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Abstract

Current clinical strategies to assess benefits from hearing aids (HAs) are based on self-

reported questionnaires and speech-in-noise (SIN) tests; which require behavioural cooper-

ation. Instead, objective measures based on Auditory Brainstem Responses (ABRs) to

speech stimuli would not require the individuals’ cooperation. Here, we re-analysed an exist-

ing dataset to predict behavioural measures with speech-ABRs using regression trees.

Ninety-two HA users completed a self-reported questionnaire (SSQ-Speech) and performed

two aided SIN tests: sentences in noise (BKB-SIN) and vowel-consonant-vowels (VCV) in

noise. Speech-ABRs were evoked by a 40 ms [da] and recorded in 2x2 conditions: aided vs.

unaided and quiet vs. background noise. For each recording condition, two sets of features

were extracted: 1) amplitudes and latencies of speech-ABR peaks, 2) amplitudes and laten-

cies of speech-ABR F0 encoding. Two regression trees were fitted for each of the three

behavioural measures with either feature set and age, digit-span forward and backward,

and pure tone average (PTA) as possible predictors. The PTA was the only predictor in the

SSQ-Speech trees. In the BKB-SIN trees, performance was predicted by the aided latency

of peak F in quiet for participants with PTAs between 43 and 61 dB HL. In the VCV trees,

performance was predicted by the aided F0 encoding latency and the aided amplitude of

peak VA in quiet for participants with PTAs� 47 dB HL. These findings indicate that PTA

was more informative than any speech-ABR measure, as these were relevant only for a sub-

set of the participants. Therefore, speech-ABRs evoked by a 40 ms [da] are not a clinical

predictor of behavioural measures in HA users.

Introduction

One of the overarching goals of research in the audiology/hearing sciences is to develop objec-

tive measures to assess hearing aid (HA) outcome and benefits. Typically, a person’s benefit

from HAs is based on their ability to perceive speech. This is evaluated with self-report
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questionnaires (e.g., [1]), or with performance on speech-in-noise (SIN) tests, such as Bam-

ford-Kowal-Bench sentences in noise (BKB-SIN) and vowel-consonant-vowels (VCV) in

noise [2, 3]. Since the clinical assessment of HA outcomes for some individuals with disabilities

cannot be performed using these behavioural measures, there is a need to develop objective

measures for such populations. Possible candidates could be based on Auditory Brainstem

Responses (ABRs). Indeed, ABR testing is already a clinical routine to estimate hearing thresh-

olds [4, 5]. ABRs are electrophysiological event-related potentials, time-locked to a transient

stimulus, and generated by the brainstem auditory pathways [5]. ABRs can also be evoked in

response to different types of sounds, including short consonant-vowel (CV) speech token sti-

muli and, in this case, they are termed speech-ABRs [6–8].

The CVs [ba] [da] and [ga] are typical stimuli used to evoke speech-ABRs [7, 8]. The dura-

tion of the stimuli may vary between shorter (e.g. 40 ms) and longer (e.g. 170 ms) [7, 8]. The

morphology of speech-ABRs to CV stimuli is characterised by an onset, transition and a sus-

tained (frequency-following) responses [8, 9]. The onset is evoked by the consonant onset, the

transition is evoked by the transition from consonant to vowel and the frequency-following

response (FFR) is mainly synchronised to the fundamental frequency (F0) of the vowel [8, 9].

The term Envelope Following Response (EFR) may also be used to remark the variation of the

responses in frequency [10]. Feature extraction from speech-ABRs can be performed in the

time domain by way of a series of peaks, or in the frequency domain estimating F0 and succes-

sive harmonics [8, 11]. The stimulus duration (of the same stimuli, i.e. the same CV), like 50 or

170 ms, does not have significant effects on amplitudes and latencies of speech-ABR peaks, but

the number of epochs required for detection increases as stimulus duration increases [7]. A

longer stimulus combined with a larger number of epochs results in longer speech-ABR

recording times [7], hence longer stimuli are less clinically applicable than shorter stimuli.

Anderson & Kraus [11] suggested assessing hearing-in-noise difficulties and HA fitting out-

comes in older adults via speech-ABRs. Despite speech-ABRs being promising objective mea-

sures of speech perception, few studies were devoted to investigating speech-ABRs in adults

with hearing loss or with HAs, and their relation to SIN performance. For instance, Easwar

et al. [12] measured aided speech discrimination scores and sound quality ratings as well as

aided EFRs to a speech token [susa
R

i] as a function of the stimulus bandwidth in 20 adults

with HAs. The two behavioural measures increased with increase in bandwidth and were posi-

tively correlated with both the EFR amplitudes and the number of EFRs detected. In order to

evaluate acclimatization and benefit from HAs, Karawani et al. [13] compared the scores on

subscales of a self-report questionnaire (i.e. Abbreviated Profile of Hearing Aid Benefit, or

APHAB) with FFRs evoked by a 170-ms speech syllable /ga/, both were assessed twice at six

months apart. The differential measures across time revealed that F0 amplitude decreased as

aversion to sound decreased (i.e. on the aversiveness APHAB subscale), and peak latencies

decreased as ease of communication increased. However, Karawani et al. [13] collected further

data (e.g. performance on a SIN tests, data from a control group) that were not used against

FFR measures. In addition, both Easwar et al. [12] and Karawani et al. [13] explored relation-

ships between speech-ABRs and behavioural and self-report measures via correlations, as such

it remains unclear whether speech-ABRs could predict behavioural measures.

