
Heliyon 9 (2023) e17454

Available online 27 June 2023
2405-8440/© 2023 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Identification of peripheral blood immune infiltration signatures 
and construction of monocyte-associated signatures in ovarian 
cancer and Alzheimer’s disease using single-cell sequencing 

Songyun Zhao a, Bicheng Ye b, Hao Chi c, Chao Cheng a,**, Jinhui Liu d,* 

a Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, 214000, China 
b School of Clinical Medicine, Yangzhou Polytechnic College, Yangzhou, 225000, China 
c Clinical Medical College, Southwest Medical University, Luzhou, 646000, China 
d Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China   

A R T I C L E  I N F O   

Keywords: 
OC 
AD 
Single-cell RNA-Seq 
Machine learning 
Tumor microenvironment 
Immunotherapy 
Prognostic model 

A B S T R A C T   

Background: Ovarian cancer (OC) is a common tumor of the female reproductive system, while 
Alzheimer’s disease (AD) is a prevalent neurodegenerative disease that primarily affects cognitive 
function in the elderly. Monocytes are immune cells in the blood that can enter tissues and 
transform into macrophages, thus participating in immune and inflammatory responses. Overall, 
monocytes may play an important role in Alzheimer’s disease and ovarian cancer. 
Methods: The CIBERSORT algorithm results indicate a potential crucial role of monocytes/mac-
rophages in OC and AD. To identify monocyte marker genes, single-cell RNA-seq data of pe-
ripheral blood mononuclear cells (PBMCs) from OC and AD patients were analyzed. Enrichment 
analysis of various cell subpopulations was performed using the “irGSEA” R package. The esti-
mation of cell cycle was conducted with the “tricycle” R package, and intercellular communi-
cation networks were analyzed using “CellChat”. For 134 monocyte-associated genes (MRGs), 
bulk RNA-seq data from two diseased tissues were obtained. Cox regression analysis was 
employed to develop risk models, categorizing patients into high-risk (HR) and low-risk (LR) 
groups. The model’s accuracy was validated using an external GEO cohort. The different risk 
groups were evaluated in terms of immune cell infiltration, mutational status, signaling pathways, 
immune checkpoint expression, and immunotherapy. To identify characteristic MRGs in AD, two 
machine learning algorithms, namely random forest and support vector machine (SVM), were 
utilized. 
Results: Based on Cox regression analysis, a risk model consisting of seven genes was developed in 
OC, indicating a better prognosis for patients in the LR group. The LR group had a higher tumor 
mutation burden, immune cell infiltration abundance, and immune checkpoint expression. The 
results of the TIDE algorithm and the IMvigor210 cohort showed that the LR group was more 
likely to benefit from immunotherapy. Finally, ZFP36L1 and AP1S2 were identified as charac-
teristic MRGs affecting OC and AD progression. 
Conclusion: The risk profile containing seven genes identified in this study may help further guide 
clinical management and targeted therapy for OC. ZFP36L1 and AP1S2 may serve as biomarkers 
and new therapeutic targets for patients with OC and AD.  
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1. Introduction 

Ovarian cancer (OC) is associated with the highest mortality rate among gynecologic cancers, leading to over 100,000 deaths 
annually in developed regions [1]. Despite advancements in standard care over the past two decades, the survival rate for ovarian 
cancer has not shown significant improvement [2]. About 60% of ovarian cancer patients are diagnosed at an advanced stage. While 
some patients initially respond well to surgery and chemotherapy, approximately 70% experience disease recurrence and ultimately 
succumb to chemoresistance [3,4]. Immunotherapy for ovarian cancer faces significant challenges due to the immunosuppressive state 
of the tumor microenvironment. Therefore, there is an urgent need to identify effective predictors of immunotherapy response and 
stratify patients for appropriate management. 

AD, an irreversible neurodegenerative disease, is primarily associated with aging. It is characterized by progressive memory loss 
and cognitive dysfunction. Pathological changes in AD include beta-amyloid deposition, neuronal loss, synaptic dysfunction, and 
neuroinflammation in the brain [5–7]. In 2021, the United States had around 6.2 million individuals aged 65 years and older affected 
by AD [8]. However, current clinical management and treatment options for AD are still limited in their effectiveness, necessitating 
further research into the disease’s mechanisms. 

In contrast to the excessive neuronal cell death observed in neurodegenerative diseases, such as Alzheimer’s disease (AD), cancer is 
characterized by uncontrolled cell proliferation and a strong resistance to cell death [9]. Interestingly, emerging studies suggest a 
reciprocal relationship between these two diseases, indicating that patients with neurodegenerative diseases like AD have a lower 
likelihood of developing cancer [10]. Epidemiological evidence from previous studies consistently demonstrates a decreased incidence 
of Alzheimer’s disease following a cancer diagnosis [11]. Notably, the overexpression of PIN1, a peptidyl-prolyl cis/trans isomerase, 
has been associated with cancer development, while its absence is linked to the formation of Alzheimer’s biomarkers in the brain [12]. 

While the pathogenesis and treatment of ovarian cancer and Alzheimer’s disease differ fundamentally, recent research suggests a 
potential connection between them. Statistics reveal that women are approximately twice as likely as men to develop Alzheimer’s 
disease [13]. In one study, women who underwent bilateral salpingo-oophorectomy had a higher risk of developing dementia and 
Parkinson’s disease compared to those who underwent conservative treatment [14,15]. This increased risk may be attributed to the 
treatment of ovarian cancer and oophorectomy, as these procedures can alter estrogen levels, which in turn can affect neuronal 
survival and function [16,17]. Moreover, there are shared risk factors and biomarkers between ovarian cancer and Alzheimer’s dis-
ease. For instance, chronic inflammation, metabolic disorders, abnormal blood glucose levels, and abnormal estrogen levels may 
increase the risk of developing both ovarian cancer and Alzheimer’s disease [18,19]. This provides a potential explanation for the 
association between the two. 

