaling genes and up-regulation of Rheb/mTORC1 and
Halloween genes in the committed YO (Figure 7, solid lines).

Although much progress has been made over the last ten
years, many questions remain and research efforts should be
directed at answering them:

1. What is the identity of the MIH receptor? The evidence
indicates that the MIH receptor is a GPCR and several
potential candidates have been identified from in silico
analysis of YO transcriptomes (Figure 2) (25). Moreover,
there is evidence from studies of lobster muscle that the CHH
receptor is a membrane receptor guanylyl cyclase (GC-II) (8,
56, 179, 191). A heterologous reporting system in COS-7 cells
holds promise as a functional assay for quantifying the
specificities of candidate GPCRs and GC-II to recombinant
MIH and CHH (124).
FIGURE 7 | Proposed model for the signaling pathways mediating YO activation (dashed lines) and commitment (solid lines). Signaling pathways converge on
mTORC1 by controlling Rheb activity. MIH/CHH/LAFpro GPCR signaling inhibits mTORC1 by inactivating Rheb, while biogenic amine GPCR signaling and ILP/growth
factor RTK signaling stimulates mTORC1 by activating Rheb. YO activation during early premolt requires mTORC1-dependent global translation of mRNA to protein,
which leads to increased ecdysteroid synthesis. YO commitment involves mTORC1-dependent changes in gene transcription, resulting in up-regulation of TGFb/
Activin, Rheb/mTORC1, and Halloween genes and down-regulation of MIH/CHH/LAFpro GPCR signaling genes.
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2. How does MIH signaling inhibit mTORC1? The current
thinking is that MIH inhibition of ecdysteroidogenesis is
mediated by PKG (2, 56). The downstream substrates of PKG
are unknown. A possible target is TSC (Figure 3), in which
phosphorylation stimulates GAP activity, although it is not
known if TSC is phosphorylated by PKG (192). Proteomic
analysis using liquid chromatography-tandem mass
spectrometry now provides the technology to identify and
quantify phosphoproteins in the YO in response to rMIH and
PKG inhibitors. A similar approach was used to show that
NO synthase is phosphorylated in the activated YO (7).

3. What is the identity of LAFpro? LAFpro is a peptide factor
produced by secondary limb buds to delay molting (13). As
discussed in Section 2.3, the discovery of an Lgr3 GPCR in
the YO transcriptome suggests that LAFpro is a Dilp8-like
peptide that inhibits ecdysteroidogenesis via the MIH
signaling pathway (Figure 3). Like the YO, inhibition of
PG ecdysteroid synthesis by Dilp8 is through the activation
of NO synthase (73, 79). This suggests that the inhibition of
ecdysteroidogenesis by NO/cGMP/PKG is conserved in
arthropod molting glands.

4. How does mTORC1 control gene expression? mTORC1
activity alters the mRNA levels of thousands of genes,
including those for mTOR, TGFb, and MIH signaling and
ecdysteroidogenesis (16), presumably by altering the
activities of transcription factors and co-factors. In D.
melanogaster, the transcription factors Krüppel homolog 1
(Kr-h1), seance, ouija board, molting defective, ventral veins
lacking, and Knirps are linked to Halloween gene expression
(193–195). Kr-h1 is a critical component of the juvenile
hormone (JH)/methyl farnesoate (MF) signaling pathway in
insects (196–198), and recent studies indicate that Kr-h1
plays a role in crustacean development and reproduction
(199–203). The YO expresses Kr-h1 and other MF signaling
components, suggesting that it also has a role in molt
regulation (204). One potential function is in the down-
regulation of Halloween gene expression when the YO
transitions to the repressed state in late premolt.

5. What are the gene targets of TGFb/Activin signaling? TGFb/
Activin drives the transition of the YO from the activated to
the committed state. It is hypothesized that Smad transcription
factors, activatedbyMstn-like factor, up-regulate the expression
of commitment genes that determine the phenotypic properties
of the committedYO (Figure 1), such as low sensitivity toMIH,
CHH, and LAFpro and high ecdysteroid production. Possible
targets are Rheb/mTORC1, MIH signaling genes, and
Halloween genes (Figure 7). These and other gene targets can
be identified by determining the effects of ESA ± SB431542 on
the YO transcriptome and proteome.

