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Background: Autonomic nerve system (ANS) plays an important role in

regulating cardiovascular function and cerebrovascular function. Traditional

heart rate variation (HRV) and emerging skin sympathetic nerve activity (SKNA)

analyses from ultra-short-time (UST) data cannot fully reveal neural activity,

thereby quantitatively reflect ANS intensity.

Methods: Electrocardiogram and SKNA from sixteen patients (seven cerebral

hemorrhage (CH) patients and nine control group (CO) patients) were recorded

using a portable device. Ten derived HRV (mean, standard deviation and root

mean square difference of sinus RR intervals (NNmean, SDNN and RMSSD),

ultra-low frequency (<0.003 Hz, uLF), very low frequency ([0.003 Hz, 0.04 Hz),

vLF), low frequency ([0.04 Hz, 0.15 Hz), LF) and high frequency power ([0.15 Hz,

0.4 Hz), HF), ratio of LF to HF (LF/HF), the standard deviation of instantaneous

beat-to-beat R-R interval variability (SD1), and approximate entropy (ApEn)) and

ten visibility graph (VG) features (diameter (Dia), average node degree (aND),

average shortest-path length (aSPL), clustering coefficient (CC), average

closeness centrality (aCC), transitivity (Trans), average degree centrality

(aDC), link density (LD), sMetric (sM) and graph energy (GE) of the

constructed complex network) were compared on 5-min and UST segments

to verify their validity and robustness in discriminating CH and CO under

different data lengths. Besides, their potential for quantifying ANS-Load were

also investigated.

Results: The validation results of HRV and VG features in discriminating CH from

CO showed that VG features were more clearly distinguishable between the

two groups than HRV features. For effectiveness evaluation of analyzing ANS on

UST segment, the NNmean, SDNN, RMSSD, LF, HF and LF/HF in HRV features

and the CC, Trans, Dia and GE of VG features remained stable in both activated

and inactivated segments across all data lengths. The capability of HRV and VG

features in quantifying ANS-Load were evaluated and compared under different

ANS-Load, the results showed that most HRV features (SDNN, LFHF, RMSSD,

vLF, LF and HF) and almost all VG features were correlated to sympathetic nerve

activity intensity.
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Conclusions: The proposed autonomic nervous activity analysis method based

on VG and SKNA offers a new insight into ANS assessment in UST segments and

ANS-Load quantification.
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1 Introduction

The autonomic nerve system (ANS), composed of the

sympathetic nervous system and the parasympathetic nervous

system, plays an important role in regulating cardiovascular

function and cerebrovascular function. Dysregulation of the

ANS can affect the brain’s perception of various stressors,

disrupt the adaptive capacity of homeostasis restoration, and

ultimately increase the risk of stress-related disorders such as

cardiac arrhythmia, hypertension, atherosclerosis, and stroke

(Sternberg and Schaller, 2020). More recently, ANS

modulation has been proposed as a promising therapeutic

strategy for the management of autonomic dysfunction-related

stroke (Mo et al., 2019). Therefore, ANS monitoring and analysis

before the development of stress-related disorders is of

paramount importance for improving the prognosis of

patients with dysfunction-related stroke.

The most widely used clinical assessmentmethod of sympathetic

nerve activity (SNA) is evaluating end-organ responses to ANS

physiological stimuli, such as tilt table testing, valsalva maneuver,

plasma catecholamines, baroreflex sensitivity, thermoregulatory

sweat test, and heart rate variation (HRV) (Thomas et al., 2019).

Among these tests, HRV analysis is a widely accepted and

implemented method to non-invasively and conveniently assess

sympatho-vagal balance (Thomas et al., 2019). In general, HRV is

generated and analyzed from the long-term electrocardiogram

(ECG) waves, such as 24-h Holter, and its change can reflect the

dynamic/trend of ANS activity over time (Bodapati et al., 2017;

Schneider et al., 2018). It is reported that poststroke patients with

raised SNA and low HRV are at higher risk for arrhythmias (atrial

fibrillation, ventricular tachyarrhythmia) or other ECG changes

(prolonged QT, inversed T wave) (Constantinescu et al., 2018). In

addition, HRV is also used as a biomarker for classifying acquired

brain injury patients and healthy controls (Galea et al., 2018).