In this study, we conducted a comprehensive analysis of the immune microenvironment in ovarian cancer (OC) and Alzheimer’s 
disease (AD) using peripheral blood mononuclear cells (PBMCs) and tissues. We employed the CIBERSORT deconvolution algorithm to 
compare the immune characteristics of both diseases, focusing on the potential role of monocytes/macrophages in disease progression. 
Our main objective was to identify and characterize OC patients with distinct monocyte profiles. We integrated bulk sequencing and 
single-cell RNA sequencing (scRNA-seq) data from OC patients to identify monocyte-associated genes (MRGs) that have a high 
prognostic value. Additionally, we employed a machine learning approach to identify characteristic MRGs in AD. The findings of this 
study establish a unique prognostic signature based on MRGs, which can effectively predict the prognosis of OC patients and provide 
valuable insights for immunotherapy strategies. Furthermore, we identified ZFP36L1 and AP1S2 as key genes that are believed to play 
significant roles in the progression of both OC and AD. These genes represent potential new targets for the treatment of these diseases. 

2. Materials and methods 

2.1. Source of raw data 

We conducted gene expression data synthesis from the Gene Expression Omnibus (GEO)and The Cancer Genome Atlas (TCGA) 
databases to obtain ovarian cancer gene expression data measured in fragments per kilobase million (FPKM) and related clinico-
pathological data. Due to the absence of sequencing data from normal ovarian samples in the TCGA database, we downloaded the 
merged TCGA-GTEx cohort from the UCSC Xena database. Two GEO cohorts (GSE9891, GSE63885) and the TCGA-OV cohort were also 
obtained for subsequent analysis. We applied the “sva” algorithm to merge the two GEO datasets and eliminate batch effects [20]. 
FPKM values were converted to transcripts per kilobase million (TPM), considering TPM to be equivalent to transcripts from the GEO 
microarray platform [21]. The subsequent prognostic models were constructed using a total of 376 patients from the TCGA cohort, 285 
patients from the GSE989 cohort, and 101 patients from the GSE63885 cohort. Additionally, we obtained 10× single-cell RNA 
sequencing data from two peripheral blood samples of OC patients from GSE213243 [22]. A cohort comprising 20 healthy controls and 
48 ovarian cancer patients was sourced from GSE31682 [23]. 

Furthermore, scRNA-seq data consisting of three peripheral blood samples from Alzheimer’s disease (AD) patients were down-
loaded from GSE181279 [24]. To maintain gender consistency with the OC cohort, a GSE97760 cohort consisting of elderly women 
was selected, including peripheral blood sequencing data from nine patients with advanced AD and ten age-matched healthy female 
controls [25]. Finally, cortical sequencing data from the GSE5281 cohort, comprising 37 female patients with AD and 21 female 
controls, were obtained [26]. All raw GEO datasets were preprocessed using the “affy” package in R, which involved background 
calibration, normalization, and log2 transformation [27]. 
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2.2. Processing of single-cell sequencing data 

The scRNA-seq data were analyzed using the “Seurat” and “SingleR” R packages [28,29]. To ensure high-quality cellular data, only 
genes expressed in at least three single cells were included. Cells with fewer than 200 or more than 10,000 genes, fewer than 1000 
molecules, and more than 20% of mitochondrial and ribosomal genes were excluded. The “harmony” R package was utilized to remove 
batch effects between samples [30]. Subsequently, the scRNA-seq data were normalized using the “NormalizeData” function and 
transformed into Seurat objects. The top 2000 highly variable genes were identified using the “FindVariableFeatures” function. 
Principal component analysis (PCA) was performed using the “RunPCA” function of the “Seurat” R package to reduce the dimen-
sionality of the scRNA-seq data based on these genes. Significant principal components (PCs) were identified using JackStraw analysis, 
and appropriate PCs were selected for cell clustering analysis based on the proportion of variance. The integrated data were then 
clustered using the “FindNeighbors” and “FindClusters” functions, and cell visualization was performed using the UAMP method. To 
identify genes specifically expressed in each cluster, the “FindAllMarkers” and “FindMarkers” functions of the “scran” R package were 
employed to conduct Wilcoxon tests between pairs of cell clusters. The expression of specific genes was visualized using the “fea-
tureplot” function. Cell types were assigned using the “SingleR” R package [28] and referenced cell type annotations from a previous 
study [31]. The “irGSEA” R package (https://github.com/chuiqin/irGSEA/) was used to score individual cells using a multi-genomic 
enrichment approach and generate a multi-genomic enrichment scoring matrix. Differential gene expression analysis was performed 
for each cell subpopulation in the enrichment score matrix using the Wilcoxon test. The “tricycle” R package was utilized to estimate 
the cell cycle by scoring each cell based on the expression of G2/M [32]and S-phase marker genes. Lastly, the R package “CellChat” 
[33] was employed to analyze cell-to-cell communication networks, evaluate receptor and ligand expression levels, and infer potential 
cell-to-cell interactions. 

2.3. Calculating risk scores and constructing MRG-related prognostic models in OC 

To calculate MRG-related scores and quantify the prognostic information for each OC sample, the following steps were performed. 
First, univariate Cox regression analysis (p < 0.05) was conducted on 134 differentially expressed monocyte-related genes (DEMRGs) 
that were shared between OC and AD. This analysis identified 13 DEMRGs associated with the prognosis of OC. To create a predictive 
gene signature associated with MRG-related risk scores in the TCGA training set, stepwise multiple Cox regression analysis was utilized 
to select candidate genes. The risk score associated with MRG was calculated as follows: risk score = Σ(Expi * coefi), where coefi and 
Expi represent the expression and risk factors of each gene, respectively. Next, patients in the TCGA training set were divided into low- 
risk (LR) and high-risk (HR) groups based on the median values of the risk scores. Kaplan-Meier survival analysis [34] was performed 
for each group to assess the survival differences. Principal component analysis (PCA) was conducted using the “ggplot2" R package. 
The area under the curve (AUC) was calculated using the “survivalROC” R package to evaluate the predictive performance. 

2.4. Correlation enrichment analysis 

To analyze the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we utilized the “cluster-
Profiler” R package and visualized the results using the “circlize” package. We considered p-values below 0.05 as statistically sig-
nificant, indicating enrichment of specific pathways [35]. To further investigate the biological functions that differed between the high 
and low-risk populations, we performed Gene Set Enrichment Analysis (GSEA) using the “c2.cp.kegg.v6.2.symbols.gmts” file from the 
MsigDB database. Significance was determined based on a threshold of p < 0.05 and false discovery rate (FDR) < 0.25. This analysis 
helped identify enriched pathways and biological processes associated with the high and low-risk groups. To explore the MRG-related 
biological functional differences, we conducted genomic variation analysis using the Gene Set Variation Analysis (GSVA) method. For 
this analysis, we used the “c2.cp.kegg.v6.2.symbols.gmts” file [36]. Additionally, we created customized Gene Matrix Transposed 
(gmt) files to perform GSEA in the GSE31682 and GSE97760 cohorts. These files were based on the marker genes of each cell identified 
in the single-cell sequencing data. 

