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Abstract

Cancer cell lines, which are cell cultures derived from tumor samples, represent one of the

least expensive and most studied preclinical models for drug development. Accurately pre-

dicting drug responses for a given cell line based on molecular features may help to optimize

drug-development pipelines and explain mechanisms behind treatment responses. In this

study, we focus on DNA methylation profiles as one type of molecular feature that is known

to drive tumorigenesis and modulate treatment responses. Using genome-wide, DNA meth-

ylation profiles from 987 cell lines in the Genomics of Drug Sensitivity in Cancer database,

we used machine-learning algorithms to evaluate the potential to predict cytotoxic

responses for eight anti-cancer drugs. We compared the performance of five classification

algorithms and four regression algorithms representing diverse methodologies, including

tree-, probability-, kernel-, ensemble-, and distance-based approaches. We artificially sub-

sampled the data to varying degrees, aiming to understand whether training based on rela-

tively extreme outcomes would yield improved performance. When using classification or

regression algorithms to predict discrete or continuous responses, respectively, we consis-

tently observed excellent predictive performance when the training and test sets consisted

of cell-line data. Classification algorithms performed best when we trained the models using

cell lines with relatively extreme drug-response values, attaining area-under-the-receiver-

operating-characteristic-curve values as high as 0.97. The regression algorithms performed

best when we trained the models using the full range of drug-response values, although this

depended on the performance metrics we used. Finally, we used patient data from The Can-

cer Genome Atlas to evaluate the feasibility of classifying clinical responses for human

tumors based on models derived from cell lines. Generally, the algorithms were unable to

identify patterns that predicted patient responses reliably; however, predictions by the Ran-

dom Forests algorithm were significantly correlated with Temozolomide responses for low-

grade gliomas.
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Introduction

Cancers are complex, dynamic diseases characterized by aberrant cellular processes such as

excessive proliferation, resistance to apoptosis, and genomic instability [1]. Tumors are caused

by somatic variations, which can affect individual nucleotides or larger segments of DNA [2].

Dysregulation of cellular function can also be caused by epigenetic modifications, including

aberrant DNA methylation [3]. One goal of cancer research is to advance precision medicine

through identifying genomic and epigenomic features that influence treatment outcomes in

individuals [4]. In this context, therapeutic decisions have the potential to be guided by molec-

ular signatures.

Cancer cell lines are cell cultures derived from tumor samples. They represent one of the

least expensive and most studied preclinical models [5]. Drug screening in cell lines can be

used to prioritize candidate drugs for testing in humans. In performing a screen, researchers

calculate IC50 values, which quantify the amount of drug necessary to induce a biological

response in half of the cells tested for a given experiment [6]. Drugs with a relatively high

potency (corresponding to low log-transformed IC50 values) are generally considered to be the

strongest candidates for use in humans, although patient safety must also be evaluated. After a

candidate drug has been identified, researchers may seek to identify molecular markers associ-

ated with those responses, comparing cell lines that respond to the drug against those that do

not. Such markers might be useful for elucidating drug mechanisms or eventually predicting

clinical responses in patients [7].

Over the past decade, researchers have catalogued the molecular profiles of more than a

thousand cancer cell lines and their responses to hundreds of drugs [8–10]. These resources

have been made publicly available, thus providing an opportunity for researchers to identify

molecular signatures that predict drug responses in a preclinical setting. In addition, recent

efforts to catalog molecular profiles in human tumors have resulted in massive collections of

publicly available molecular data for tumor samples [11–13]. Such data can be used to validate

findings from preclinical studies and assess our ability to classify cancer patients into groups

that will most likely benefit from a certain treatment [14].

Many computational methods have been proposed to predict anticancer drug sensitivity

based on genetic, genomic, or epigenomic features of cancer cell lines. The most common

approach is to generate a drug-specific model, which is independently trained using molecular

observations and drug-response data from cell lines tested with each drug individually. Linear-

regression based, drug-specific models have been developed using gene expression data [7, 8,

15] or a combination of gene expression data and other genomic data types, such as copy num-

ber alterations and DNA methylation [16]. Non-linear models using a single data type or mul-

tiple data types have also been proposed, including artificial neural networks, random forests,

support vector machines (SVM), kernel regression, latent and Bayesian approaches, attractor

landscape analysis of network dynamics, unsupervised pathway activity models, and recom-

mender systems [17–34]. Transfer-learning techniques have also been proposed to improve

drug-response prediction performance for one type of cancer by incorporating data from

other types of cancer [35]. Drug response information has also been modeled in combination

with chemical drug properties using elastic net regression, support vector machines, regular-

ized matrix factorization, and manifold Learning [36–40].

Most recent cell-line studies have emphasized the potential to predict drug responses based

on gene-expression profiles [17, 41–44]. Technologies for profiling gene-expression levels are

widely available and reflect the downstream effects of genomic and epigenomic aberrations.