Meanwhile, multiple functional outcomes (cognitive functions,

physical activity, and emotional expression) can be manifested in

HRV (Forte et al., 2019; Sharma et al., 2019). Thus, HRV can not only

serve as an indicator of cardiac function, but also reflect the central

modulation capacity to stress (Yperzeele et al., 2015; Fyfe-Johnson

et al., 2016; Kim et al., 2018). However, HRV quantifies ANS

modulation at the sinoatrial level, which is difficult to generalize

to cardiac patients with abnormal rhythms (atrial fibrillation,

premature beats, etc.) (Zhao et al., 2020).

As a non-invasive and versatile SNA assessment method,

skin sympathetic nerve activity (SKNA) has been applied to

many clinical events (Doytchinova et al., 2017; Kusayama et al.,

2020) and been proven to have the potential to predict

sympathetic tone in many applications (i.e., acute myocardial

infarction (He et al., 2020), neurologic recovery patients (Liu

et al., 2021a), and sleep apnea (Kutkut et al., 2021)). To this

juncture, several parameters have been derived from SKNA to

quantify SNA. The average voltage of SKNA (aSKNA) is

validated to be correlated with heart rate, and can be used as

a biomarker for fitness level and efficacy of exercise training (Liu

et al., 2021b). The burst numbers of SKNA (bSKNA) and variable

value of SKNA (vSKNA) (Zhang et al., 2019) are higher in

ventricular arrhythmia patients than in control groups,

indicating SKNA can be used to predict the ventricular

arrhythmogenesis recurrence. The envelope of SKNA

(eSKNA) is extracted to depict the temporal pattern of SKNA,

and the cross-comparison results between SKNA clustering

groups and non-SKNA clustering groups demonstrate that

eSKNA can act as a valid surrogate marker to classify ANS

regulation ability in acute myocardial infarction patients (Liu

et al., 2021a). Although these parameters can reflect the ANS

changes by empirical threshold-based nerve bursts detection, the

low signal-to-noise ratio of SKNA will lead to misjudgments

(Xing et al., 2022a). In addition, the low amplitude SKNA signal

(0.5–80 µV) is susceptible to noise, increasing the difficulty of

extracting sympathetic-related information (Zhang et al., 2022).

Therefore, more work is still needed to effectively analyze the

autonomic nervous activity from SKNA, especially in real-time

application.

Complex network is an emerging nonlinear dynamics

analysis method for complex systems. It has been employed in

a variety of physical and engineering systems: weather conditions

(Fang et al., 2017), finance (Zhao et al., 2018), biomedical

applications (Gao et al., 2021). Recently, several network-

based approaches have been proposed to map time series into

complex networks, such as visibility graph (Xu et al., 2018),

recurrence plot (Eroglu et al., 2018), ordinal partition network

(Santos et al., 2022). In particular, visibility graph (VG) is a

simple and fast computational framework for us to bridge the gap

between time series and complex networks, and it has been

successfully implemented in different fields. Bhaduri and Ghosh

(2016) studied cardiac dynamics during meditation through

multi-fractal detrended fluctuation and RR interval-based VG,

and they found that VG was superior to multi-fractal detrended

fluctuation in reflecting physiological effects on subjects

undergoing meditation. Gao et al. (2017) developed a time-
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dependent limited penetrable VG, and applied it to RR intervals

for classifying heart states of healthy, congestive heart failure and

atrial fibrillation. León et al. (2020) used HRV features and VG

features derived from the heart rate time series for the prediction

of late onset sepsis in preterm infants, the results showed that the

VG features in HRV analysis were useful for sepsis prediction in

newborns. From these studies, VG complex networks are often

constructed from RR intervals for heart rate-related applications,

while no work has focused on the application of VG analysis in

evaluating ANS with SKNA.

In this study, an autonomic nervous activity analysis method

was proposed based on VG complex network and SKNA. Based

on previous studies (Naredi et al., 2000; Chun-jing et al., 2013),

we hypothesized that SNA was elevated in patients with cerebral

hemorrhage (CH). Therefore, we collected ECG and SKNA from

CH patients and control group (CO), and compared the derived

HRV and VG features to evaluate their effectiveness in

distinguishing CH from CO. In addition, the ANS analysis

performance of HRV and VG features on ultra-short-time

(UST) segments were evaluated to verify their robustness

under different data lengths. Finally, the correlations between

HRV and VG features and ANS-Load were investigated under

different data lengths to explore their potential for quantifying

the intensity of SNA.

