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Scopolamine is a high affinity muscarinic antagonist that is used for the prevention of post-operative
nausea and vomiting. 5-HT3 receptor antagonists are used for the same purpose and are structurally
related to scopolamine. To examine whether 5-HT3 receptors are affected by scopolamine we examined
the effects of this drug on the electrophysiological and ligand binding properties of 5-HT3A receptors
expressed in Xenopus oocytes and HEK293 cells, respectively. 5-HT3 receptor-responses were reversibly
inhibited by scopolamine with an ICsg of 2.09 uM. Competitive antagonism was shown by Schild plot
(pAy = 5.02) and by competition with the 5-HT3 receptor antagonists [*H]granisetron (K; = 6.76 M) and

K ds: . . o .

Sfﬁ‘gfr : G-FL (Ki = 4.90 uM). The related molecule, atropine, similarly inhibited 5-HT evoked responses in oocytes
Cys-loop with an ICsq of 1.74 uM, and competed with G-FL with a K; of 7.94 uM. The reverse experiment revealed
Binding site that granisetron also competitively bound to muscarinic receptors (Ki = 6.5 uM). In behavioural studies

scopolamine is used to block muscarinic receptors and induce a cognitive deficit, and centrally admin-
istered concentrations can exceed the ICsg values found here. It is therefore possible that 5-HT3 receptors
are also inhibited. Studies that utilise higher concentrations of scopolamine should be mindful of these

potential off-target effects.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Scopolamine is a high-affinity (nM) muscarinic antagonist that
is used to treat post-operative nausea and vomiting, and motion
sickness. As a research tool it is often administered to induce
cognitive dysfunction. At higher doses it can also produce amnesia
and compliance (Klinkenberg and Blokland, 2010). Atropine is a
related muscarinic antagonist from the same biosynthetic pathway
as scopolamine and is used as a cycloplegic and mydriatic in
ophthalmology, and for the treatment of bradychardia.

Scopolamine readily passes the blood brain barrier and it is
believed that inhibition of muscarinic receptors in the central
nervous system causes a cholinergic deficit that impairs memory
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(Klinkenberg and Blokland, 2010). As an age-related deterioration
in cognitive function is thought to be predominantly related to a
decline in cholinergic neurotransmission, scopolamine adminis-
tration has often been used to model dementia (Bartus, 2000).
Scopolamine has therefore been extensively used for preclinical
and clinical testing of treatments for cognitive impairment
(Bartolomeo et al., 2000; Blin et al., 2009; Liem-Moolenaar et al.,
2011).

In the clinic, 5-HT3 antagonists are mainly used for the treat-
ment of nausea and vomiting following cancer therapy and general
anaesthesia (Thompson, 2013; Walstab et al., 2010). Experimen-
tally, they can also be administered to reverse scopolamine-evoked
learning and memory deficits (Barnes et al., 1990; Chugh et al,,
1991; Carli et al., 1997). In the brain 5-HT3; receptors are widely
distributed in the amygdala and hippocampus, regions of critical
importance in memory and spatial navigation, and involved in the
control of emotional responses and their associated disorders such
as anxiety and depression (Gulyas et al., 1999; Thompson and
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Lummis, 2007; Walstab et al., 2010). It is thought that the reversal
of scopolamine-induced cognitive dysfunction by 5-HT3 receptor
antagonists occurs by inhibiting pre-synaptic 5-HT3 receptors that
modulate the functions of other neurotransmitters such as acetyl-
choline, dopamine, y-aminobutyric acid and glutamate in this re-
gion (Seyedabadi et al., 2014). A similar mechanism is thought to
underlie the anti-anxiolytic and anti-depressive actions of 5-HT3
antagonists.

5-HTj3 receptors are members of the Cys-loop family of ligand-
gated ion channels (LGIC). These are responsible for fast excit-
atory and inhibitory neurotransmission in the central and periph-
eral nervous systems. The family includes nicotininc acetylcholine
(nACh), y-aminobutyric acid (GABAa) and glycine receptors, which
are all cell-surface, transmembrane ion channels. They consist of
five subunits that surround a central ion-conducting pore, and each
subunit contains three distinct functional regions that are referred
to as the extracellular, transmembrane and intracellular domains.
The orthosteric binding site (that occupied by the endogenous
agonist) is located between the extracellular domains of adjacent
subunits, and is formed by the convergence of three amino acid
loops from the principal subunit (loops A — C) and three B-sheets
(loops D — F) from the complementary subunit (Thompson et al.,
2008). Agonist binding results in the opening of a central ion-
conducting pore that is located within the transmembrane
domain (Peters et al., 2010; Hassaine et al., 2014). Ligands bind to
both domains, but the orthosteric binding site is the main drug
target. These 5-HT3 receptor competitive antagonists have high
affinities (nM) and conform to a pharmacophore that consists of an
aromatic group coupled to an azabicyclic ring via a carbonyl linker
(Fig. 1). Both atropine and scopolamine also have these structural
features, suggesting that these muscarinic antagonists could also
bind at 5-HTs3 receptors (Thompson, 2013).