The prediction of behavioural measures with speech-ABRs was attempted recently by Bin-

Khamis et al. [6]. In their second experiment, adults with sensorineural hearing loss (SNHL)

performed the BKB-SIN and VCV in noise tests, and self-reported speech understanding

while wearing a HA. Moreover, speech-ABRs evoked by the 40 ms [da] were recorded in 2x2

conditions: aided vs. unaided and quiet vs. background noise. Importantly, the same HA was

fitted for all participants to ensure consistency. Using linear regression models, BinKhamis
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et al. [6] found that the two aided behavioural measures and the self-report measure were pre-

dicted only by participants’ pure tone average (PTA: average thresholds at 500, 1000, 2000, and

4000 Hz) hearing thresholds (as the performance worsened with decreasing PTAs), and aided

speech-ABRs were not significant predictors of behavioural and self-report measurements. It

was suggested that F0 encoding latencies and amplitudes (which were the speech-ABR features

entered in the regression models) and behavioural SIN tests are measuring different auditory

processes. The choice of using speech-ABR F0 encoding instead of the classical peaks had two

reasons: 1) F0 is a key feature for speech understanding in noise; 2) F0 encoding had fewer

missing data points than speech-ABR peaks, which in turn led to fewer participants being

excluded from the analyses (only 11 participants were excluded from the regression analyses

when using F0 encoding—i.e. a total of 81 participants included, as opposed to 39 participants

who would have been excluded if speech-ABR peaks were used in the regression analyses, i.e.

only 53 participants would have been included).

In the current study, we used the data from BinKhamis et al. [6] to predict behavioural mea-

sures and self-report with speech-ABRs using regression trees. To the best of our knowledge,

this is the largest dataset containing a combination of speech-ABRs, behavioural, and self-

report measures in adults with SNHL. The participants were also representative of audiology

clinical populations as they had a wide range of PTAs. In order to predict a response variable,

the regression tree recursively partitions the predictors space into non-overlapping rectangles

minimising the mean squared error, such that the rectangles are increasingly homogeneous

relative to the response variable [14, 15]. Regression trees may outperform the linear regression

modelling used by BinKhamis et al. [6] in three ways. First, trees lead to a better understanding

of the predictive structure of the data, disclosing plausible non-linear boundaries. For instance,

when subtracting EEG waves of congruent sentences from incongruent sentences recorded at

different signal-to-noise ratios (SNRs) in adults with normal hearing, Jamison et al. [16]

observed that the N400 amplitude (i.e. about 400 ms from word onset) decreased from 4 to 1

dB SNR but increased at 0 dB SNR, but a linear model would not be able to capture this non-

linear pattern. Second, since trees’ terminal rectangles are strongly homogeneous, different

sub-groups of participants may be associated with specific speech-ABR features. Third, trees

are robust with respect to missing data. Here, the missing data were within speech-ABR peaks

and F0 encoding. If a peak is not clearly observable or F0 encoding is not significant, their

amplitudes and latencies are missing. Thus, our type of missingness is defined as missing not

at random (MNAR) because the probability that an observation (e.g. speech-ABR peak ampli-

tude) is missing is a function of both the value of the observation and other variables (e.g. back-

ground noise) in the design [17, 18], as well as the presence/detection of peaks may also be

influenced by the degree of hearing loss. The MNAR scenario might be an opportunity because

the missing pattern could be predicted by a model [17, 19]. Furthermore, it is plausible to

assume that any new data collection, using the same procedure and same participant inclusion

criteria and same range of hearing losses, will have a similar proportion of missing data relative

to the current one. The treatment of missing data in the decision trees is based on surrogate

splits and variables [14]. In a given node, the split of the variable with missing data is predicted

using the other non-missing and independent variables with highest association to the split

[14, 20]. Hence, highly correlated variables would lead to a better prediction on the surrogate

split [14]. Regression trees are not exempt from limitations [15, 21]. The main one is their high

variance: a change in the dataset can lead to different series of splits and, hence, tree [15, 21].

Although this is somewhat true with any machine learning algorithms with insufficient data,

averages or aggregations of many trees may help to solve this at the expense of the interpreta-

tion of the model [15]. One strong reason for using regression trees was to have easy interpret-

able models. Furthermore, here we re-analysed probably the largest available dataset with both
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speech-ABR and behavioural measures in HA users. The second limitation is that the parti-

tioning algorithm is biased in favour of categorical predictors with many levels [21, 22]. How-

ever, this issue is more severe in classification than regression trees [23] and it is not a concern

here, as we did not have categorical predictors. Another limitation of the regression trees is

their lack of modelling additive structure [21]. In the case of a small number of additive effects,

they would be in different splits, so the structure can be recognised and, hence, relationships

between behavioural and speech-ABR measures can be explained.