2.5. Immunotherapeutic response prediction 

TIDE (Tumor Immune Dysfunction and Exclusion) is a computational tool available at http://tide.dfci.harvard.edu/. It is designed 
to assess the likelihood of immune escape in tumor samples by analyzing their gene expression profiles [37]. The tool specifically 
examines the expression of genes associated with immune escape, including immune checkpoints and antigen presentation machinery. 
By evaluating these gene expressions, TIDE can predict the probability of tumor immune dysfunction and rejection. In the context of 
predicting response to immunotherapy, the TIDE tool was utilized in combination with data from the imvigor 210 cohort. This cohort 
consists of patients with locally advanced and metastatic uroepithelial cancer who received anti-PD-L1 immunotherapy. By integrating 
the TIDE analysis with the imvigor 210 data, researchers aimed to identify subgroups of patients likely to respond favorably or un-
favorably to the immunotherapy treatment [38]. 

2.6. Tumor microenvironment (TME) and tumor mutational load (TMB) 

In order to evaluate the infiltration of immune cells in ovarian cancer patients with distinct survival outcomes, we utilized single- 
gene set enrichment analysis (ssGSEA). Through this analysis, we were able to assign scores to 28 immune cell types present within the 
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tumor microenvironment (TME) of both low-risk (LR) and high-risk (HR) patient groups [39]. Additionally, we utilized the “maftools” 
R package to identify somatic mutations in OC patients from the TCGA database. By analyzing the mutation profiles, we calculated the 
tumor mutation load (TMB) score for each patient in both the LR and HR groups [40]. The TMB (tumor mutational burden) score 
quantifies the quantity of somatic mutations detected in the tumor genome, providing insight into genomic instability. Additionally, 
we utilized the “estimate” package to estimate tumor purity and TME (tumor microenvironment) scores for each patient. Tumor purity 
refers to the proportion of cancer cells within the tumor sample, while the TME score provides an estimation of the abundance of 
stromal and immune cells in the tumor microenvironment. These scores enhance our understanding of tumor characteristics and the 
interactions between cancer cells and the surrounding tissue. 

2.7. Selection of characteristic genes 

In our study on Alzheimer’s disease (AD), we employed two machine learning algorithms, namely random forest and SVM-RFE, to 
filter feature genes associated with the disease. To identify the most important genes related to AD, we utilized the random forest 
algorithm and performed recursive feature elimination (RFE). RFE is a supervised approach that iteratively ranks the importance of 
genes based on their ability to contribute to the classification of AD. The random forest algorithm evaluated the importance of the 
feature genes using 10-fold cross-validation, a technique that divides the data into 10 subsets and performs the analysis iteratively, 
ensuring robustness. Genes with a relative importance value greater than zero were considered as feature genes, indicating their 
relevance in distinguishing AD [41]. Additionally, we employed SVM-RFE, another machine learning algorithm, to select relevant 
characteristics and eliminate redundant ones in the context of AD. SVM-RFE utilizes support vector machines (SVM) to rank and select 
the most informative genes for classification. This method was found to be superior to other approaches in identifying the most 
relevant genes associated with diseases [42]. By combining these two machine learning algorithms, we aimed to identify a set of 
feature genes that are crucial for distinguishing AD and provide insights into the underlying molecular mechanisms of the disease. 

2.8. Immunohistochemical techniques and quantitative real-time polymerase chain reaction PCR (RT-qPCR) 

To evaluate the relative mRNA expression levels of ZFP36L1, AP1S2, and GAPDH as a normalized control, we performed RNA 
isolation from the ovarian epithelial cell line IOSE, ovarian cancer cell lines SKOV-3 and A2780, as well as tissue samples. Total cellular 
RNA was extracted using Trizol reagent (Invitrogen), and cDNA synthesis was carried out using SuperScript II reverse transcriptase 
(Invitrogen) following the manufacturer’s instructions. For quantitative mRNA expression analysis, SYBR Premix Ex TaqII (Takara, 
Dalian, China) was employed. The primer sequences used for amplification are provided below: 

ZFP36L1: 
Forward primer: 5′-ACTCCAGCCGCTACAAGAC-3’ 
Reverse primer: 5’–CGTAGGGGCAAAAGCCGAT-3’ 
AP1S2: 
Forward primer: 5′-TTCAGACCGTTTTAGCACGGA-3’ 
Reverse primer: 5′-TGTCCTGATCCTCAATAGCACA-3’ 
GAPDH: 
Forward primer: 5′-GGAGCGAGATCCCTCCAAAAT-3’ 
Reverse primer: 5′-GGCTGTTGTCATACTTCTCATGG-3’ 
The SYBR Premix Ex TaqII is a commonly used reagent for quantitative real-time PCR (qPCR), and the primer sequences provided 

are specific to the target genes ZFP36L1, AP1S2, and GAPDH. These primers allow for the amplification and quantification of the 
respective mRNA transcripts. 

We employed transcriptomic and proteomic methods to investigate RNA and protein expression profiles in various human tissues 
and organs. The Human Protein Atlas (HPA, https://www.proteinatlas.org/) served as the source of data for this study. 

2.9. Statistical analyses 

All statistical analyses were carried out using R version 4.1.2 along with its corresponding support package. To evaluate prognostic 
significance and compare patient survival, Kaplan-Meier survival analyses and log-rank tests were performed on different subgroups 
within each dataset. Student’s t-test was used to determine differences between normally distributed groups, while the Wilcoxon test 
was employed for non-normally distributed variables. The significance level for all statistical tests was set at P < 0.05, indicating that 
results with a p-value below this threshold were considered statistically significant. 