Here we use a combination of electrophysiology, radioligand
binding, flow cytometry and in silico ligand docking to provide
evidence that, in addition to its block of muscarinic receptors,
scopolamine is also a competitive antagonist of 5-HT3 receptors.
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2. Materials and methods
2.1. Materials

Atropine and scopolamine were from Sigma-Aldrich (St. Louis,
MO, USA). [*H]N-methylscopolamine (84 Ci/mmol) was from Per-
kin Elmer (Boston, MA, USA). Human 5-HT3A (Accession: 46,098)
subunit cDNA was kindly provided by J. Peters (Dundee University,
UK).

2.2. Oocyte maintenance

Xenopus laevis oocytes were purchased from EcoCyte Bioscience
(Castrop-Rauxel, Germany) and maintained according to standard
methods (Goldin, 1992) in ND96 (96 mM NaCl, 2 mM KCl, 1 mM
MgCly, 5 mM HEPES, pH 7.4).

2.3. Cell culture

Human embryonic kidney (HEK) 293 cells were grown on
90 mm round tissue culture plates as monolayers in DMEM/F12
(Gibco, Life Technologies, CA, USA) supplemented with 10% fetal
bovine serum (FBS; Sigma Aldrich) at 37 °C in a moist atmosphere
containing 5% CO,.

2.4. 5-HT3 receptor expression

5-HT3A subunit cDNA was cloned into pGEMHE for oocyte
expression. cCRNA was in vitro transcribed from linearised plasmid
cDNA template using the mMessage mMachine Ultra T7 Tran-
scription kit (Ambion, Austin, Texas, USA). Stage V and VI oocytes
were injected with 50 nl of 100—600 ng/ul cRNA (5—30 ng injec-
ted), and currents were recorded 1—3 days post-injection.

5-HT3A subunit cDNA was cloned into pcDNA3.1 for expression
in HEK 293 cells. Cells were transiently transfected with this cDNA
using polyethyleneimine (PEI: 25 kDa, linear, powder, Polysciences
Inc., Eppelheim, Germany). 30 pl of PEI (1 mg ml~'), 5 ug cDNA and
1 ml DMEM were incubated for 10 min at room temperature, added
drop wise to a 90 mm plate, at 80—90% confluency, and incubated
for 2—3 days before harvesting.
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Fig. 1. Chemical structures of endogenous agonist 5-HT, 5-HT receptor antagonists granisetron, tropisetron and SDZ-ICT 322, scopolamine, atropine and the radioligand [*H]N-
methylscopolamine. Note that scopolamine is a single enantiomer whereas atropine is a mixture of epimers at the indicated (asterisk) carbon atom.
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2.5. Muscarinic receptor preparation

Muscarinic receptors were isolated from the cerebral cortices of
adult male Guinea pigs (200—300 g). Brains were dissected into
10 mM Tris-HCI + 1 mM EDTA (pH 7.6) on ice and homogenised
using a Teflon-glass homogeniser with a motor-driven pestle (30 s,
300 rpm). The tissue was pelleted 17,000 g for 30 min and the
membranes resuspended, and then centrifuged again using the
same procedure. The final pellet was homogenised in 10 mM HEPES
buffer (pH 7.4) and used directly for radioligand binding. Experi-
ments involving animals were approved by the University of
Cambridge Animal Welfare and Ethical Review Body (PHARM 004/
15).

2.6. Radioligand binding

Saturation binding (8 point) curves were measured by incu-
bating either crude extracts of HEK 293 cells stably expressing 5-
HT; receptors, or Guinea pig membrane preparations, in 0.5 ml
incubations containing 10 mM HEPES buffer (pH 7.4) and 0.1-1 nM
[H]granisetron or 1-10 nM [*H]N-methylscopolamine. Competi-
tion binding (10 point) was determined by incubating the same
receptors preparations in 0.5 ml HEPES buffer containing either
0.6 nM [?H]granisetron or 0.6 nM [>H]N-methylscopolamine, and
differing concentrations of competing ligands. Non-specific binding
was determined with 1 mM quipazine or 10 pM scopolamine
respectively. Incubations were terminated by filtration onto
Whatman GF/B filters (Sigma Aldrich) wetted with HEPES
buffer + 0.3% polyethyleneimine, followed by two rapid washes
with ice-cold HEPES buffer. Protein concentration was calculated
using a Lowry protein assay with bovine serum albumin standards
(Lowry et al., 1951). Radioactivity was measured using a Tri-Carb
2100 TR (Perkin Elmer, Waltham, MA, USA) scintillation counter.