2 Methods

2.1 Data acquisition

The ECG and SKNA were recorded by a portable data

acquisition device designed in our previous work (Xing et al.,

2022b). It consists of low-noise analog-front-end (ADS1299,

Texas Instruments, Dallas, TX) for bio-potential signal

acquisition, a microcontroller (STM32L476,

STMicroelectronics) for the management of the whole system,

and a power management circuits (powered by a 3.7 V

rechargeable lithium polymer battery). In order to reduce the

system noise floor, a low-noise first-stage amplifier (INA128) was

implemented with the ADS1299 chip. The clinical signals were

measured at 4 kHz sampling frequency using conventional

disposable silver/silver-chloride (Ag/AgCl) electrodes attached

to the users’ chest. The signal measurements were carried out in a

noise-free sound insulation room. After an adjustment period of

at least 10-min, the 10-min signal of each subject was acquired in

a supine position. The recorded signals were stored on a local

trans-flash card, and processed off-line by MATLAB.

2.2 Patients

Patients with spontaneous CH who had a history of

hypertension were recruited. All patients were male and had

no definite cardiovascular and cerebrovascular events other than

hypertension. The location of cerebral hemorrhage in all patients

was located in the basal ganglia, and the hemorrhage did not

break into the ventricle. The course of cerebral hemorrhage had

passed through the acute phase and was in the subacute phase.

Age- and sex-matched normal volunteers, no other obvious

cardiovascular and cerebrovascular diseases except

hypertension, were recruited as CO from the hypertension

clinic. All the patients were enrolled from the Department of

Neurosurgery, First Affiliated Hospital of Nanjing Medical

University from October 2021 to December 2021. Exclusion

criteria included: 1) patients with traumatic cerebral

hemorrhage, ischemic stroke or hemorrhagic conversion; 2)

cerebral hemorrhage patients underwent the unstable phase

(with shock, large fluctuations in heart rate or blood

pressure); 3) patients with thyroid disease, diabetes, cardiac

arrhythmia, and other disorders that may affect ANS.

Sixteen patients were enrolled in this study, including seven

CH patients and nine CO patients. A 10-min single-lead ECG

and SKNA were recorded in a supine position for each patient,

and they were asked to avoid unnecessary movement during the

recording. Three Ag/AgCl electrodes were placed in the left

subclavian, right subclavian, and right lower abdomen, and

the sampling rate was 4 kHz.

2.3 Data process

2.3.1 Signal pre-processing
Due to the small amplitudes of ECG and SKNA, the signal is

easily contaminated by various noises. Therefore, the signal

quality is visually assessed before signal processing. Those

episodes that are corrupted by severe background noise and

cannot distinguish QRS complexes are eliminated. Afterwards,

only 5-min segments with more than 90% high signal quality

are reserved, and the ECG and SKNA are extracted from these

segments by 10th-order Butterworth bandpass filters with

cutoff frequencies of 0.5–150 Hz and 500–1,000 Hz,

respectively. For further HRV analysis, the QRS complexes

are identified by P&T method (Pan and Tompkins, 1985),

and false and missing detection are calibrated artificially. To

clearly label neural clusters, eSKNA was extracted by

performing moving average (MA) and root mean square

(RMS) on SKNA (Eqs. 1, 2). Referring to (Liu et al., 2021a),

the window size and sliding step of MA are 100-ms and 2-ms,

respectively.

xMAk � ∑spk+w
i�spk xi

m
(1)

j � (FspT − w)ps
Fs

(2)

where XMA is the array of input signal after MA; xMAk is the kth

sample ofXMA; j is the number ofXMA; w is the window size; s is
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the sliding step; xi is the ith sample of the input signal; Fs is the

sampling frequency; T is the duration in second of selected data.

In RMS calculator (Eq. 3), the XRMS is extracted from XMA

with a window size of 100-ms and a sliding step of 2-ms:

XRMS �
��������∑k+j

i�k x
2
MAi

n

√
(3)

where n is the number of samples in a window; xRMS is the kth

sample value of RMS; j is the number of samples ofXRMS;XMAi is

the ith sample value of the array XRMS.

The XRMS is defined as eSKNA, and a threshold-based

method is performed on it for SKNA bursts determination.

The threshold is calculated as follows:

Threshold � (Baseline −Min)p5 +Min (4)

where Baseline is the average of the lower 20% samples in the

selected window; Min is the minimum of the selected window.