The aim of this study was to explore, within a non-linear approach, if features of the

speech-ABR were significant predictors of behavioural measures. Our hypothesis was that

regression trees would reveal a strong relationship between speech-ABRs and behavioural

measures, at least for sub-groups of participants given that regression trees are more sensitive

than linear models. Further, it was expected that some relationships would be non-linear.

Materials and methods

Participants

The participants included in [6] were the same in the current study. The participants were 92

adult HA users (38 men) with SNHL, in the age range 18 to 60 years (distribution of age is

shown in Fig 1 in S1 File), with mean (SD) of 50.35 (9.07) years and with mean (SD) of 42.96

(13.58) PTA. The included participants had acquired bilateral SNHL not exceeding 70 dB HL

at low to mid frequencies (i.e., between 250 and 2000 Hz) in the better ear or in the aided ear;

and they used at least one HA for 3 months minimum. The participants had no history of

learning difficulties, neurological disorders, or cognitive impairments. The study was approved

by the National Health Services Research Ethics Committee, England (IRAS ID: 226216). All

participants provided written informed consent.

Hearing evaluation and HA fitting

Hearing assessment. Otoscopy, tympanometry and pure tone audiometry were per-

formed on both ears in each participant. Ears were examined following the BSA recommended

procedure [24]; and tympanometry was performed using the Interacoustics Titan device with

a 226-Hz probe tone [25]. Air conduction pure tone thresholds were measured at octave and

interoctave frequencies from 250 to 8000 Hz (Fig 1). Bone conduction pure tone thresholds

were measured at octave frequencies from 500 to 4000 Hz [26].

HA fitting. Each participant was fitted to NAL-NL2 targets [27] with one Oticon opn1

miniRITE (Oticon A/S, Copenhagen, Denmark) HA on the better ear, on the aided ear for par-

ticipants that were monaural hearing aid users, or on the right ear for participants with sym-

metrical hearing loss that were binaural hearing aid users. Monaural fitting was chosen to

avoid the confound of the better-hearing ear driving the response in cases of asymmetrical

hearing losses, to evaluate the potential application of speech-ABRs as an outcome measure for

individual HA fitting, and to account for test-ear pure tone thresholds in the analyses. Each

HA was fit using an appropriate receiver per-participant hearing thresholds and fitting was

adjusted and verified to meet NAL-NL2 targets [27] according to the BSA recommendations

[28]. More details on the implementations of the HA Fitting and Verification are available in

[6].

Behavioural measures

Speech-in-noise tests. All participants performed two speech-in-noise (SIN) tests while

wearing the HA. Fifty percent speech recognition thresholds (SRT-50) were obtained for
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Bamford-Kowal-Bench [2] sentences in noise (BKB-SIN) and vowel-consonant-vowels

(VCVs; [3]) in noise. BKB sentences were pre-recorded, spoken by a male speaker and were

presented in eight-talker babble. Sentences were fixed at 65 dB-A and the level of the back-

ground babble was adapted with the initial SNR set at + 6 dB. The first four sentence lists (16

sentences per list) were used. Participants were instructed to either repeat each sentence, or as

many words as they heard, or as many words as they thought they heard. When all keywords

were correct, the SNR was decreased by 3 dB, and if any of the keywords were incorrect, the

SNR was increased by 3 dB. BKB-SIN SRT-50 was obtained by averaging the SRT-50 from the

four lists. VCVs were spoken by a male voice and were presented at 65 dB-A in speech-shaped

noise (SSN), with the initial SNR of +6 dB. Participants were instructed to select the consonant

they heard from a presentation grid. VCV SRT-50 was obtained as for the BKB-SIN. Both tests

were run in MATLAB R2013a (MathWorks). All the stimuli were presented via a Focusrite

soundcard (Focusrite Audio Engineering Ltd, High Wycombe, UK), to a Fostex Personal

Monitor 6301B loudspeaker (Fostex Company—a division of Foster Electric Co., Ltd., Tokyo,

Japan), which was situated at 0˚ azimuth and 1.3 m from the participants’ HA microphone, in

a double-wall soundproof booth. The methodology of SIN tests is described fully in [6]. The

choice of using BKB-SIN and VCV in noise as SIN tests was motivated to evaluate two differ-

ent stages of speech processing [29]. Since VCV have no contextual cues, it was a sublexical

task demanding only consonant recognition. Instead, BKB-SIN was based on sentences with

high-context, therefore, participants may predict words using top-down processing. Since the

HA outcomes and benefits are measured with SIN performance, which, in turn, we aimed to

predict with speech-ABRs, the aided speech-in-noise measures were used separately as depen-

dent variables.

Self-report measure. Self-reported hearing status with HAs was measured using the

Speech Spatial and Qualities of Hearing Questionnaire (SSQ; [1]). The SSQ contains three sub-

scales: speech hearing, spatial hearing, and qualities of hearing. Because the current study

aimed to predict self-reported speech understanding with Speech-ABRs as it was previously

shown [30], only average participant ratings on SSQ-Speech subscale was used as a dependent

variable.