2.7. Flow cytometry

HEK 293 cells expressing the 5-HT3; receptor were grown in
monolayers and harvested from 90 mm culture dishes using 10 ml
Trypsin-EDTA (Sigma Aldrich) for 10 min at 37 °C. Digestion was
terminated by the addition of 25 ml DMEM +10% FBS and cells
pelleted at low speed for 2 min. The pellet was resuspended in 3 ml
phosphate buffered saline (PBS: 137 mM NaCl, 8.0 mM NayHPOy,
2.7 mM KCl, 1.47 mM KH;PO4, pH 7.4) and cells filtered through a
cell strainer (BD Falcon, Franklin Lakes, NJ, USA). Competition
binding was measured by incubating HEK 293 cells with different
concentrations of non-labeled ligands and 10 nM G-FL (Jack et al.,
2015; Lochner and Thompson, 2015). After 10 min incubation,
cells were pelleted and rapidly washed in PBS before being resus-
pended in the same buffer and analysed on a BD Accuri C6 flow
cytometer (Becton, Dickinson and Company, NJ, USA) at 488 nm
excitation/530 nm emission.

2.8. Electrophysiology

Using two electrode voltage clamp, Xenopus oocytes were
routinely clamped at —60 mV using an OC-725 amplifier (Warner
Instruments, Connecticut, USA), NI USB-6341 X Series DAQ Device
(National Instruments, Berkshire, UK) and the Strathclyde Electro-
physiology Software Package (University of Strathclyde, UK). Micro-
electrodes were fabricated from borosilicate glass (GC120TF-10,
Harvard Apparatus, Edenbridge, Kent, UK) using a two stage hori-
zontal pull (P-1000, Sutter Instrument Company, California, USA)
and filled with 3 M KCL. Pipette resistances ranged from 0.7 to
1.5 MQ. Oocytes were routinely perfused with ND96 at a rate of
15 ml min~'. Drug application was via a simple gravity fed system

calibrated to run at the same rate. Antagonists were routinely co-
applied in the presence of 2 uM 5-HT or continuously applied for
1 min before the co-application of 2 uM 5-HT. A 2 min wash was
used between applications.

2.9. Data analysis

All data analysis was performed with GraphPad Prism v5.00
(GraphPad Software, San Diego, CA, USA). For concentration-
response curves, peak currents were measured for each concen-
tration of agonist and normalised to the maximal peak current in
the same oocyte. For inhibition curves, the peak current response to
2 UM 5-HT was measured at in the absence or presence of antag-
onist and normalised to the response to 2 M 5-HT alone. The mean
and S.E.M. for a series of oocytes was plotted against agonist or
antagonist concentration and iteratively fitted to the following
equation:

_ . Imax - Imin
y - Imm + 1 + ]Olog(ECSD*X)nH (l)

where Iy is the baseline current, In,ax is the peak current evoked
by agonist, ECsq is the concentration of agonist needed to evoke a
half-maximal response, x is the ligand concentration and ny is the
Hill slope. Ky was estimated from ICsg values using the Cheng-
Prusoff equation with the modification by Leff and Dougall (1993):

ICs
((2+ aaasa)™) ™) -1

where Kj, is the dissociation constant of the competing drug, ICsq is
the concentration of antagonist required to half the maximal
response, [A] is the agonist concentration, [Asg] is the agonist ECsg,
and ny is the Hill slope of the agonist.

Analysis of competitive inhibition was performed by Schild Plot
according to the following equation:

log[(EC50/ECs) — 1] = log[L] — logKy (3)

Ky = (2)

where ECs, and ECsq are values in the presence and absence of
antagonist (Dose Ratio), [L] is the concentration of antagonist, and
Ky is the equilibrium dissociation constant for the antagonist re-
ceptor interaction. Further analysis was performed using the
Gaddum-Schild equation (slope = 1) as recommended by Neubig
et al. (2003):

PECsg = —log([L] + 10*1”‘2) “logC (4)

where pECsg is the negative logarithm of the agonist ECsp, [L] is the
antagonist concentration, logC is a constant and pA; is the negative
logarithm of the antagonist concentration needed to double the
concentration of agonist required in order to elicit a response that is
comparable to the original response in the absence of antagonist.
pA; is equal to the negative logarithm of K, when the slope of the
Schild plot is exactly 1.