3. Results 

3.1. Characterization of the immune microenvironment in OC and AD 

In order to find common features of the immune microenvironment and immune function in patients with OC and AD, the 
CIBERSORT algorithm was first applied to assess the level of infiltration of different types of immune cells in peripheral blood as well as 
in disease-bearing tissues in OC and AD, respectively. A higher percentage of monocytes in peripheral blood was revealed in patients 
with OC relative to normal patients (Fig. 1A) through CIBERSORT analysis. Similarly, the level of monocyte infiltration in peripheral 
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blood was higher in AD patients; however, a statistical difference between the two groups was not observed, probably due to the small 
sample size. Additionally, low levels of M0 macrophages were found in the peripheral blood of AD patients (Fig. 1C). This seems to 
indicate that a similar role in the development of both diseases is played by monocytes/macrophages. To further confirm our view, 
sequencing data from ovarian cancer tissue and cortical tissue from women with Alzheimer’s disease were also analyzed using 
CIBERSORT. Higher levels of M0 and M1 macrophage infiltration in OC tissues compared to normal tissues were identified (Fig. 1B). 
Similarly, brain tissues of AD patients exhibited higher infiltration levels of M1 macrophages (Fig. 1D). Thus, an important role in 
ovarian cancer and Alzheimer’s disease may be played by macrophages, but further studies are needed to determine their exact role. 

3.2. ScRNA-seq of peripheral blood from OC patients 

Gene expression profile data from peripheral blood of 2 OC patient samples were obtained for further analysis based on scRNA-seq 
data from GSE213243. After strict quality control filtering, the two samples contained 5464 and 4705 cells, respectively, that were 
included in the subsequent analysis (Supplementary Fig. 1A). The data was then normalized and batch effects were removed, followed 
by the selection of the top 2000 highly variable genes (Supplementary Fig. 1B). For dimensionality reduction, the PCA method was 
employed, and the top 18 PCs were selected based on P values (Supplementary Fig. 1C). Cell subpopulations were annotated using the 
“singleR” algorithm in combination with a manual annotation approach utilizing marker genes, and UMAP was utilized to visualize 
specific cell subpopulations (Fig. 2A, Supplementary Fig. 1D). The relative expression of marker genes in each cell subpopulation was 
depicted in the heatmap (Supplementary Fig. 1E). Results from irGSEA revealed that monocytes in OC patients were predominantly 
associated with tumor-related pathways, including angiogenesis, inflammatory response, and epithelial-mesenchymal transition 
(EMT) (Fig. 2B). In terms of the cell cycle, monocytes were mainly clustered in the S and G2 phases (Fig. 2C). Finally, CellChat was 
employed to assess potential signaling pathways and interactions between different cell subpopulations in the peripheral blood of OC 
patients. The closest intercellular communication was observed between monocytes and epithelial/tumor cells (Fig. 2D and E), with 
monocytes primarily influenced by HLA signaling (Fig. 2F). 

3.3. ScRNA-seq of peripheral blood from AD patients 

Meanwhile, gene expression profile data from peripheral blood of 3 AD patient samples were obtained for further analysis based on 
scRNA-seq data from GSE181279. After filtering out low-quality cells through quality control measures, the subsequent analysis 
included 585, 681, and 371 cells in the respective samples (Supplementary Fig. 2A). Following the removal of batch effects and data 
normalization, the top 2000 highly variable genes were selected (Supplementary Fig. 2B). Dimensionality reduction was performed 
using the PCA method, and the top 17 PCs were chosen for further analysis (Supplementary Fig. 2C). Each cell cluster was annotated 
using the “singleR” algorithm in combination with known marker genes, and UMAP was utilized to visualize specific cell sub-
populations (Fig. 3A, Supplementary Fig. 2D). The heatmap illustrated the relative expression of marker genes in each cell 

Fig. 1. Comparison of the level of infiltration of 22 immune cells. (A) Peripheral blood of OC and control group. (B) OC and normal control 
tissue. (C) Peripheral blood of AD and control group. (D) AD and normal control tissue. ns no significance, *P < 0.05, **P < 0.01, ***P < 0.001, OC, 
Ovarian cancer; AD, Alzheimer’s disease. 
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subpopulation (Supplementary Fig. 2E). Interestingly, similar to the findings in OC, monocytes/macrophages in AD patients were 
predominantly associated with angiogenesis, inflammatory response, and various substance metabolism-related pathways (Fig. 3B). 
Moreover, in terms of the cell cycle, monocytes exhibited a notable accumulation in the G2 phase (Fig. 3C). CellChat analysis was 
employed to explore potential signaling pathways and interactions among different cell subsets in the peripheral blood of AD patients. 
The intensity of intercellular communication was highest between monocytes and NK cells and T cells (Fig. 3D and E), and monocytes 
were primarily influenced by HLA-related signals (Fig. 3F). 

3.4. Monocyte-related genes in ovarian cancer and Alzheimer’s disease 

Based on the results of scRNA-seq data, we extracted marker genes for various types of cells in OC and AD from peripheral blood. 
GSEA was performed in both the peripheral blood and tissue cohorts of ovarian cancer, and monocyte-associated pathways were found 

Fig. 2. Classification and analysis of cell subpopulations in the peripheral blood of ovarian cancer patients. (A) U-MAP plots of different cell 
subpopulations by color association. (B) GSVA plots showing the terms of the hallmark gene set enrichment pathway for each identified cell 
subpopulation. (C) The number of each cell subpopulation in proportion to the number of different cycles of cell development. (D,E) Number and 
strength of intercellular communication networks inferred by calculating the likelihood of communication, with the thickness of the lines repre-
senting strength or number. (F) Cellular signals from different cell types to monocytes. The vertical axis shows the interactions between receptors 
and ligands in selected cell types, with different colors representing the intensity. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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to be mainly enriched in the disease group (Fig. 4A and B). Interestingly, in the peripheral blood cohort of AD, we observed a higher 
enrichment of monocyte-associated pathways in the normal group, while in the brain tissue cohort, they were enriched in the disease 
group (Fig. 4C and D). This suggests that monocytes in peripheral blood may have different biological effects in the progression of these 
two diseases. Additionally, we speculate that monocytes play a role in halting disease progression after entering brain and ovarian 
tissues through blood circulation. Subsequently, we conducted a differential analysis of monocyte-associated genes in OC peripheral 
blood using the “limma” package and identified 282 DEGs (Fig. 4E; Supplementary Table 1). Similarly, in the peripheral blood bulk 
sequencing data of AD, we identified 437 DEGs (Fig. 4F; Supplementary Table 2). Taking the intersection of these two sets of dif-
ferential genes, we obtained 134 DEMRGs (Fig. 4G, Supplementary Table 3). The results of GO and KEGG enrichment analysis revealed 
that these genes were mainly associated with cell differentiation and chemokine-related pathways (Fig. 4H and I), and the results of DO 
enrichment analysis demonstrated their association with lung diseases, hematopoietic disorders, and leukemia (Fig. 4J). 