In order to analyze the effectiveness of VG features in

quantifying ANS from UST segments, the 5-min signals were

split into 10-s, 20-s, 30-s, 40-s, 50-s and 60-s segments,

respectively. The burst load of each segment was calculated as

the ratio of burst time to total time, and partitioned to 5 equal

intervals from 0 to 1 ([0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8,

1.0]). Then, the segments were marked as activated (burst load >

0) and inactivated (burst load = 0) according to the burst load.

Thereafter, the HRV and VG analysis were conducted on these

data. The flowchart of this paper is illustrated in Figure 1.

2.3.2 Heart rate variation analysis
The time-domain features, frequency-domain features, and

nonlinear features were extracted by the PhysioNet

Cardiovascular Signal Toolbox (Vest et al., 2018). The time-

domain analysis included sinus RR intervals-related features

(mean (NNmean), standard deviation (SDNN), and root

mean square difference (RMSSD)). The frequency-domain

features consisted of the power in different frequency range

(ultra-low frequency power (<0.003 Hz, uLF), very low

frequency power ([0.003 Hz, 0.04 Hz), vLF), low frequency

power ([0.04 Hz, 0.15 Hz), LF), high frequency power

([0.15 Hz, 0.4 Hz), HF), ratio of LF to HF (LFHF)). The

nonlinear features consisted of the standard deviation of

projection of the Poincaré Plot on the line perpendicular to

the line of identity (y = −x, SD1), and approximate entropy

(ApEn). The standard deviation of the projection of the Poincaré

Plot on the line of identity (y = x, SD2) was not included in this

study because it was not suitable for UST HRV analysis.

2.3.3 Visibility graph features extraction of
envelope of SKNA

As a natural graph-theoretical description of nonlinear

systems, VG can simply convert a time series into a scale-free

network. The statistical measures from the constructed network

can demonstrate the dynamic behaviors of the nonlinear systems,

and have been proven to be related to the self-similarity and

complexity of the time series (Bhaduri and Ghosh, 2016). Every

data point of time series is mapped to a node in its associated VG

network, and an edge between two nodes is connected if the

corresponding time samples can view each other. Suppose the

original time series is X, and the ith point of X is Xi. Two data

points (ta, Xa) and (tc, Xc), at time ta and tc, are connected if and

only if any other data (tb, Xb) between them (ta < tb < tc) satisfies

the following criterion:

Xb <Xc + (Xa −Xc)p tc − tb
tc − ta

(5)

The VG network are applied on eSKNA, and ten network

measures (Pan and Tompkins, 1985; Hou et al., 2016; Vest et al.,

2018; Xing et al., 2022b; Santos et al., 2022) are extracted for

further analysis in this study:

2.3.3.1 Diameter

The longest shortest path between any two nodes in the

network (Eq. 6).

Dia � maxi,jDij (6)

where Dij is the length of the shortest path between node i and

node j.

FIGURE 1
The flowchart of data process in this paper. MA and RMS
mean the operation of moving average and root mean square,
respectively.
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2.3.3.2 Average node degree

The degree of a node in a graph is defined as the number of

connected edges to this node, and the mean degree (Eq. 7) is the

average value of all node’s degree in this graph (León et al.,

2020).

aND � 1
Ν
∑N
n�1

dn (7)

where N is the total number of nodes, and dn is the degree of

node n.

2.3.3.3 Average shortest-path length

The shortest path is a reflection of transmission and

communication in the graph, the average shortest path length

(Eq. 8) is the average of shortest path over all couples of nodes

(Hou et al., 2016).

aSPL � 1
Νp(Ν − 1) ∑

i,j∈V,i≠j
Dij (8)

where N is the total number of nodes, and V is the set of N

nodes.

2.3.3.4 Clustering coefficient

The cluster coefficient of a node in a graph is the ratio of all

triangles involving that node to the number of connected triples

centered on that node, and the cluster coefficient of a graph (Eq.

9) is the average of the cluster coefficient of all nodes (León et al.,

2020).

CC � 1
Ν
p∑
i∈V

ei
kip(ki − 1) (9)

where ei is the actual number of edges between all the

couples of neighbors of node i, and ki*(ki-1) is the

maximum possible number of edges between all the ki
neighbors of node i.