However, gene-expression profiles may be difficult to apply in the clinic because of the insta-

bility of RNA [45]. Moreover, gene-expression data are generated using a wide range of
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technologies (e.g., different types of oligonucleotide microarrays and RNA-sequencing), and

are preprocessed using diverse algorithms. Thus, it is often difficult to combine datasets from

multiple sources (e.g., preclinical and tumor data). In this study, we focus on DNA methyla-

tion profiles, using cell-line data from the Genomics of Drug Sensitivity in Cancer (GDSC)

database [7] in combination with tumor data from The Cancer Genome Atlas (TCGA) [46].

These projects used the same technology to quantify methylation levels, and the GDSC team

created a version of the methylation data that had been normalized in a consistent manner,

thus enabling us to perform a more systematic evaluation of whether DNA methylation levels

can predict drug responses.

DNA methylation is an epigenetic mechanism that controls gene-expression levels. The

addition of a methyl group to DNA may lead to changes in DNA stability, chromatin structure,

and DNA-protein interactions. Hypermethylation of CpG islands in promoter regions of DNA

has been acknowledged as an important means of gene inactivation, and its occurrence has been

detected in almost all types of human tumors [47]. Similar to genetic alterations, methylation

changes to DNA may alter a gene’s behavior. However, hypermethylation can be reversed with

the use of targeted therapy [48], making it an attractive target for anticancer therapy [49, 50].

In some cases, DNA methylation levels for a single gene may control cellular responses for

a given drug. For example, MGMT hypermethylation predicts temozolomide responses in

glioblastomas [51], and BRCA1 hypermethylation predicts responses to poly ADP ribose poly-

merase inhibitors in breast carcinomas [52]. However, in many cases, drug responses are likely

influenced by the combined effects of many genes interacting in the context of signaling path-

ways [53]. Accordingly, to maximize our ability to predict drug responses, it is critical to

account for this complexity.

In this study, we use DNA methylation profiles from preclinical samples to model drug

responses for eight anti-cancer drugs. We compare the performance of five classification algo-

rithms and four regression algorithms that encompass a diverse range of methodologies,

including tree-based, probability-based, kernel-based, ensemble-based, and distance-based

approaches. We use classical algorithms as a way to establish a performance baseline against

which other algorithms might be compared when working with DNA methylation profiles.

For regression, we predict IC50 values directly. For classification, we use discretized IC50 val-

ues. For both types of algorithm, we artificially subsample the data to varying degrees to evalu-

ate whether training models based on relatively extreme outcomes would yield improved

performance; we assess our ability to predict drug responses using as few as 10% of the cell

lines (those with the most extreme IC50 values). An underlying motivation of this approach

was to decrease data-generation costs. For example, if it could be shown that generating data

for relatively few (extreme) responders performs as well as or better than generating data for

responders across the full range of response values, cost savings may result. Perhaps surpris-

ingly, the classification algorithms performed best when only 10–20% of the cell lines were

used. The regression algorithms performed best when we trained the models using the full

range of drug-response values, although this depended on the performance metrics we used.

Finally, we derived classification models from the cell-line data and predicted drug responses

for TCGA patients. In most cases, the models failed to generalize effectively; however, predic-

tions by the Random Forests algorithm were significantly correlated with Temozolomide

responses for low-grade gliomas.

Methods

The GDSC database contains data for human cell lines derived from common and rare types

of adult and childhood cancers. GDSC provides multiple types of molecular data for these cell
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lines in addition to response values for 265 anti-cancer drugs. In this work, we used database

version GDSC1, which includes data for 987 cell lines curated between 2010 and 2015 [7].

Drug responses were measured as the natural log of the fitted IC50 value. The more sensitive

the cell line, the lower the IC50 value for any given drug. We developed machine-learning

models of drug response using DNA methylation data from GDSC1 that had been prepro-

cessed and summarized as gene-level beta values [7]; these values ranged between 0 and 1

(higher values indicated relatively high methylation for a given gene). We used all available

methylation regions, represented by gene-level summarized values, as input to the classifica-

tion and regression algorithms.

For external validation, we used DNA methylation data and clinical drug-response values

from TCGA. We selected eight drugs that were administered to TCGA patients and present in

GDSC: Gefitinib, Cisplatin, Docetaxel, Doxorubicin, Etoposide, Gemcitabine, Paclitaxel, and

Temozolomide. These drugs represent a variety of molecular mechanisms, including DNA

crosslinking, microtubule stabilization, and pyrimidine anti-metabolization. Aside from Gefi-

tinib, which we used for model optimization on GDSC data, these drugs were associated with

the largest number of patient drug-response values in TCGA [54]. GDSC provides DNA meth-

ylation values for 6,035 TCGA samples that had been preprocessed using the same pipeline as

the GDSC samples. We obtained drug-response data for TCGA patients from [55].

Cell lines with missing IC50 values were excluded on a per-drug basis; thus, sample sizes dif-

fered across the drugs. We applied Z-score normalization on a per-gene basis across all sam-

ples in GDSC and TCGA. Next, we used ComBat [56] to adjust for systematic differences

between the two datasets (GDSC and TCGA); we also specified cell type as a covariate to adjust

for methylation patterns associated with this factor.