Kinetic parameters were determined according to the following
model of a simple bimolecular binding scheme:

ll)h
L+R<:LR (5)
ko

where L is the free ligand concentration, R is receptor concentra-
tion, LR is the ligand-receptor complex and ko, and kg are the
microscopic association and dissociation rate constants. In a simple
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scheme such as this, the equilibrium dissociation constant (Kgq) is
equal to the ratio of dissociation to association rate constants, such
that:

k
Kg=-2L (6)
kOTI
According to a one site binding model of the type shown, the
time constants for the onset and recovery of an antagonist response
can be used to estimate k1 and k_1:

1

—=k_ 7
Toff ! @
and

1

— = kL +k (8)
Ton

where 1, refers to the time constant for the onset of inhibition, Toff
refers to recovery from inhibition and [L] is antagonist
concentration.

Competition binding data were analysed by iterative curve
fitting according to:

AmaX — Amin (9)

y= Amln] + lo[L],log ICso

Kjvalues were determined from the ICsg values using the Cheng-
Prusoff equation:

ICSO

Ki=17 [L]/Ky

(10)

where K; is the equilibrium dissociation constant for binding of the
unlabeled ligand, [L] is the concentration of labeled ligand and Ky is
the equilibrium dissociation constant of the labeled ligand.

2.10. Docking

We used a template of granisetron bound to SHTBP (PDB ID
2YME); an AChBP chimaera with substitutions in the binding site
that mimic the 5-HTs receptor (Kesters et al., 2013). The three-
dimensional structure of the hydrochloride salt of scopolamine
was extracted from the Cambridge Structural Database (CSD, access
code KEYSOW) and Chem3D Pro v14.0 (CambridgeSoft, Cambridge,
UK) was used to construct scopolamine based on the crystal
structure. The generated ligand was subsequently energy-
minimised using the implemented MM?2 force field. Similarly,
construction of the three-dimensional structure of the protonated
form of tropisetron was based on the crystal structure of N-methyl
tropisetron (CSD access code BEGLEG), and the three-dimensional
structure of SDZ-ICT 322 was based on the crystal structures of
N-methyl tropisetron (for the indole carboxylic moiety; CSD access
code BEGLEG) and scopolamine (for the tricyclic scopine moiety;
CSD access code KEYSOW), followed by energy-minimisation. The
binding site was defined as being within 10 A of the centroid of the
aromatic side-chain of W183, a residue that is centrally located in
the binding site and is important for the binding of other 5-HT3
competitive ligands. The ligands were docked into this site using
GOLD Suite v5.3 (The Cambridge Crystallographic Data Centre,
Cambridge, UK) with the GoldScore function and default settings.
For docking, scopolamine was defined as flexible, while the C—C
bond between the ester group and the aromatic indole ring of SDZ-
ICT322 and tropisetron was defined as rigid due to conjugation. Ten
docked poses were generated for each ligand and the poses

visualized with PyMol v1.7.5.0.
3. Results
3.1. Effects of scopolamine on 5-HT3 receptor currents

Application of 5-HT to Xenopus oocytes expressing the 5-HT3
receptor produced concentration-dependent, rapidly activating,
inward currents that slowly desensitised (T = 42 + 5 s; n = 8) over
the time-course of the applications. Plotting peak current ampli-
tude against a series of 5-HT concentrations allowed the data to be
fitted with Eq. (1) to give a pECsg of 5.65 + 0.02 (EC59 = 2.24 uM,
n = 6) and Hill slope of 2.06 + 0.14 (Fig. 2A). Agonist responses were
completely inhibited by the established 5-HTs; receptor-specific
antagonist granisetron (100 nM, data not shown). Uninjected oo-
cytes did not respond to 5-HT.

Application of scopolamine to oocytes expressing 5-HT3 re-
ceptors did not elicit a response when applied alone, but caused a
concentration-dependent inhibition of the response during a co-
application of 2 uM 5-HT (Fig. 2). The pICsg value for scopolamine
was 5.68 + 0.05 (IC5o = 2.09 uM, n = 6) with a Hill Slope of
1.06 + 0.05. This gave a K, of 3.23 uM (Eq. (2)). The same
concentration-dependent effect was also seen when scopolamine
was applied during the 5-HT application (Fig. 2C). Using this pro-
tocol the onset of inhibition could be fitted with a mono-
exponential function and the reciprocal plotted against antagonist
concentration to yield association (slope; kon = 2.60 x 104 M~1s~1)
and dissociation (y-axis intercept; 0.32 s~!) rates that gave a Kq of
12.3 uM (Fig. 2D, Eq. (6)). Inhibition was fully reversible after 1 min
of washing and was unaltered by a 1 min scopolamine pre-
application (data not shown).