2.3.3.5 Average closeness centrality

Closeness centrality is the sum of the distances from a node

to other nodes, representing the convenience and ease of

connection between the focal node and other nodes (Zhang

and Luo, 2017).

aCC � 1
Ν
∑N
i�1

N − 1∑N
j�1Dij

(10)

2.3.3.6 Transitivity

The transitivity (Eq. 11) is the ratio between the triangle

numbers and the connected triple numbers in a graph to obtain

the global information of CC (León et al., 2020).

Trans � 3pnumber of trangles in the graph

number of connected triples in the graph
(11)

2.3.3.7 Average degree centrality

Degree centrality is defined as the ratio between the number

of nodes connected to the current node, and the total number of

all nodes in the network (Zhang and Luo, 2017).

aDC � 1
Ν
∑N
i�1

∑N
j�1eij

N − 1
(12)

2.3.3.8 Link density

Link density (Eq. 13) is the ratio between the number of edges

and the maximum possible number of edges (N*(N-1)/2) (Liu

et al., 2015).

LD � ∑Ν
i�1∑N

j�1eij
Np(N − 1)/2 (13)

2.3.3.9 sMetric

The sMetric (Eq. 14) is the sum of products of degrees across

all edges (Li et al., 2005).

sM � ∑Ν
i,j�1

dipdj (14)

2.3.3.10 Graph energy

Graph Energy (Eq. 15) is defined as the sum of the absolute

values of the real components of the eigenvalues (λi) of the graph

(Balakrishnan, 2004).

GE � ∑
i

|λi| (15)

FIGURE 2
The typical eSKNA signals and their corresponding VG
complex networks of CH and CO segments. (A) The typical eSKNA
and their VG, (B) and (C) are the complex networks of CH and CO
with colored communities.
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3 Experiments and results

3.1 Comparison of heart rate variation and
visibility graph on autonomic nerve system
analysis

The eSKNA segments are converted into a scale-free graph

by natural VG method. The typical 10-s eSKNA of CH and CO

segments are illustrated in Figure 2A, and their corresponding

VG complex networks are shown in Figures 2B,C, respectively.

For clear demonstration, the communities of these complex

networks are colorized according to their modularity classes

by Gephi software. It can be seen that the amplitudes of CH

eSKNA fluctuate smoothly, while there is a clear burst in CO

eSKNA around about 6-s time point (Figure 2A). The

communities of the CH complex network are dispersed as all

intermediate peaks obstruct the visible range between the front

and rear peaks (Figure 2B). Conversely, the CO complex network

consists of several small communities crowded with a central

community, since the burst can view almost all other nodes in the

network (Figure 2C).

To evaluate the validity of HRV and VG features from the 5-

min signal, these features are normalized to [0, 1], and the

comparisons between CH and CO for these features are

illustrated in Figure 3. To further quantify the distribution

differences between CH and CO, the WRS test is carried out

for each feature. Significant difference (p < 0.05) between two

groups is marked with red “*”, and extremely significant

difference (p < 0.01) is marked with red “**“. In this paper, p

values less than 0.05 were regarded as statistically significant for

each test. Statistical analyses were performed using MATLAB

(R2022a) on a PC with Intel® Core™ i7-7700 3.6 GHz processor

and 32 GB RAM.

It can be seen from Figure 3, the distributions of most HRV

features between CH and CO are overlapped, indicating the

difficulty to distinguish CH from CO by these features. In

contrast, the distribution differences between CH and CO are

evident in most VG features, validating the effectiveness of VG

features in classifying CH from CO. In addition, almost all

p-values calculated from VG features are < 0.01 (except Trans

and Dia), while only SDNN, vLF and ApEn show significant

difference in HRV features.

The ANS function assessment by HRV analysis is typically

performed on either 5-min ECG recordings or nominal 24-h

recordings, which limits its application in dynamic conditions,

such as dynamic sympathetic assessment in athletes. To

investigate the ANS analysis performance of these parameters

on UST signals, the 5-min signals are split to 10-s, 20-s, 30-s, 40-

s, 50-s and 60-s segments, respectively. In addition, these

segments are marked as ANS activated and inactivated

depending to whether they contain ANS bursts labeled from

eSKNA. Note that segments without valid QRS complexes are

removed. The final number of each data length is illustrated in

Table 1. The distribution of each feature among different data

length is compared and quantified by KW test. Furthermore, the

total runtime of VG feature extraction for each data length is

compared.