Fig 1. Test-ear (left panel, partially reproduced from [6]) and nontest-ear (right panel) mean (±1 SD) pure tone thresholds (black) with pure tone thresholds for each of

the 92 participants (grey).

https://doi.org/10.1371/journal.pone.0260090.g001
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Digit-span test. Each participant performed the Digit-Span Forward and Backward

(DS-F and DS-B). The digit-span test is a subtest of the Wechsler Adult Intelligence Scale [31].

Short-term memory and working memory are assumed to be assessed via DS-F and DS-B,

respectively. Füllgrabe et al. [32] reported a significant correlation between both DS-F and

DS-B and speech recognition in noise. In order to control for short and working memory and

based on previous results indicating a relationship to SIN performance, the DS-F and DS-B

were used as possible predictors.

Speech-ABRs

Equipment and recording parameters. Speech-ABRs were collected with Cambridge

Electronic Design (CED, Cambridge, UK) Signal software (Version 5.11) using a CED power

1401 mkII data acquisition interface (CED Limited) and a Digitimer 360 isolated eight-channel

patient amplifier (Digitimer Limited, Hertfordshire, UK). CED Signal software sampling con-

figuration was set to gap-free sweep mode, sample rate of 20000 Hz, pulses with a resolution of

0.01 ms as the output type, and outputs were set at absolute levels and absolute times. Online

second-order Butterworth filtering was set at 100 Hz (high-pass filter) and 3000 Hz (low-pass

filter). Online artefact rejection was set to reject epochs that included any activity above 30 μV.

Two-channel vertical electrode montage recording with Cz active, earlobe reference (A1 and

A2), and high forehead ground (Fz) was used; electrode sites were based on the international

10–20 EEG system. Participants were laying in a comfortable recliner in a double-wall sound-

proof booth and were instructed to remain relaxed with their eyes closed. Loudspeaker position-

ing was at 45˚ azimuth, 1.1 m away from the participant’s aided ear. The different loudspeaker

angle between the SIN tests and Speech-ABRs (0˚ vs. 45˚ azimuth) was due to the different posi-

tion of the participants (seated upright vs. supine position), and that the loudspeaker could not

be mounted from the ceiling. The different angles were unlikely to have affected the results.

Stimuli and recording procedure. The stimulus was a five-formant synthesized 40 ms

[da] consisting of an onset burst within the first 10 ms and a vowel formant transition period

with a rising F0 (103–125 Hz), rising first formant (220–720 Hz), falling second (1700–1240

Hz) and third formant (2580–2500 Hz), and constant fourth (3600 Hz) and fifth formants

(4500 Hz). The 40 ms [da] was presented at 70 dB-A at a rate of 9.1 stimuli per second from

the CED Signal software through the CED power 1401 mkII and routed through a Tucker-

Davis Technologies (TDT, Alachua, FL, USA) PA5 programmable attenuator and a TDT HB7

headphone driver to a Fostex personal monitor 6301B loudspeaker (Fostex Company-a divi-

sion of Foster Electric Co., Ltd., Tokyo, Japan). Stimulus polarity was reversed using Adobe

Audition CC (2015.1 Release, build 8.1.0.162) in order to evoke speech-ABRs using two oppo-

site stimulus polarities, each stimulus polarity was recorded separately. Speech-ABRs in noise

were measured using a two-talker babble masker at 10 dB signal-to-noise ratio (SNR) back-

ground noise that was presented from Audacity (version 1.2.6) via an E-MU 0202 sound card

(Creative Technology Limited, UK) and routed through the TDT HB7 headphone driver to

the Fostex personal monitor 6301B loudspeaker; splitters were used in order for the stimuli

and noise to be presented through the same loudspeaker. Speech-ABRs in quiet and in noise

were recorded with (aided) and without (unaided) the HA. Two blocks of 2500 epochs (repeti-

tions) were collected at each stimulus polarity (i.e. 5000 for polarity) for each of the four condi-

tions (aided-quiet, aided-noise, unaided-quiet, and unaided-noise) for a total of 10.000 epochs

per condition. Two blocks of each polarity were averaged separately and then baseline cor-

rected via de-meaning to create two subaveraged alternating polarity responses.

Speech-ABR analyses. For each of the 4 conditions, peak latencies and amplitudes as well

as the F0 encoding were extracted from the ABR waveform. Specifically, latencies for the
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positive speech-ABR peak V and negative peaks A, D, E, F, and O were measured. Amplitudes

were measured for peak V to trough A (VA amplitude), and for negative peaks D, E, F, and O,

the positive peak preceding each negative peak was used for peak to trough amplitude mea-

surements. A speech-ABR peak was considered present if it was above the EEG noise floor

with 95% confidence (as assessed with the bootstrap method; [33]) and if it was detected in the

subaverages. Criteria and methods for peak identification are fully described in [6]. Once the

F0 waveform of the 40 ms [da] was extracted as in [34], the envelope of the complex cross-cor-

relation between speech-ABRs and the F0 waveform was estimated; the amplitude and latency

of the envelope peak were taken as metrics and termed F0 encoding amplitude and latency,

respectively (for further details see [6]).