3.2. Mechanism of scopolamine block

Increasing concentrations of scopolamine (10 uM, 30 uM, 60 pM,
100 pM, 300 puM) caused a parallel rightward shift in the 5-HT
concentration-response curve, with no change in the maximal
response (Fig. 3A, Table 1). A Schild plot of these results (Fig. 3B),
yielded a gradient close to 1 (1.06 + 0.10, R? = 0.97) and a pA, value
0of 5.03 + 0.43 (Kp = 9.33 uM). The K}, estimate was similar (2.88 uM)
if the data were fitted using a nonlinear regression method (Eq. (4))
as recommended by Neubig et al. (2003) and Lew and Angus
(1995). These data support a competitive mechanism of action,
indicating that scopolamine binds to the orthosteric binding site.

3.3. Binding at 5-HT3 and muscarinic receptors

To further test for a competitive binding at the 5-HT3 receptor,
we measured competition of unlabelled scopolamine with [>H]
granisetron, an established high-affinity competitive antagonist at
these receptors. Scopolamine displayed concentration-dependent
competition with 0.6 nM [>H]granisetron (~Kg, Fig. 4), yielding an
average pK; (Eq. (10)) of 5.17 + 0.24 (Fig. 4; K; = 6.76 pM, n = 3).

Saturation binding using radiolabelled scopolamine was also
undertaken at 5-HTj3 receptors. Although the K;j of scopolamine was
too low to accurately measure binding, the compound [>H]N-
methylscopolamine that we used contains a permanent quaternary
amine that increases its affinity at nicotinic receptors (Fig. 1,
Schmeller et al., 1995). However, at concentrations of up to 10 nM,
no saturable binding was observed for this radioligand at 5-HT3
receptors.

Competition of scopolamine was also measured at 5-HT3 re-
ceptor by flow cytometry with a fluorescently labeled form of
granisetron (G-FL (Jack et al., 2015),). Concentration-dependent
competition of G-FL with scopolamine gave an average pK; (Eq.
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Fig. 2. The effect of scopolamine on 5-HT3 receptor currents. (A) Concentration-response curve for 5-HT. (B) Concentration-inhibition of the 2 pM 5-HT response by co-applied
scopolamine. The data in 2A are normalised to the maximal peak current response for each oocyte and represented as the mean + S.E.M. for a series of oocytes. In Fig. 2B, in-
hibition by scopolamine is shown relative to the peak current response to 2 uM 5-HT alone. For 5-HT curve fitting yielded a pECsg of 5.65 + 0.02 (ECsp = 2.24 uM, n = 6) and Hill
slope of 2.06 + 0.14. The pICsg value for scopolamine was 5.68 + 0.05 (ICso = 2.09 uM, n = 6) with a Hill Slope of 1.06 + 0.05. (C) Sample traces showing the onset (7o) and recovery
(7o) Oof scopolamine inhibition (grey bar) during a 2 uM 5-HT application (filled bar). (D) Onset of inhibition was well fitted by mono-exponential functions to give kops (n = 17). A
plot of the reciprocal of these time constants versus the scopolamine concentration showed a linear relationship where the slope = koq (2.60 x 10* M~! s7') and the y-axis
intercept = ko (0.32 s71).
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Fig. 3. The mechanism of 5-HT; receptor inhibition by scopolamine. (A) Concentration-response curves were performed in the absence or presence of the indicated concentrations
of scopolamine. The curves showed parallel dextral shifts with maximal currents restored by increasing concentrations of 5-HT. Parameters derived from these curves can be seen in
Table 1. (B) A Schild plot was created from the dose ratios of the curves shown in 3A and fitted with Eq. (3) to yield a slope of 1.06 + 0.10 (R* = 0.97) and a pA, of 5.03 + 0.43 (Kp,
9.33 uM).

11) of 5.31 + 0.09 (Fig. 4; K; = 4.90 uM, n = 8). This is similar to the
affinities measured using electrophysiology and radioligand bind-
ing and provides further support for a competitive mode of action.

In the reverse experiment, competition binding of granisetron

with [H]N-methylscopolamine was examined at muscarinic re-
ceptors. The ICso for granisetron at muscarinic receptors was
141 + 3.1 uM (n = 7), yielding a K; of 6.5 uM (Eq. (10)).
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Table 1
Parameters derived from concentration-response curves in the presence of
increasing concentrations of scopolamine.