Figure 4 depicts the distribution differences of each feature

(HRV and VG) for activated and inactivated segments under

different data lengths. For almost all HRV features (except

ApEn), the distribution for activated segments seldom changes

with the data length increase, and the distribution for inactivated

segments varies sightly in uLF, vLF and SD1. The ApEn for both

activated and inactivated segments increases with data length

expands. For VG features, the distributions for both activated

and inactivated segments remain stable in CC, Trans, Dia and

FIGURE 3
HRV and VG features between CH and CO. “*” stands for significant difference between two groups (p < 0.05) and “**” stands for extremely
significant difference (p < 0.01). ANS Analysis Performance of VG on UST Segments.
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TABLE 1 The number of data segments according to different data length, ANS status and burst load.

Data length
(s)

Number of ANS status Number of different burst load

Activated Inactivated [0, 20%) [20%, 40%) [40%, 60%) [60%, 80%) [80%, 100%]

10 335 136 310 111 39 8 3

20 162 65 154 52 15 5 1

30 107 44 104 30 14 2 1

40 77 29 73 24 8 1 0

50 63 26 59 25 4 1 0

60 56 23 50 24 4 1 0

FIGURE 4
The distribution of features (HRV and VG) for different data length. Effectiveness of HRV and VG on ANS-Load Determination.
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GE, and change slightly in aSPL and aCC. However, they

decrease (increase) sharply with the data length increases in

aND and aDC (sM).

To quantitatively characterize the stability of features

(HRV and VG) in UST segments, their distribution

differences (for activated and inactivated segments,

respectively) in different data lengths (10-s, 20-s, 30-s, 40-s,

50-s and 60-s) are compared by KW test. The results are

shown in Table 2. It is clear that the p-values of NNmean,

SDNN, RMSSD, LF, HF, LFHF and SD1 are > 0.05 in both

activated and inactivated segments, indicating that these

features are not distributed differently across segments with

different length. Similarly, the VG features of CC, Trans, Dia

and GE also show no distribution differences in both activated

and inactivated segments, as they all had p-values > 0.05.

However, the p-values for vLF and ApEn of HRV features and

aND, aDC, LD and sM of VG features are all < 0.01 for both

groups, implying that their distribution varies significantly

during data length increase.

Although several features (HRV and VG) show stable

performance in short-term segments, their efficiency still

needs to be investigated to ensure their practical application.

As we all known that the computational complexity of HRV

features is very low, therefore, we only compare the running time

of VG features under different data lengths. Figure 5 shows the

histogram based on empirical cumulative distribution function

and kernel density estimation of the running time for VG

features extraction from different data lengths. The

TABLE 2 The KW test results of feature distribution differences in different data lengths.

Status Statistics NNmean SDNN RMSSD uLF vLF LF HF LFHF SD1 ApEn

HRV Activated Chi-sq 0.17 5.64 0.55 11.04 27.52 0.89 0.70 0.57 0.42 70.51

p 0.920 0.059 0.761 0.004 0.000 0.641 0.703 0.754 0.810 0.000

Inactivated Chi-sq 0.27 5.62 0.88 4.14 18.14 1.67 1.09 0.58 0.65 153.27

p 0.876 0.060 0.645 0.126 0.000 0.434 0.579 0.750 0.721 0.000

VG Status Statistics CC aSPL aCC Trans Dia aND aDC LD sM GE

Activated Chi-sq 0.13 3.77 3.65 2.16 0.27 43.31 43.31 15.22 68.23 0.27

p 0.937 0.152 0.161 0.339 0.874 0.000 0.000 0.000 0.000 0.874

Inactivated Chi-sq 0.49 6.85 6.45 2.60 1.23 37.44 37.44 19.58 157.94 1.23

p 0.785 0.033 0.040 0.272 0.540 0.000 0.000 0.000 0.000 0.540

FIGURE 5
The running times of VG feature extraction under different data lengths.
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distribution is heavy-tailed in 10-s and 30-s segments, but

appears approximately normal distribution in the remaining

segments. The average time for each data length is around 15-

s, 80-s, 210-s, 360-s, 565-s and 1,420-s, respectively. Obviously,

the average runtime increases rapidly with data length expands

and shows an exponential growth trend. The reason is that the

nodes of the VG complex network increase with data length,

resulting in a rapid growth of computational complexity for

extracting features from the constructed adjacent matrix.