Fig. 3. Classification and analysis of cell subpopulations in peripheral blood of patients with Alzheimer’s disease. (A) U-MAP plots of 
different cell subpopulations by color association. (B) GSVA plots showing the terms of the hallmark gene set enrichment pathway for each 
identified cell subpopulation. (C) The number of each cell subpopulation in proportion to the number of different cycles of cell development. (D,E) 
Number and strength of intercellular communication networks inferred by calculating the likelihood of communication, with the thickness of the 
lines representing strength or number. (F) Cellular signals from different cell types to monocytes. The vertical axis shows the interactions between 
receptors and ligands in selected cell types, with different colors representing the intensity. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

S. Zhao et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e17454

8

3.5. Establishment of the monocyte-related prognostic signature in ovarian cancer 

To quantify the risk for each ovarian cancer patient, a risk model based on monocyte-associated genes was constructed. Firstly, 
possible prognostic factors for OC patients were identified through univariate Cox analysis, resulting in 13 genes out of the 134 MRGs 
(Fig. 5A). Subsequently, a multivariate Cox regression analysis was performed to construct a precise risk model (Supplementary 
Table 4). The multivariate Cox regression analysis was conducted for the 13 prognosis-related genes, and a set of 7 genes was obtained 
for building the risk model, namely CFP, GAS7, ZFP36L1, UBE2R2, APOBEC3C, CUX1, and AP1S2. The risk score for each patient was 
calculated using the following equation: Risk score = (− 0.21 × CFP expression) + (0.23 × GAS7 expression) + (0.78 × ZFP36L1 
expression) + (− 0.35 × UBE2R2 expression) + (− 0.36 × APOBEC3C expression) + (0.40 × CUX1 expression) + (− 0.31 × AP1S2 
expression). Considering the limited sample size of the GSE63885 cohort, the GSE9891 cohort and the GSE63885 cohort were merged 
to create a GEO validation cohort. Based on the median value of the risk score in the TCGA training cohort, patients were divided into 
high-risk (HR) and low-risk (LR) groups. Importantly, the LR group in the TCGA cohort exhibited a higher overall survival (OS) rate 
compared to the HR group (Fig. 5B). Similarly, in the GEO validation cohort, patients in the LR group demonstrated better OS (Fig. 5C). 
Moreover, patients in the HR group of the TCGA cohort showed worse progression-free survival (PFS) than those in the LR group 
(Fig. 5D). Furthermore, the monocyte-related risk model exhibited favorable performance in predicting OS for patients in the third and 
fifth years, with an AUC of 0.7 in the seventh year for both cohorts (Fig. 5E and F). The C-index of the risk score surpassed that of other 
clinical characteristics in both the TCGA and GEO cohorts (Fig. 5G and H). 

Fig. 4. Enrichment analysis of monocyte marker genes in ovarian cancer and Alzheimer’s disease. (A–D) GSEA of 4 sets of peripheral blood 
and tissues for OC and AD, respectively. (E, F) Volcano plots showing differentially expressed MRGs in OC and AD peripheral blood cohorts. (G) 
Venn diagram showing DEMRGs co-expressed in OC and AD. (H, I, J) GO, KEGG and DO enrichment analysis of DEMRGs. MRGs, monocyte-related 
genes; DEMRGs, Differentially expressed monocyte-related genes; OC, Ovarian cancer; AD, Alzheimer’s disease; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; DO, disease ontology. 
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3.6. Validation of the prognostic signature associated with monocytes and construction of the nomogram 

The risk score, determined through univariate and multivariate Cox analysis (Fig. 6A and B), was found to be an independent 
prognostic indicator for patients in the TCGA training set when compared to other common clinical characteristics such as age, grade, 
and stage. The validity of the risk model we developed was further confirmed in the GEO cohort (Fig. 6C and D). By assessing the 
correlation between the mentioned clinicopathological characteristics and the risk score, we developed a nomogram that could predict 
the 3-, 5-, and 7-year survival of OC patients (Fig. 6E). The accuracy of the nomogram prediction was demonstrated through calibration 
curves (Fig. 6F). Analysis depicted in Fig. 6G indicated that patients at stage IV exhibited higher risk scores, while patients with G3+G4 
had risk scores similar to those with G1+G2 (Fig. 6H). These results provide robust evidence supporting the reliability of the monocyte- 
related prognostic model as a valuable clinical prediction tool. 

3.7. TMB analysis and survival analysis of TMB 

Genetic mutations are widely recognized as crucial factors in tumorigenesis. In our analysis using the TCGA database, we visually 
represented and correlated somatic mutation data with the constructed prognostic model. The top three mutated genes in both high 
and low-risk groups were TP53, TTN, and CSMD3 (Supplementary Figs. 3A–B). Furthermore, evidence suggests that patients with a 
high tumor mutational burden (TMB) may benefit from immunotherapy due to a higher number of antigens [43]. TMB analysis 
demonstrated a significant difference between the two groups, with the LR group exhibiting a higher TMB (Supplementary Fig. 3C). 
Kaplan-Meier survival analysis based on median TMB values, categorized into high and low TMB groups, further revealed a more 
favorable prognosis in the high TMB group, indicating that TMB could serve as an indicator of poor prognosis in OC patients 

Fig. 5. Construction of monocyte-associated risk models and prognostic value of risk scores. (A) Forest plots showing the prognosis-related 
13 MRGs screened with the univariate cox method. (B,C) Kaplan-Meier survival curves showing the risk stratification ability of the TCGA-OV and 
GEO cohorts. (D) Progression-free survival curves for the TCGA cohort. (E, F) AUC values of risk scores at 3, 5, and 7 years for the TCGA-OV and 
GEO cohorts. (G, H) Coherence index (C-index) of TCGA-OV and GEO cohorts. OC, Ovarian cancer; AD, Alzheimer’s disease, ***P < 0.001. 
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(Supplementary Fig. 3D). By combining the risk score and TMB, patients were divided into four subgroups for survival assessment. The 
high TMB and low-risk groups exhibited the best prognosis, validating the model and identifying the most favorable prognostic 
subgroup for clinical application (Supplementary Fig. 3E). 