Decision trees

In the original work, BinKhamis et al. [6] included only aided speech-ABR F0 encoding ampli-

tude and latency as possible predictors in the regression model. However, these two variables

represent only a part of the information that is encoded in ABRs. Since regression trees are

robust with missing data and can handle highly correlated predictors, it was possible to extend

the analysis including also unaided speech-ABR F0 encoding and aided and unaided speech-

ABR peaks. In this way, each of the three behavioural measures was used to fit two regression

trees. The purpose was to explore all possible predictors.

Six regression trees were fitted to evaluate if the BKB-SIN, VCV and SSQ-Speech could be

predicted using either speech-ABR peaks or speech-ABR F0 encoding. The non-ABR variables

included in each tree were: participant age, DS-F, DS-B, and PTA; then three trees were fitted

with amplitudes and latencies of speech-ABR peaks, and the other three trees were fitted with

F0 encoding amplitude and latency. BinKhamis et al. [6] evaluated three multiple linear regres-

sion models using only speech-ABR aided-quiet and aided-noise conditions. Here, we used

the data from all four speech-ABR conditions (aided-quiet, aided-noise, unaided-quiet, and

unaided-noise).

All the regression trees were performed in R (version 3.6.3, [35]) using the package rpart
[20], which implements the classical classification and regression tree algorithms developed by

Breiman et al. [14]. The complexity parameter was set 0.0001 allowing growing a large tree [14,

15], which then was pruned obtaining the smallest tree that minimized the cross-validation

error. The other parameters of the fitting were set to their default values, i.e., the number of

cross-validations was 10 [14, 20], the minimum number of observations in any terminal node

was taken as seven [20], and surrogate splits were used as recommended by Breiman et al.

[14].

We had data from 92 participants. In order to obtain as stable as possible trees, it was

decided to fit the trees with all observations, and to use the internal cross-validation procedure

to evaluate the performance of the trees [20]. The cross-validation estimated the relative error

and cross-validation error (xerror) of each tree. The latter is used for pruning because it is

related to the predicted residual error sum of squares (PRESS) statistic [20, 36, 37]. The relative

error is a measure of accuracy of the tree that, using the linear regression analogy, is equal to

the 1-R2, which is the proportion of variance not explained by the model [14, 20]. The Root-

Mean Square Error (RMSE) between the actual and predicted behavioural measures was calcu-

lated. Furthermore, the variable importance for each tree was also evaluated. The measure of

importance is based on the sum over all nodes of the decrease of the error produced by splits

of a given variable [14, 20]. For an easy interpretation, the importance of the variables was

scaled to sum 100 [20].
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Results

The mean ± 1 SD of the dependent variables were 2.31±4.85 dB SRT-50 for the BKB-SIN, 1.00

±5.21 dB SRT-50 for the VCV and 5.36±1.71 score for the SSQ-Speech. Scatter plots of the

dependent variables as a function of PTA, the amplitudes and latencies of F0 encoding and

speech-ABR peaks are in the supplement (Figs 2–8 in S1 File), these reveal that relationships

between the behavioural measures and several speech-ABR peaks or F0 encoding cannot be

explained by simple linear models. The regression trees for the BKB-SIN are shown in Fig 2,

for the VCV in Fig 3, for the SSQ-Speech in Fig 4. Each figure shows trees using either F0

encoding (left panels) or speech-ABR peaks (right panels) among the predictor variables. Each

terminal node gives the mean of the performance for that behavioural measure, and the num-

ber and percentage of participants within the node. The colour code of the terminal nodes,

from blue to red, indicates worsening in participant performance. Table 1 in S1 File shows a

summary of the trees’ parameters, and Table 2 in S1 File shows the three most important vari-

ables for each tree.

BKB-SIN trees

In the F0 encoding tree (R2 = 0.43; RMSE = 3.64), there were three terminal nodes and two

splits, both of which were based on PTA. The tree predicted that the mean BKB-SIN was -0.15

dB SRT-50 for the participants with PTA < 43 dB HL (47 participants, 51% of the total), 3.3

dB SRT-50 for those with PTA between 43 and 60 dB HL (34, 37%), and 9.7 SRT-50 for those

with PTA� 61 dB HL (11, 12%). The three most important variables were PTA, aided Fo

encoding amplitude in quiet and then in noise (Fig 9 in S1 File). In the speech-ABR peaks tree

(R2 = 0.45; RMSE = 3.56), the first two splits were based on PTA and were identical to the

splits in the F0 encoding tree; however, the right branch of the second node (PTA between 43

and 60 dB HL) was further split by aided latency of peak F in quiet as the participants with

peak F< 40 ms had mean of 2.5 dB SRT-50 (23, 25%), whereas the participants with peak

F� 40 ms had a mean of 5.1 dB SRT-50 (11, 12%). Fig 5 shows the relationship between

Fig 2. Regression trees for predicting the BKB-SIN SRT-50 using either F0 encoding measures (left tree) or speech-ABR peaks (right tree). Lat: latency; A/Q: aided

speech-ABRs in quiet. The colour code of the terminal nodes, from blue to red, indicates worsening in participant performance.

https://doi.org/10.1371/journal.pone.0260090.g002
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BKB-SIN, PTA and aided latency of peak F. The three most important variables were PTA,

aided amplitude of peak VA in noise, aided amplitude of peak E in quiet (Fig 10 in S1 File).