[Scopolamine] (uM) PECso ECso (M) nH n
Control 5.65 + 0.02 2.24 2.1 6
10 5.49 + 0.04 3.23 22 4
30 5.15 + 0.01 7.08 33 4
60 4.87 + 0.03 135 34 4
100 4.84 + 0.04 144 3.9 3
300 4.36 + 0.03 43.6 25 5

>

1004 <
g) e
*

B 80
£
1] 60-
O
=
8 40+
»
2 20
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-8 7 6 5 4 3 2 1
log [Scopolamine] (M)
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3.5. Docking studies

Based upon the evidence that scopolamine binds at the
orthosteric binding site we used a bio-informatics approach to
probe possible ligand orientations and try to understand why the
affinity of scopolamine was lower than other established 5-HTj;
receptor antagonists. To this end we chose a crystal structure of a 5-
HT3 receptor-AChBP chimera (termed 5HTBP) complexed with
granisetron (PDB ID: 2YME) as a binding site model (Fig. 6A, Kesters

w
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8 7 6 5 4 3 2
log [Scopolamine] (M)

Fig. 4. Competition of scopolamine with an established 5-HT3 receptor antagonist. (A) Radioligand binding curves for the competition of 0.6 nM [*H]granisetron and varying
concentrations of scopolamine at crude membrane extracts of 5-HT; receptors from stably expressing HEK 293 cells. Data was normalised to [*H]granisetron binding in the absence
of antagonist and fitted with Eq. (10). The curve is representative of 3 similar experiments, which gave an average pK; of 5.17 + 0.24 (K; = 6.76 uM, n = 3). (B) Flow cytometry,
showing the competition of 10 nM G-FL (a fluorescent derivative of granisetron; Jack et al., 2015) and varying concentrations of scopolamine at 5-HT; receptors expressed on the
surface of live HEK 293 cells. The average pK; of these experiments was similar to values from radioligand competition (5.31 + 0.09, K; = 4.90 uM, n = 8).

3.4. Properties of atropine

Atropine is a structurally related muscarinic antagonist (Fig. 1).
To test its pharmacological properties we performed measure-
ments using electrophysiology and flow cytometry. In oocytes
expressing 5-HTs3 receptors, atropine did not elicit a response when
applied alone, but it caused concentration-dependent inhibition of
the 2 uM 5-HT-evoked response with a pICso of 5.76 + 0.14
(ICs0 = 1.74 uM, n = 5) and Hill Slope of 1.06 + 0.05 (Fig. 5A). This
yielded a Ky, of 1.89 uM (Eq. (2)). Inhibition was fully reversible after
1 min of washing and was unaltered by pre-application (data not
shown).

Competition of G-FL and atropine was also shown by flow
cytometry (Fig. 5B). Concentration-dependent measurements were
fitted to give a pK;j (Eq. (10)) of 5.10 + 0.16 (Kj = 7.94 uM, n = 5).
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et al., 2013). For the purpose of validation we first removed grani-
setron from the template and re-docked both this ligand and the
closely related 5-HT3 receptor antagonist, tropisetron, into the
binding site template. The proposed ligand orientations of these
two antagonists were almost identical to the binding pose from the
crystal structure 2YME. This is illustrated in Fig. 6B where tropi-
setron is shown with its bicyclic moiety located between the aro-
matic side chains of W90, W183 and Y234 and the flat indole ring is
sandwiched between loop C and R92 from loop D.

Following from our docking with established 5-HT3 antagonists,
we performed docking with scopolamine. This yielded a docked
pose cluster (Fig. 6C) that placed the scopine head of scopolamine
at the same location as the azabicyclic rings of granisetron and
tropisetron, but owing to the flexibility of scopolamine and the
steric restraints imposed by the tight binding cavity, the hydroxyl of

1.0
0.8-
0.6-
0.4-

0.2

Normalised Geomean [JJ

0.0

7 -6 5 4 3 2 -1
log [Atropine] (M)

Fig. 5. Effects of atropine on the electrophysiological responses to 5-HT and binding of G-FL. (A) Concentration-inhibition of the 2 uM 5-HT response by co-applied atropine. For
each oocyte the responses in the presence of antagonist are normalised to the peak current response to 5-HT alone and data represented as the mean + S.E.M. for a series of oocytes.
Curve fitting yielded a pICso of 5.76 + 0.14 (ICso = 1.74 uM, n = 5) and Hill Slope of 1.06 + 0.05. (B) Flow cytometry, showing the competition of 10 nM G-FL (a fluorescent derivative
of granisetron; Jack et al., 2015) and varying concentrations of atropine at 5-HT5 receptors expressed on the surface of live HEK 293 cells. The affinity (pK; = 5.10 + 0.16, K; = 7.94 uM,
n = 5) of atropine calculated from these experiments was similar to that measured using electrophysiology.
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Granisetron
Tropisetron