Fig. 6. Independent prognostic analysis and construction of nomograms for risk scores of ovarian cancer patients. Univariate and 
multivariate Cox regression analysis of clinicopathological variables and OS risk scores for the TCGA training cohort (A, B) and GEO validation 
cohort (C, D). (E, F) Nomograms and calibration curves for predicting OS at 3, 5 and 7 years in patients with OC. (G,H) Risk scores for patients with 
different stage and grade. *P < 0.05; **P < 0.01; ***P < 0.001. 
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3.8. Tumor microenvironment (TME) and immune cell infiltration 

The tumor microenvironment (TME) is widely recognized to have a significant impact on cancer progression and patient outcomes 
[44]. To investigate the immune landscape in the high and low-risk groups, we utilized various algorithms from platforms such as 
QUANTISEQ, MCPCOUNTER, XCELL, TIMER, CIBERSORT, CIBERSORT-ABS, and EPIC (Fig. 7A). Enrichment scores for different 
immune cell subpopulations were calculated using the ‘ssGSEA’ method to explore the association between risk scores of MRGs and 
immune cells, as well as their functions. Comparatively, the LR group displayed higher immune-related function and immune cell 
infiltration scores than the HR group (Fig. 7D). Tumor purity was estimated using ESTIMATE, which assessed the proportion of stromal 
and immune cells in different risk groups, revealing higher stromal scores in the HR group (Fig. 7E). Additionally, we examined the 
correlation between MRG risk scores and the expression of immune checkpoints (ICs), known to impact tumor immunotherapy. 
Interestingly, our risk scores showed a strong negative association with the expression of immune checkpoints, including PD1 and 
CTLA4 (Fig. 7C). Heatmaps were used to visually represent the ICs, immune scores, and immune cell infiltration in different risk 
subgroups (Fig. 7B). Furthermore, a GSEA analysis was conducted to explore potential biological functions associated with the LR and 
HR groups, selecting the four most significantly enriched signaling pathways based on normalized enrichment scores (NES) and 
P-values. Results demonstrated that the HR group was primarily associated with tumor-related pathways, while the LR group exhibited 
associations with pathways related to cytokine receptor interactions (Fig. 7F). 

Fig. 7. Analysis of the immune microenvironment in different risk groups. (A) Assessment of immune infiltration variations using seven al-
gorithms among different risk groups. (B) Heatmap illustrating disparities in TME scores, immune checkpoint expression, and immune cell infil-
tration (ssGSEA-based) across diverse risk subgroups. (C) Correlation between immune checkpoint expression, MRGs, and risk scores. (D) 
Differences in immune cell infiltration calculated by ssGSEA between patients in different risk groups. (E) Differences in TME scores between 
patients in different risk groups. (F) GSEA analysis of high and low risk groups focusing on the different enrichment of the KEGG pathway. ns no 
significance, *P < 0.05, **P < 0.01, ***P < 0.001; OC Ovarian cancer; AD, Alzheimer’s disease; MRGs,monocyte-related genes. 
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In addition, we employed the IMvigor 210 cohort, which comprises patients receiving anti-PD-L1 immunotherapies, to evaluate the 
predictive value of our risk score in determining the response to immunotherapy. Among the 298 samples, we divided them into two 
groups based on the median risk scores calculated using the previously mentioned formula. We observed significant differences in risk 
scores between the groups showing remission (Fig. 8A), with a higher proportion of complete or partial responses (CR/PR) found in the 
lower risk group (Fig. 8B). To further refine the selection of patients who are more suitable for immunotherapy, we utilized the TIDE 
score to assess potential abnormalities in immune function within the tumor and regional lymph nodes. A higher TIDE prediction score 
indicates a higher likelihood of immune evasion, suggesting that patients are less likely to benefit from immune checkpoint inhibitor 
(ICI) treatment. According to the TIDE results, all patients in the lower risk (LR) group exhibited the potential for an effective immune 
response (Fig. 8C). The area under the ROC curve (AUC) reached 0.78, demonstrating the efficacy of the MRG risk score in predicting 
the response to immunotherapy (Fig. 8D). Furthermore, patients in the LR group had a higher probability of responding favorably to 
immunotherapy (Fig. 8E). These findings support the notion that patients in the LR group not only have a better prognosis but also 
demonstrate enhanced immune function, indicating their potential sensitivity to immunotherapy. 

3.9. Selection of characteristic genes in Alzheimer’s disease and ovarian cancer 

In the brain cortical sequencing GSE5281 cohort, two algorithms were used to select genes associated with signature genes for AD 

Fig. 8. Correlation of MRG-associated risk scores and immunotherapy effects. (A) Differences in risk scores between response groups in the 
IMvigor210 cohort. (B) Proportion of anti-PD-L1 immunotherapy responses in high-risk and low-risk populations. (C) Proportion of immunotherapy 
responses in high- and low-risk populations based on TIDE results. (D) Risk scores for predicting whether to generate an effective immunotherapy 
response by ROC curves. (E) Difference in TIDE scores between the high-risk and low-risk groups. CR, complete remission; PR, partial remission; SD, 
stable disease; PD, Progressive disease. *p < 0.05; **p < 0.01; ***p < 0.001; MRGs, monocyte-related genes. 
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progression. According to the 134 intersecting genes obtained from Fig. 4G, for the SVM-RFE algorithm, the classifier had the lowest 
error rate when the number of features was 25 (Fig. 9A; Supplementary Table 5). The random forest algorithm screened 66 feature 
genes with relative importance〉0 (Fig. 9B and C; Supplementary Table 6). By taking the intersection with the risk model genes of OC, 
we finally identified 2 feature genes, ZFP36L1 and AP1S2, which are common to OC signature, Random Forest and SVM-RFE algo-
rithms (Fig. 9D). We also evaluated the diagnostic performance of two signature genes in the TCGA-GTEx cohort and the GSE5281 
cohort in predicting OC and AD progression. The AUC values of the ROC curves in the OC cohort were 0.804 for ZFP36L1 and 0.810 for 
AP1S2, respectively (Fig. 9E). The AUC values of the ROC curves in the AD cohort were 0.883 for ZFP36L1 and 0.882 for AP1S2, 
respectively (Fig. 9F). In addition in the peripheral blood single cell sequencing data of OC and AD, we found that both ZFP36L1 and 
AP1S2 were predominantly expressed in monocytes/macrophages (Fig. 9G and H). 