VCV trees

In the F0 encoding tree (R2 = 0.49; RMSE = 3.69), there were four terminal nodes given by the

split of the PTA and aided latency in quiet. The participants with PTA< 39 dB HL showed a

mean performance of -2.7 dB SRT-50 (33 participants, 36% of the total), with PTA between 39

and 46 dB HL had mean performance of 0.43 dB SRT-50 (23, 25%), participants with

PTA� 47 dB HL and F0 encoding latency < 14 ms in quiet had mean performance of 3.2 dB

SRT-50 (27, 29%), whereas the 9 participants with later latency� 14 ms had mean perfor-

mance of 9.5 dB SRT-50. The three most important variables were PTA, aided F0 encoding

amplitude and latency in quiet (Fig 11 in S1 File). In the speech-ABR peaks tree (R2 = 0.57;

RMSE = 3.41), the first and second nodes were PTA and were identical to the F0 encoding

tree, the split of the third node was due to the aided amplitude of peak VA in quiet at 0.25 μV.

The left branch (i.e.� 0.25 μV) was further split by age where participants younger than 55

Fig 3. Regression trees for predicting the VCV SRT-50 using either F0 encoding measures (left tree) or speech-ABR peaks (right

tree). Lat: latency; Amp: amplitude; A/Q: aided speech-ABRs in quiet. The colour code of the terminal nodes, from blue to red,

indicates worsening in participant performance.

https://doi.org/10.1371/journal.pone.0260090.g003

PLOS ONE Prediction of behavioural measures using speech-ABR and decision trees

PLOS ONE | https://doi.org/10.1371/journal.pone.0260090 November 16, 2021 9 / 17

https://doi.org/10.1371/journal.pone.0260090.g003
https://doi.org/10.1371/journal.pone.0260090


years had mean performance of 1.2 dB SRT-50 (17, 18%) while the older ones had mean per-

formance of 6.2 dB SRT-50 (9, 10%). The 10 participants with amplitude < 0.25 μV had mean

performance of 9.4 dB SRT-50. After PTA, the next most important variables were the aided

amplitude of peaks VA and E in quiet (Fig 12 in S1 File).

SSQ-Speech trees

Both the F0 encoding and speech-ABR peaks tree (R2 = 0.16; RMSE = 1.56) had only one node

that split the participants by PTA at 50 dB HL where worse hearing thresholds predicted an

Fig 4. Regression trees for predicting the SSQ-Speech score using either F0 encoding measures (left tree) or speech-ABR peaks (right tree). The colour code of the

terminal nodes, from blue to red, indicates worsening in participant performance.

https://doi.org/10.1371/journal.pone.0260090.g004

Fig 5. Relationship between BKB-SIN, PTA and aided latency of peak F. Missing peaks are indicated with crosses at 0 ms for graphical convenience. The colour code

is the same as used in Fig 2.

https://doi.org/10.1371/journal.pone.0260090.g005
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average score of 4.4 (31 participants, 34% of the total) while the better hearing thresholds pre-

dicted an average score of 5.8 (61, 66%). After PTA, the next most important variables were F0

encoding aided amplitude in quiet and unaided latency in quiet in the F0 encoding tree (Fig 13

in S1 File); and the aided amplitude of peak E in quiet and aided amplitude of peak F in noise

in the speech-ABR peaks trees (Fig 14 in S1 File).

Discussion

Accuracy of the regression trees

In order to evaluate whether the regression trees were accurate or, in other words, worthwhile

[38], two metrics are generally used: Root Mean Square Error (RMSE) and R2 [15]. The RMSE

measures the lack of fit of the model relative to the data [15]. Since the MSE can be broken

down into variance and squared bias of the data [15, 21], in the case of unbiased estimator of

the mean, the MSE of the model and variance of the data are the same [15], and so are their

square roots, namely RMSE and standard deviation (SD). However, a predictor with low bias

may have high variance (that is the bias-variance trade-off, [15]). Nevertheless, the RMSE of

the model and SD of the data can be compared and, being the same unit, are easily interpret-

able. Instead, R2 is the proportion of variance explained by the model; it is a-dimension with a

range between 0 and 1.

The SSQ-speech trees were root node trees, i.e., with only the root, which lead to a poor

accuracy as the RMSE was slightly better than SD (1.56 vs. 1.71 score) and the variance

accounted by the trees was small (R2 = 0.16).