Scopolamine
Granisetron

(\ loop F

loop C

Fig. 6. Representative examples of 5-HT3 receptor antagonists (ball-and-stick representation) docked into a 5-HT3 receptor orthosteric binding site model (PDB ID: 2YME; a co-
crystal of granisetron bound to a mutant AChBP that contains residues from the 5-HT3 receptor binding site (termed 5HTBP; Kesters et al.,, 2013) and important binding site
residues (stick representation). Principle face (left-hand side, light grey), complementary face (right-hand side, dark grey). (A) 2YME from the side (y-axis) showing the location of
granisetron (green) in the orthosteric binding site at the interface of two adjacent subunits. (B) Proposed binding pose for tropisetron (blue) overlaying granisetron (green) from the
co-crystal structure 2YME. (C) The proposed binding pose for scopolamine (orange) showing its orientation in the 5-HT; binding site. (D) A surface representation of 5SHTBP bound
with granisetron and an overlay of docked scopolamine showing the hydroxyl of the carbonyl linker that, owing to steric constraints, is located within a cavity at the rear of the
binding site. It can be seen that while the scopine head of scopolamine (orange) is at the same location as the azabicyclic rings of granisetron (green), the steric bulk, flexibility and
presence of a hydroxyl in the linker region results in the aromatic ring being orientated away from loops D and F. (D) In contrast, the proposed binding pose for SDZ-ICT 322 (yellow)
is more similar to that of granisetron. For chemical structures of the described ligands see Fig. 1.
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the carbonyl linker was extended into a pocket at the rear of the
binding site, displacing the aromatic ring by ~3 A towards the
principal binding interface (Fig. 6D).

SDZ-ICT 322 (Fig. 1), is a competitive, highly potent 5-HT3 re-
ceptor antagonist that contains key structural elements of both
scopolamine and high affinity 5-HT3 receptor antagonists such as
granisetron and tropisetron (Blum et al., 1992); it has the same
tricyclic scopine moiety as scopolamine, which is rigidly linked to
the flat heteroaromatic group (indole) found in granisetron and
tropisetron. Docking of SDZ-ICT 322 into the 5-HT3 receptor bind-
ing site predicted an orientation similar to granisetron and tropi-
setron, with its aromatic indole group close to the side chain of R92
from loop D and the scopine tricycle pointing towards the -sheets
of the principal face, surrounded by the aromatic rings of W90,
W183 and Y234 (Fig. 6E).

4. Discussion

This study describes the effects of scopolamine and atropine on
human 5-HT3 receptors. Both compounds were antagonists with
UM potencies. For scopolamine, binding at the orthosteric site was
demonstrated by Schild analysis and competition with the 5-HT3
receptor antagonists [H]granisetron and G-FL. In silico docking
predicted that molecular features of the carbonyl linker of scopol-
amine may alter its orientation within the binding site and could
account for the lower potency when compared to established 5-HT3
receptor antagonists. Evidence for this is discussed in more detail
below.

The observation that scopolamine competitively inhibits 5-HT3
receptor responses was anticipated as it has structural similarities
with other 5-HT3 receptor antagonists (Fig. 1) and ligand pro-
miscuity at 5-HTs receptors has been reported elsewhere. For
example, epibatidine and tropisetron are high affinity agonists of
o7 nACh and high affinity antagonists of 5-HT3 receptors. Similarly,
5-HTj3 receptors also have lower affinity competitive interactions
with dopamine, acetylcholine, nicotine, p-tubocurarine, chloro-
quine, varenecline and strychnine, as well as allosteric modulators
such as anaesthetics, alcohols, steroids and terpenoids and the non-
competitive antagonists picrotoxin, ginkgolides and mefloquine
(Thompson and Lummis, 2008, 2013; Thompson et al., 2014). It is
perhaps more surprising that the affinities of scopolamine and
atropine were not higher given their structural similarities to 5-HT3
receptor antagonists that bind with nM affinities. However, the
lower affinities are likely to result from both scopolamine and
atropine having an aromatic ring that is not directly attached to the
ester moiety that forms the link with the bicyclic amine, a bond that
is common to all 5-HT;3 receptor antagonists (Thompson, 2013). The
direct conjugation of the carbonyl (ester or amide) group with the
aromatic ring provides 5-HT3 receptor antagonists with planarity
and rigidity that is crucial for potent inhibition and high-affinity
binding (Hibert, 1994). Instead, scopolamine and atropine have
linkers that contain a tetrahedral carbon that carries a polar
hydroxymethyl substituent (Fig. 1). The importance of this region is
highlighted by SDZ-ICT 322, a ligand that is also a high affinity 5-
HT3; receptor antagonist (pA, = 10.6 in isolated rabbit vagus
nerve, pKg = 9.2 in N1E cells) but has the same scopine tricyclic
moiety as scopolamine directly linked to the aromatic indole ring
(Blum et al., 1992). This hypothesis is further supported by the low
affinity of atropine which contains the same tetrahedral carbon,
while the close analogue tropane benzoate, with a carbonyl linker,
has high affinity at 5-HT3 receptors (63 nM; Fozard, 1989). We also
found that the potent 5-HT3 receptor antagonist, granisetron, binds
with a micromolar affinity at muscarinic receptors, suggesting that
while general conformations of these ligands enable them to share
common binding sites at both receptors, the linkers are likely to

confer the key structural elements that drive receptor selectivity.