In order to evaluate the capability of HRV and VG features

in quantifying ANS-Load, the burst of each segment is

determined by a threshold-based method. Furthermore, the

burst load (ANS-Load) is extracted by calculating the ratio of

the burst time to total time of the segment. The burst load is

coarse-grained to 5 equal partitions from 0 to 1, the segment

number of each partition under different data lengths is listed

in Table 1. Then, the correlations between features and

segment length under different burst load are quantified by

Kendall rank correlation coefficient. As there are not enough

ANS-Load in partitions [0.6, 0.8) and [0.8, 1.0], we only

compare the correlation coefficient in ANS-Load

among (0, 0.6).

The distributions between each HRV and VG feature and

data lengths under different ANS-Load, associated with their

mean values, are shown in Figure 6. In HRV features, the

SDNN and LFHF (RMSSD, vLF, LF and HF) decrease

(increase) with the ANS-Load increase in different data

lengths, implying that the variation of ANS-Load would

influence the time-domain and frequency-domain features

of HRV. Meanwhile, almost all the VG features present an

increasing or decreasing trend with the ANS-Load increase.

The reason may be that the increased autonomic activity is

reflected in increased bursts in eSKNA, resulting in the

variation of connections between two nodes.

The Kendall rank correlation coefficients for HRV and VG

features are illustrated in Figure 7, and the red “*” and “**”

represent p-values < 0.05 and < 0.01, respectively. In this study,

we only focus on the degree of correlation other than its

direction, therefore the positive correlation and negative

correlation share the same color in Figure 7. It is obvious that

there is a weak correlation between HRV features and ANS-Load,

most correlation coefficients are around 0, and the maximum is

0.273 for uLF in 60-s segment. On the contrary, the VG features

show a stronger correlation with ANS-Load, especially the

correlation coefficient of aND reaches 0.526 in 60-s. In

addition, the absolute values of the correlation coefficients are

all above 0.13. Besides, only few HRV features show significant

correlation between features and ANS-Load (i.e., NNmean in 10-

s, LFHF in 20-s, vLF in 40-s). However, almost all the correlations

between VG features and ANS-Load are extremely significant,

indicating the potential of VG features for ANS-Load

quantification.

FIGURE 6
The distributions between each HRV and VG features and data lengths under different ANS-Load and their corresponding mean values.
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4 Discussion

A VG and SKNA based autonomic nervous activity analysis

method was proposed in this paper. SKNA overcomes the

sinoatrial level limitations of traditional HRV analysis, and a

number of SKNA-derived metrics had been proposed for SNA

quantification. However, the noise-susceptibility of these

metrics required new methods for quantitatively ANS

assessment, especially for short-time segment application. As

a nonlinear analysis method, VG offered a new insight into ANS

assessment in short-term segments and ANS-Load

quantification.

The unique contribution of this paper was the first

application of VG on eSKNA for ANS assessment. HRV

was the most widely used ANS assessment method, and its

indices from time-domain, frequency-domain and

nonlinear-domain had been proved to be biomarkers for

cardiac arrhythmias, brain injury and emotion (Fyfe-

Johnson et al., 2016; Constantinescu et al., 2018; Galea

et al., 2018). However, HRV from UST data could not

fully show the nerve activity. The newly proposed

noninvasive cardiac SNA assessment method (SKNA)

and its derived metrices has been widely used in clinical

events, such as acute myocardial infarction (He et al., 2020),

neurologic recovery patients (Liu et al., 2021a), and sleep

apnea (Kutkut et al., 2021). Nevertheless, these SKNA-

derived metrics could only qualitatively analyze ANS and

could not quantitatively reflect ANS intensity or ANS-Load.

Thanks to the nonlinear dynamics analysis method–VG

complex networks, we could evaluate the ANS from

network aspect. Although many previous studies had

investigated and compared VG and HRV in meditation

analysis (Bhaduri and Ghosh, 2016), sleep assessment

(Hou et al., 2016) and congestive heart failure (Gao

et al., 2017), this paper was the first to employ VG on

eSKNA for ANS assessment. The comparison of HRV and

VG features between CH and CO (Figure 2) showed that VG

features are superior to HRV features in the ANS analysis.

There were no significant distribution differences between

CH and CO for most HRV features, while almost all VG

features were clearly distinguishable between the two

groups.