Considering the trees for the BKB-SIN and VCV, their RMSE’s were below 4 dB SRT-50

and smaller relative to the standard deviation of the behavioural measures. Looking at the pro-

portion of variance explained by the trees, the values of R2 laid between 0.43 (BKB-SIN with

F0 encoding) and 0.57 (VCV with the speech-ABR peaks). Overall, the regression trees had

good accuracy. Other statistical learning algorithms, such as Random Forest [39] or Boosting

[40, 41], may give better predictive accuracy than the regression trees [15]. However, the accu-

racy was not the critical objective of the current study, but rather we were interested to under-

stand the structural relationships between behavioural and speech-ABR measures; the aim was

to assess if speech-ABRs are a clinically applicable objective outcome measure in HA users.

Variable importance

The most important variable was PTA in each of the six trees. This was in line with the results

obtained by BinKhamis et al. [6], who studied a subset of our predictors. The first splits from

the root were always due to PTA. This suggests that PTA is more informative than any of the

speech-ABR measures.

Putting to one side the SSQ-Speech trees as they had only one node, we extrapolated the

three most important variables for each tree, for a total of 12 variables. Of the eight variables

with speech-ABR measures, six were in the quiet condition and two in background noise, and

all were aided. So, the most informative condition was aided quiet. The SIN tests were per-

formed aided and in noise. The trees may rely mainly on quiet condition because the speech-

ABR in quiet is more detectable than in noise [6, 7] as the former condition allowed to have

both more inter-subject variability (i.e. more information available for modelling) and less

missing data points relative to the speech-ABR in noise.

Some of the variables ranked as important but were not used in the trees. In the F0 encod-

ing VCV tree, the aided F0 encoding amplitude, despite not being a node, was more important

than the aided F0 encoding latency, which was a tree node. This was because, in the root node,
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the optimal split was given by PTA while the best suboptimal split was due to the F0 encoding

amplitude. So, being suboptimal has contributed to its importance [14].

Prediction of behavioural measures with speech-ABRs

Two studies were able to correlate SIN tests performance with F0 amplitude estimated in the

Fourier domain from the steady-state region of the 170-ms [da]. It was reported that F0 ampli-

tude in quiet for older adults (mean 63.1 years old) and F0 amplitude in noise for young adults

(mean 24 years old) were larger for the participants with better SIN tests performance relative

to those with worse performance [42, 43]. The older adults had normal or near-normal hearing

up to 4 kHz and some degree of hearing loss at higher frequency [42], whereas the young

adults had normal hearing [43]. Others did not find the association between speech-ABRs and

SIN test performance in adults with normal or near-normal absolute thresholds up to 4 kHz.

For instance, the correlation between F0 through the fifth harmonic recorded in older adults

(mean 70 years old, and audiometric thresholds� 20 dB HL up to 4 kHz) and SIN tests perfor-

mance was not significant [44]. Interestingly, Coffey et al. [45] reported a positive correlation

between F0 and SIN tests using magnetoencephalography (MEG) but not using EEG in nor-

mal-hearing adults. In one of the few studied with HA users, Easwar et al. [12] observed a posi-

tive correlation between EFR amplitudes and both speech discrimination scores and sound

quality ratings. Seol et al. [46] investigated the effects of HA noise reduction algorithms for

speech understanding and speech-ABRs both in quiet and in noise. They reported a positive

correlation between F0 amplitudes and SIN tests performance irrespective of the background

(quiet or noise), however it was not clear how the speech-ABRs were recorded (unaided or

aided, cf. their Figs 5 and 6) or how the presence/absence of a speech-ABR was established as

several F0 amplitudes were close to 0 μV. In the current study, the F0 encoding latency in quiet

was a node in the VCV tree, splitting the performance of the participants with PTA� 47 dB

HL. The delayed F0 measures were associated with the nine poorest performers. Because our

CV stimulus was shorter relative to those in the above-mentioned studies, our frequency reso-

lution was lower and this may have an effect on the estimation of F0. Indeed, the EFR ampli-

tude in [12] was the sum of the response amplitudes across the eight formant carrier of the

stimulus, whereas our F0 was based on one carrier. This may explain the lack of F0 measures

as a strong predictor in our case. Furthermore, stimuli with a sustained component (such as

[susa
R

i] or 170-ms [da]) can provide information about temporal fine structure, which might

be important for speech perception in noise [47, 48]. However, a longer stimulus will result in

a longer recording session [7], which has to be kept to a minimum for a clinical setting, and in

the degradation of the temporal characteristics of speech-ABRs [5]. Overall, taken together,

these mixed results do not clarify the role of F0 measures in the SIN prediction, and further

studies are required, in particular involving HA users.