To find further evidence for the importance of this linker region,
we performed docking into a homologue of the 5-HTs3 receptor that
has been co-crystallised with the antagonist granisetron in its
binding site (Kesters et al., 2013). The predicted binding pose for the
high affinity antagonist SDZ-ICT 322 was similar to the orientations
of granisetron and tropisetron ligands in 5HTBP and AChBP co-
crystal structures (Fig. 6E), which was anticipated given the simi-
larity in their structures (Fig. 1) and affinities (Hibbs et al., 2009;
Kesters et al., 2013). However, in scopolamine the tri-substituted
tetrahedral carbon between the scopine tricyclic moiety and the
aromatic phenyl ring leads to a kink in the molecular structure,
unlike the high-affinity 5-HT3 receptor which are planar. In
scopolamine this linker also contains a hydroxyl group. The docking
results lead us to speculate that the substituted tetrahedral carbon
in scopolamine creates increased bulk and ligand flexibility, while
the polar hydroxyl group is sterically restricted and occupies a
cavity in the rear of the binding site. If these predictions are correct,
the differences in the linker region orientate scopolamine away
from residues in binding loops D and F (Fig. 6D), and the ligand no
longer engages with residues that are essential for high affinity
binding (Thompson et al., 2005, 2006).

Scopolamine is generally regarded as a non-selective muscarinic
receptor antagonist with an affinity <1 nM. At higher concentra-
tions it also blocks nicotinic acetylcholine receptors (ICso = 928 uM)
and increases the expression of &7 nACh receptors (Schmeller et al.,
1995; Falsafi et al., 2012). When using scopolamine for the pre-
vention of motion sickness in humans, blood concentrations
following transdermal and combined oral administration have
been reported to peak at ~0.37 ng ml~! within an hour (Nachum
et al, 2001). Elsewhere, higher plasma concentrations of
29 ng ml~! are reported following intravenous administration
(0.4 mg) to healthy volunteers (Putcha et al., 1989). Both of these
values are significantly lower than the concentrations that affect 5-
HT3 receptors and it is unlikely that these receptors would be
inhibited. However, when scopolamine is used to induce cognitive
dysfunction in rodents, intraperitoneal or sub-cutaneous injections
of up to 2 mg kg~! are used (Klinkenberg and Blokland, 2010). As a
weight per volume this is the equivalent of ~1 uM which is close to
the ICsp at 5-HT3 receptors. For centrally administered scopolamine
the focal concentrations at the site of administration can be as high
as 140 pg pl~! (460 pM), a concentration that is far in excess of its
IC59 at 5-HT3 receptors and would cause complete inhibition
(Klinkenberg and Blokland, 2010).

The amygdala and hippocampus are of critical importance in
implicit and explicit memory, and this function is mediated via
actions of both cholinergic and serotonergic pathways. As scopol-
amine blocks muscarinic receptors with high affinity it is used to
induce cognitive dysfunction, but it is also known that 5-HTj3 re-
ceptor antagonists alleviate these symptoms. Long-term potentia-
tion (LTP, the neural mechanism through which memory is formed)
in the amygdala and hippocampus is inhibited by 5-HT3 receptor
agonists and promoted by antagonists (Staubli and Xu, 1995). These
effects are probably mediated via actions on the GABA-ergic syn-
aptic activity of interneurons, but may also result from activities at
5-HTj3 receptors that are present outside of the hippocampus and
would also be blocked by systemically administered 5-HT3 antag-
onists. If sufficiently high concentrations of scopolamine were
centrally administered we might expect a similar block of 5-HT3
receptors which could complicate the interpretation of its physio-
logical effects. Pre-administering 5-HT3 antagonists to alleviate
cognitive dysfunction might further complicate these studies as
their higher affinities and slower elimination from the body would
prevent scopolamine binding at 5-HTs receptors (Putcha et al.,
1989). As mood disorders such as anxiety and depression are also
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mediated by both cholinergic and serotonergic pathways, the
interpretation of scopolamine effects on these might be similarly
affected (Bétry et al., 2011).

In summary, we provide the first reported evidence that the
drug scopolamine inhibits the function of homomeric 5-HT3 re-
ceptors via a competitive mode of action, and suggest that the bond
that links the kinked and more flexible structure of scopolamine is
responsible for the lower affinity when compared with other
typically flat and rigid 5-HT3; receptor antagonists. Because the
concentration of centrally administered scopolamine can exceed
the concentration that inhibits 5-HT3 receptors, it is likely that
these receptors would be inhibited under this experimental para-
digm, and could influence LTP. Given this finding we believe that
the potential effects at 5-HT3 receptors should be considered before
centrally administering high concentrations of this compound.
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