3.10. Validation of signature gene expression in ovarian cancer cell lines 

We further validated the expression patterns of ZFP36L1 and AP1S2 in ovarian cancer (OC) patients using immunohistochemical 
data from the Human Protein Atlas (HPA) database. Our analysis revealed that AP1S2 protein expression levels were significantly 
increased in ovarian cancer tissues compared to healthy ovarian tissues (Fig. 10A and B). Conversely, ZFP36L1 protein expression was 
significantly decreased in ovarian cancer (Fig. 10E and F). Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) 
analysis demonstrated that AP1S2 expression levels were significantly up-regulated in ovarian cancer cell lines (Fig. 10C and D), 
whereas ZFP36L1 expression levels were relatively down-regulated (Fig. 10G and H). These findings suggest that the dysregulated 
expression of these genes may contribute to the oncogenic transformation of ovarian cancer. 

Fig. 9. Selection of signature genes and estimation of their diagnostic efficacy by means of machine learning. (A) SVM-RFE feature selection 
algorithm. (B) Error rate of random forest with the number of decision trees. (C) Gene order according to the relative importance of genes. (D) Venn 
diagram showing the intersection genes of OC risk model, random forest and SVM-RFE algorithm. (E,F) ROC curves for estimating the diagnostic 
performance of ZFP36L1 and AP1S2 in the GEO and TCGA-GTEx cohorts. (G,H) UMAP was used to demonstrate ZFP36L1 and AP1S2 expression in 
OC and AD at the peripheral blood single cell level. OC Ovarian cancer; AD, Alzheimer’s disease. 
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4. Discussion 

Although Alzheimer’s and ovarian cancer are two different diseases, there are some connections between them. Patients with 
Alzheimer’s may face several additional risk factors that increase the likelihood of developing ovarian cancer. These risk factors may 
be associated with the physical and behavioral changes caused by Alzheimer’s, such as long-term use of certain medications, poor 
nutrition, and reduced physical activity. Additionally, patients with dementia may experience cognitive and behavioral impairments 
that could lead to neglecting their health, potentially affecting early detection and treatment of ovarian cancer. While a specific causal 
relationship is not yet clear, these associations highlight the importance of enhanced ovarian cancer risk assessment and preventive 
measures in patients with dementia. However, since both diseases are more prevalent in middle-aged and older populations, research 
suggests that factors like genetics, lifestyle, and chronic diseases are linked to an increased risk of Alzheimer’s disease and ovarian 
cancer [45–48]. For example, epidemiological studies indicate that diabetes and hypertension may contribute to the development of 
Alzheimer’s disease [49]. Similarly, a study conducted in the United States found associations between hypertension, hyperlipidemia, 
and an increased risk of ovarian cancer [50]. 

Another perspective is that, in contrast to the excessive neuronal cell death observed in Alzheimer’s disease, cancer is characterized 
by unrestricted cell proliferation and a strong resistance to cell death [9]. According to some epidemiological studies, patients with 
dementia appear to have a lower risk of developing cancer. For instance, a recent study observed a lower risk of cancer, especially 
ovarian cancer, in individuals with Alzheimer’s compared to those without Alzheimer’s [51]. This observation may be related to the 
altered regulatory mechanisms of cell proliferation and cell death found in Alzheimer’s patients [52]. However, it is important to note 
that the current understanding of the relationship between Alzheimer’s and cancer is still limited, and contradictory findings exist. 
Further research is needed to delve into the potential link between Alzheimer’s and cancer, considering the combined effects of ge-
netic, environmental, and lifestyle factors [53]. Therefore, while some studies suggest that individuals with dementia may have a 
lower likelihood of developing cancer, more research is required to fully comprehend the relationship between the two diseases and 
the possible influence of biological and environmental factors on their interactions. 

Monocytes, which possess phagocytic and antigen presentation capabilities, are often considered immature macrophages, leading 
some researchers to group them within the monocyte/macrophage category. Studies have observed that Alzheimer’s patients exhibit 
elevated numbers and increased activation status of monocytes in their bloodstream. This monocyte activation can trigger 

Fig. 10. Expression validation of MRGs that constitute a risk model in ovarian cancer cell lines. (A,B) Immunohistochemical analysis of 
ZFP36L1 in normal ovarian tissue and ovarian cancer. (C,D) qRT-PCR analysis of ZFP36L1 in normal ovarian epithelial cells and two tumor cells. (E, 
F) Immunohistochemical analysis of AP1S2 in normal ovarian tissues and ovarian carcinomas. (G,H) qRT-PCR analysis of AP1S2 in normal ovarian 
epithelial cells and two tumor cells. ****p < 0.0001. 
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neuroinflammatory responses characterized by the release of inflammatory mediators and cytokines, resulting in neuronal apoptosis, 
synaptic damage, and glial inflammation [54,55]. Furthermore, research suggests that vascular inflammation, impairment of the 
blood-brain barrier, and immune response imbalances can activate monocytes, thereby exacerbating neuroinflammatory responses 
and promoting the onset and progression of Alzheimer’s disease [56,57]. However, some studies propose that monocytes may also play 
a protective role in Alzheimer’s disease by secreting neurotrophic and anti-inflammatory factors that facilitate neuronal development, 
repair, and neuroprotection [58,59]. 