Beside the features extracted in the frequency domain, such as the F0 measures, the ampli-

tude and latency of speech-ABR peaks are the key temporal features to evaluate. In this frame-

work, Parbery-Clark et al. [49] examined speech-ABRs evoked by 170-ms [da] within multi-

talker babble (the SNR was 10 dB as in this study) in normal-hearing adults and their perfor-

mance on a SIN test. Using the speech-ABR peaks elicited by the stimulus onset (at 9–11 ms)

and the formant transition period (at 43–45 ms) as features, they observed positive correlations

between the latency of both peaks and SIN test performance. In the current study, the onset

peak was labelled as peak VA. In the BKB-SIN tree, the amplitude of peak VA in noise was

among the important variables. In the VCV tree, the amplitude of peak VA in quiet was a pre-

dictor for the subgroup of participants having the worst PTA and performance. Furthermore,

their formant transition peak can be associated with our peaks D, E, and F [8, 9]. The
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amplitude of peak E in quiet was among the important variables for both the BKB-SIN and

VCV trees. In the BKB-SIN tree, latency of peak F in quiet was a predictor only for the partici-

pants with PTA between 43 and 61 dB HL.

For a subgroup of participants, both the onset (i.e. peak VA) and the FFR (i.e. peaks E and

F, and the F0 encoding measures) of speech-ABRs appeared to be relevant for SIN perfor-

mance. The speech onsets and, in turn, the speech-ABRs onset, have been theorised to be

linked to phoneme identification and language literacy [50]. Therefore, abnormal amplitude

or timing may indicate less robust phoneme identification resulting in reduced speech under-

standing in noise. Abrams & Kraus [50] proposed that FFR measures represent frequency

transitions, which are important for suprasegmental cues (e.g. speaker’s gender and emotion)

and for consonant identification. Consequently, impairment in the FFR may be linked to a

deficit in utilising these cues and, hence, to a difficulty to understand speech in noise.

The effects of age on speech-ABRs and SIN performance were examined by Heidari et al.

[51] and Mamo et al. [44]. In both studies, the comparison between younger and older adults

showed that the latter had worse SIN performance and lower speech-ABR amplitude than the

younger groups. Age was among the predictors for the VCV in the speech-ABR peaks tree, but

only when aided amplitude of peak VA in quiet was� 0.25 μV. The VCV performance wors-

ened as a function of age but without a strong group division as in the previous studies [44,

51]. Clinard & Tremblay [52] observed that the amplitudes of the onset responses (waves V

and A) degraded significantly as age increased.

Regarding SSQ-Speech, Anderson et al. [30] reported that latency of the peak O (i.e. offset)

and the ’response morphology’ (i.e., cross-correlation between stimulus and response wave-

forms) of speech-ABR were significant predictors for the SSQ-Speech score. As in our study,

the speech-ABRs were evoked by a 40 ms [da]. Differently to the current study, Anderson et al.

[30] obtained speech-ABR monaurally through insert earphones (we used loudspeakers) in

adults with both normal-hearing and hearing loss (we had only adults with SNHL), having

average PTA (0.5–4 kHz) from 2.5 to 44.5 dB HL (in our case from 12 to 68 dB HL). In their

study, the PTA was not a significant predictor, instead, in the SSQ-Speech trees, the only node

split the participants at a PTA of 50 dB HL, that is near their worst PTA. So, the two results

may be reconciled assuming that as PTA has larger variance or range, it may give a stronger

contribution to explain the SSQ-Speech score.

In the current study, the PTA range was wider relative to the above-mentioned studies. The

wide range of PTA means that the PTA is the most relevant feature. However, the wide range

of PTA is an asset here as it allowed assessing the speech-ABR as a possible objective measure

for HA users in a clinically plausible scenario, given that a wide variability in PTA is common

in a clinical setting.

Non-linearity and sub-groups

One of the reasons for using regression trees was to disclose plausible non-linear boundaries

between the predictors. Instead, the models predicted monotonic relations for BKB-SIN and

VCV trees. Considering for instance the tree fitted to VCV with speech-ABR peaks: worse

hearing threshold led to worse performances, younger participants outperformed the older

ones, and smaller speech-ABR amplitudes were associated with worse performance. However,

the tree allowed pinpointing the sub-groups of participants for which the prediction was based

on speech-ABR features. In the case of the BKB-SIN tree, the aided latency of peak F in quiet

can be used for the participants with PTA between 43 and 61 dB HL, this feasibility within a

range of only 18 dB HL would not be useful as a clinical tool. In the case of the VCV trees, F0

encoding and speech-ABR measures split the participants with PTA� 47 dB HL in two sub-
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groups, pointing-out the nine/ten participants with the poorest performance, as such a method

aimed at a niche group of participants may not be clinically relevant but is promising for future

research. It will also be worthy to explore if speech-ABRs evoked by other stimuli (e.g., longer

than those used here) would model and predict behavioural measures in HA users with a wide

range of PTA.

Conclusion

We anticipated strong relationships between speech-ABR and behavioural measures and that

some of them would be non-linear. To test these predictions, an existing dataset was re-ana-

lysed using regression trees. Importantly, the dataset is probably the largest available with both

speech-ABR and behavioural measures in HA users. Although a clinical or uniform standard

for speech-ABRs recording and processing is not specified, in order to make the most of data,

we extracted several features of speech-ABRs that have been reported in the literature. Our

results demonstrated that relations between speech-ABR and behavioural measures were pres-

ent only for a small subset of the participants, and they were monotonic. Overall, the most rele-

vant feature to predict behavioural measures was the PTA.
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