The stability of HRV and VG features in UST segments

were compared by quantifying their distribution differences

against different data lengths. Most HRV features remained

stable for both activated and inactivated segments under all

data lengths. In addition, the time-domain features (NNmean,

SDNN, RMSSD) and most frequency-domain features (LF,

HF, LFHF) manifested conformity in these segments,

indicating that most UST HRV features could be used as

surrogates for short-term HRV features. These results were

consistent with Castald’s (Castaldo et al., 2019) investigation

that NNmean and HF displayed consistency across all of the

excerpt lengths (30 s, 1 min, 2 min, 3 min, and 5 min) for

mental stress assessment. However, Jin Woong et al. (Kim

et al., 2021) studied UST HRV in non-static conditions by

comparing UST HRV features (10, 30, 60, 120, 180, and 240-s)

with those from 5-min HRV, the results showed that UST

HRV variables derived from the static condition could not

applied to the non-static conditions of daily life. Similarly, the

CC, Trans, Dia and GE of VG features remained stable in both

activated and inactivated segments across all data lengths,

implying that these VG features could reveal the dynamical

changes caused by the adjustment of autonomous neural

system from UST segments. Likewise, Jiang et al. (2013)

applied VG to heartbeat interval time series for meditation

investigation, and they also tested the stability of VG features

on different length data, the results showed that the data

FIGURE 7
The Kendall rank correlation coefficients between features and segment length under different burst load. “*” stands for significant correlation
between features and ANS-Load (p < 0.05) and “**” stands for extremely significant correlation (p < 0.01).
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length had no prominent effect on the VG analysis. The reason

may be that the degree distribution persisted the same form

for different length of data in any activated and inactivated

segments.

HRV had been used as a biomarker for SNA measurement, but

seldom been used for quantifying ANS-Load. The correlations

between HRV features and ANS-Load were studied at different

data lengths, and the comparison results showed that time-domain

and frequency-domain features (SDNN, LFHF, RMSSD, vLF, LF

andHF) had the potential to quantify ANS inUST segments. From a

multimodal perspective, Debnath et al. (2021) designed a template

matching algorithm to calculate scaled and stretched HRV features,

associated with other features, for sympathetic and parasympathetic

parameters determination. However, the acquisition of these

employed features was complicated, and it still required more

other biomarkers or calculated features to improve the

quantification accuracy for practical clinical applications. The

SKNA had been applied to evaluate the ANS as a non-invasive

method in many clinical applications (Zhang et al., 2022), andmany

SKNA-derived metrices (e.g., aSKNA, bSKNA) had been validated

and used for ANS qualification. Nevertheless, these parameters were

susceptible to noise. In this paper, the VG features on eSKNA were

extracted and compared across different ANS-Load, the results

showed that almost all the VG features were correlated to ANS-

Load. The link-related features (CC, aPL, Dia and LD) increased as

ANS-Load grow, while the degree-related features (aCC, Trans,

aND, aDC and sM) presented a decreasing trend across increasing

ANS-Load. The increase in SNA intensity was manifested as the

rising number and duration of bursts in eSKNA, which leads to a

growth in the possibility of links between any two nodes in the VG.

However, these links only concentrated on certain nodes (peak

points of bursts), it meant that the node degrees of the entire VG

would be aggregated into these nodes, resulting the increase of

community numbers and the decrease of average degree. In

addition, the total number of links grow exponentially with the

total number of nodes in the network, while the degree distribution

did not change with the node numbers (Tessone et al., 2011).

One limitation of our study is the small number of

participants, further studies with larger cohorts are needed to

confirm and strengthen these results. Another limitation is the

VG features are only compared with HRV features, its validity

still needs comparison with demographic information and

laboratory tests for practical clinical applications. In addition,

the robustness against noise of this method needs more efforts.

5 Conclusion

In summary, a VG on eSKNA based autonomic nervous

activity analysis method was proposed in this paper. The

comparison results of the HRV and VG features on CH and

CO segments showed the superiority of VG features in ANS

analysis. Furthermore, the ANS analysis performance of VG

features on eSKNA signals with different data lengths

demonstrated the stability of VG features (aND, aDC, LD and

sM) in discriminating activated and inactivated segments at

different data lengths. In addition, the capability of HRV and

VG features to quantify SNA intensity was also evaluated, and the

results showed that VG features had the potential to determine

ANS-Load.
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