6. What are the mechanisms mediating the transitions of the YO
from the committed to repressed state and from the repressed
to basal state? The repressed YO is transcriptionally inactive
and has very low ecdysteroid synthesis, leading to low
hemolymph ecdysteroid titers during the postmolt stage. It is
hypothesized that the ecdysteroid peak at the end of premolt
triggers the repressed state, mediated by ecdysteroid receptor
Frontiers in Endocrinology | www.frontiersin.org 15
(EcR/RXR) and ecdysone-response proteins. Even less is
known about what causes the YO to return to basal state at
the end of the postmolt stage. Perhaps a signal from the
integument, upon completion of exoskeleton synthesis
marked by the deposition of the membranous layer, is involved.

7. What is the role of RTKs in regulating ecdysteroidogenesis?
Our understanding of RTKs and their ligands in the YO is
largely based on inferences from research on the insect PG. It
is hypothesized that ILPs and growth factors stimulate
ecdysteroidogenesis (Figure 4), but their effects are
dampened or nullified by MIH. The YO expresses EGF and
FGF, suggesting that both have an autocrine function. In vitro
assays can determine the effects of recombinant insulin, EGF,
and FGF on YO ecdysteroid synthesis and secretion.

8. Is ecdysteroidogenesis regulated by biogenic amines and
neuropeptides other than MIH and CHH? The YO expresses
a large number and diversity of GPRCs. Of the 99 GPCRs in the
G. lateralis YO, 65 are assigned to known receptors (25). Of
particular interest are GPCRs for corazonin, serotonin, and
octopamine, which stimulate ecdysteroidogenesis (Figure 3;
Sections Corazonin Receptor and Ca2+/Diacylglycerol/Protein
Kinase C Signaling). However, other ligands involved in
molting, such as ecdysis triggering hormone and Bursicon,
should also be investigated.

9. What are the roles of Wnt, Hedgehog, Notch, and Hippo
signaling pathways in the YO? These pathways are implicated
in controlling ecdysteroidogenesis in the insect PG (74, 97,
98, 205) and are well represented in the YO transcriptome
(Table 1). Decapods express a large number of Wnt ligands
(206).Wnt4 is implicated in having roles in limb regeneration
and the immune response in decapods (207, 208). Gl-Wnt5
and Gl-Wnt7 are expressed at their highest levels in late
premolt, suggesting that these ligands are involved with the
ecdysteroid peak and transition of the YO to the repressed
state (21). This constitutes an entirely new area of research in
the coming years.

Transcriptomics and proteomics have revealed the complexities
of the regulation of the arthropod molting gland. These approaches
have been successfully applied to insect PG and complement
functional genetic studies on D. melanogaster (176, 205, 209–
215). Transcriptomic and proteomic analysis of the YO has
revealed that the PG and YO are more similar than they are
different. The PG and YO express the same KEGG signaling
pathways. Many of these signaling pathways converge on
mTORC1, which plays a central role in regulating ecdysteroid
synthesis in both endocrine organs. A second shared property is
that TGFb/Activin signaling alters the ligand sensitivity of the
molting gland. In insects, Activins increase the sensitivity of the
PG to PTTH in preparation for the large ecdysteroid peak prior to
the metamorphic molt, whereas Mstn/Activin decreases the
sensitivity of the YO to MIH and CHH in mid- and late premolt.
The great diversity inGPCRs indicates that the YO, like the PG, can
respond to a variety of ligands, some of which are inhibitory and
others are stimulatory. As RTKs stimulate ecdysteroidogenesis in
the PG, it seems reasonable to postulate that RTKs have the same
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function in theYO.The studyof insectmolting andmetamorphosis
has informed research on crustaceans, but this does not mean that
one can fully understand the control of molting in crustaceans by
studying Drosophila. There are fundamental differences in
evolutionary history and life history between insects and decapod
crustaceans and even between insect orders. The lineages that gave
rise to insects and crustaceans have been separated for more than
500 million years, allowing time for the evolution of divergent
ligands and signaling pathways to become dominant (216, 217).
Unlike insects, most decapod species continue to molt as adults,
enabling them to grow to larger sizes. The larger size is a distinct
advantage, as one can obtain the amount of YO tissue needed for
transcriptomics from two or three individuals (16, 20, 21, 29) and
proteomics (24, 218). This allows for increased sample sizes for
statistical analysis and potentially more experimental treatments
and time points for the study of molting gland function. Thus,
crustacean models complement insect models for achieving a
broader understanding of how arthropods integrate growth
control with external and internal cues.
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