Numerous studies have extensively documented the elevated levels and activated state of monocytes in the peripheral blood of 
patients with ovarian cancer. These monocytes have been implicated in the development and progression of tumors by promoting 
tumor cell proliferation, invasion, and metastasis [60]. Through the secretion of growth factors, chemokines, and inflammatory 
mediators, monocytes have the capacity to activate various cell types in the tumor microenvironment, including tumor-associated 
macrophages (TAMs) and T cells. This process contributes to the establishment of a malignant microenvironment that supports 
tumor growth and metastasis [61]. Furthermore, the expression of PD-L1 on ascites and blood monocytes in ovarian cancer patients 
has been associated with unfavorable clinical outcomes [62]. 

To fully comprehend the involvement of monocytes in the pathogenesis of Alzheimer’s disease and ovarian cancer, additional 
research is warranted for validation and establishing their precise roles. However, investigating the link between these two diseases 
holds significant significance, as it can provide valuable insights for the development of preventive and therapeutic strategies. In our 
study, we employed single-cell RNA sequencing (scRNA-seq) of peripheral blood to investigate the potential biological and immune- 
related functions of monocytes/macrophages in these diseases. Our findings emphasized the critical role of Human Leukocyte Antigen 
(HLA) molecules in the immune system’s functioning in both conditions. Notably, the expression level of HLA-DR molecules on the 
surface of monocytes can serve as an indicator of their activation status and function, which can influence the occurrence and pro-
gression of various diseases [63]. In the context of ovarian cancer, HLA signaling is implicated in immune evasion, immune activation, 
and immune regulation. Reduced HLA expression or deficiency has been associated with unfavorable prognosis in ovarian cancer 
patients [64]. Through differential analysis, we identified a set of 134 monocyte-related genes (MRGs) and developed a unique 
prognostic signature for ovarian cancer patients in the TCGA database. We validated the predictive potential of this signature in an 
external GEO cohort, and the AUC values of the ROC curve demonstrated its predictive power. Furthermore, our risk score correlated 
with the patient’s clinical stage, and clinical variables with high-risk scores were significant prognostic factors, indicating that the 
monocyte-associated gene signature could serve as a prognostic predictor in ovarian cancer. 

In ovarian cancer, mutations in genes associated with a high tumor mutational burden (TMB) primarily involve DNA repair-related 
genes such as BRCA1 and BRCA2, tumor suppressor genes like TP53, and other genes including NF1 and RB1, which potentially 
contribute to ovarian cancer development and progression [65]. Research on ovarian cancer patients has demonstrated that those with 
high TMB levels exhibit longer overall and progression-free survival rates after immunotherapy, indicating that TMB could serve as a 
significant predictor of immunotherapy response in ovarian cancer patients [66]. Our study suggests that patients in the low-risk group 
display relatively higher TMB levels, indicating their potential suitability for immunotherapy. The expression level of PD-L1 in ovarian 
cancer patients’ tumor tissues is closely associated with patient prognosis. Consequently, we further investigated the immune 
microenvironment and conducted an expression analysis of immune checkpoint genes in different risk subgroups. Our study revealed 
that patients in the low-risk group exhibited greater immune cell infiltration, enrichment of immune-related functions, and higher 
expression of immune checkpoints. These findings likely contribute to the distinct prognosis and response rates to immunotherapy 
observed between the two groups. Tumor Immune Dysfunction and Exclusion (TIDE) is a recently identified predictor of immuno-
therapy response that outperforms other biomarkers or clinical features [67]. To enhance the reliability of our conclusions, we 
included a real cohort of bladder cancer patients who underwent immunotherapy in the IMvigor 210 trial. Collectively, these results 
suggest that the low-risk group experiences greater benefits from immunotherapy compared to the high-risk group. 

In our study, we identified ZFP36L1 and AP1S2 as constituting a stable risk score signature for ovarian cancer and also being 
signature genes for Alzheimer’s disease (AD). ZFP36L1 is involved in the post-transcriptional regulation of gene expression and has 
been shown to impact cancer cells functionally. Silencing ZFP36L1 enhances tumor cell growth, while its overexpression inhibits cell 
proliferation and migration in bladder and breast cancer cell lines. One mechanism through which ZFP36L1 inhibits cell proliferation 
is by down-regulating the expression of the cell cycle protein D, leading to cell cycle arrest in the G1 phase [68,69]. ZFP36L1 has also 
been identified as one of the variant genes associated with an increased risk of epithelial ovarian cancer [70]. However, there is limited 
research on the role of ZFP36L1 in AD. Some bioinformatic studies suggest that the zinc finger protein ZFP36L1 is a target of multiple 
microRNAs in Alzheimer’s disease [71]. AP1S2 has been reported as a prognostic marker in ovarian cancer, and its expression levels 
differ in drug-resistant cell lines [72]. In melanoma, downregulation of AP1S2 inhibits tumor cell migration, indicating its potential as 
a therapeutic target [73]. However, there are no studies on AP1S2 in neurodegenerative diseases, although mutations in AP1S2 have 
been noted in cases of fourth ventricular foramen occlusion syndrome with intellectual disability, basal ganglia disease, and seizures 
[74]. 

To further advance our understanding of the roles of monocytes in ovarian cancer and Alzheimer’s disease, future research can be 
focused on the following perspectives. Firstly, the molecular mechanisms by which monocytes contribute to disease onset and 
development need to be explored, including their functions and regulatory pathways. Secondly, the interactions between monocytes, 
tumor cells, and immune cells, as well as their impact on tumor immune evasion, should be investigated. Finally, the effects of 
monocytes on neurons through the release of inflammatory factors and oxidative stress substances need to be examined to explore the 
potential of monocytes in the treatment of neurodegenerative diseases. Further research in these areas can deepen our understanding 
of the relationship between monocytes and these diseases, providing important theoretical support for the development of new 
therapeutic strategies. 
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While our prognostic signature comprising monocyte-associated genes has shown promising results in identifying immune sig-
natures and predicting patient prognosis, there are several limitations that should be addressed in future studies [75,76]. Firstly, 
differences in sequencing platforms can introduce variations in sequencing errors, which can be biological, random, or systematic, 
such as batch effects. Future studies will require more advanced techniques and tools for data analysis to uncover genuine biological 
differences between samples and develop robust model-building methods. Additionally, analysis based on public databases may 
introduce biases in prediction results, necessitating validation using real data from ovarian cancer patients. Moreover, the biological 
roles and mechanisms of the two monocyte-associated genes, ZFP36L1 and AP1S2, in both diseases warrant further investigation. 
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