We started with a classification analysis. Classification algorithms are widely available, and

their predictions are intuitive to interpret—they assign probabilities to each sample for each

class. To enable classification for the GDSC cell lines, we discretized the IC50 values into "low"

and "high" values. However, the choice of a threshold for distinguishing low and high values

was necessarily arbitrary. Initially, we used the median IC50 value across all cell lines as a

threshold. However, cell lines with an IC50 just above or below this threshold naturally showed

very little difference in their drug responses, even though they were assigned to different clas-

ses. In contrast, cell lines with extreme IC50 values (far from the threshold) had much more

distinct drug responses. To investigate the effects of using a threshold to discretize the IC50 val-

ues for classification, we used subsampling. We created 10 different scenarios that included

increasing percentages of the overall data. First, we sorted the samples by IC50 value in ascend-

ing order. For the first scenario, we evaluated cell lines with the 5% lowest and 5% highest IC50

values (10% of the total data). In the next scenario, we evaluated cell lines with the 10% lowest

and 10% highest IC50 values (20% of the total data), and so on. The last scenario included all

the data, where the lowest 50% were considered to have low IC50 values and the highest 50%

were considered to have high values (S1 Fig). For the regression analysis, we followed a similar

process for subsampling but retained the continuous nature of the IC50 values.

For both classification and regression, we used the Random Forests (tree-based) [57], (Support

Vector Machines (kernel-based) [58], Gradient Boosting Machines (ensemble-based) [59], and k-

Nearest Neighbors (distance-based) [60] algorithms. We used the Naïve Bayes (probability-based)

[61] algorithm for classification but not for regression because this algorithm is only designed for

classification analyses. We performed the analyses using the R programming language [62] and

Rstudio (https://rstudio.com). The machine-learning algorithms were implemented in the follow-

ing R packages: mlr [63], e1071 [64], xgboost [65], randomForest [66], and kknn [67].

Using the GDSC cell-line data, we sought to select the best hyperparameters for each algo-

rithm via nested cross validation. We used the mlr package [63] to randomly assign the cell
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lines to 10 outer folds and 5 inner folds (per outer fold). For each combination of algorithm

and data-subsampling scenario, we evaluated the performance of all hyperparameter combina-

tions (Table 1) using the inner folds; we used MMCE (Mean Misclassification Error) [68] for

classification and MSE (Mean Squared Error) [69] for regression as evaluation metrics in the

inner folds (defaults in mlr). For the outer-fold predictions, we assessed performance for pre-

dicting drug responses using several performance metrics. This enabled us to evaluate how

consistently the algorithms performed. For the classification analysis, we used accuracy (1—

MMCE), area under the receiver operating characteristic curve (AUC) [70], F1 measure [71],

Matthews correlation coefficient (MCC) [72], recall, and specificity. For the regression analy-

sis, we used Mean Absolute Error (MAE), Root Mean Square Error (RMSE) [69], R-squared

coefficient of determination [73] and Spearman’s rank correlation coefficient (SCC) [74].

After assessing the algorithms separately for the classification and regression approaches,

we evaluated the predictive ability of these two types of tasks against one another. We calcu-

lated the Spearman correlation coefficient as a nonparametric measure of the concordance

between the predicted probabilities (classification algorithms) and predicted IC50 values

(regression algorithms).

For the classification and regression analyses, we used feature selection to identify genes

deemed to be most informative. We performed an information-gain analysis, assigning an

importance score to each feature (gene). More specifically, we estimated the relative impor-

tance of each gene based on the conditional entropy of the class variable with respect to that

gene. Entropy measures the amount of randomness in the information. Thus, higher informa-

tion gain implies lower entropy. This analysis was implemented using the FSelectorRcpp pack-

age [75]. To assess the functional relevance of the top-ranked genes, we used a gene-set overlap

technique implemented in the Molecular Signatures Database 3.0 [76]. As candidate gene sets,

we included the C2 (curated gene sets), C4 (computational genes sets), and C6 (oncogenic signa-
ture gene sets). We used a False Discovery Rate q-value threshold of 0.05.

Table 1. Descriptions of the algorithms we tested and hyperparameters that we evaluated via nested cross validation. Hyperparameter optimization was performed

for all tested algorithms. All parameter combinations for each algorithm were evaluated via nested cross validation; optimal combinations were then used for outer-fold

predictions.

Algorithm Hyperparameters Definition Tested Values

classif.svm and regr.svm 1. Kernel The kernel function used to transform data to higher-dimensional spaces and

then become linearly separable.

Linear; Radial; Polynomial;

Sigmoid

2. Cost The regularization parameter in the cost function, to penalize missing

classifications.

0.1; 1; 10; 100

3. Scale Whether the variables should be scaled. True; False

classif.randomForest and regr.

randomForest

1. Ntree The number of trees to grow. 100; 500; 1000

2. Nodesize Minimum size of terminal nodes. 1; 3; 5; 7

3. Importance Whether the importance of predictors should be assessed. True; False

classif.kknn and regr.kknn 1. K The number of neighbors considered. 3; 7; 10

2. Scale Whether to scale variables to have equal standard deviation. True; False

classif.naiveBayes 1. Laplace The amount of Laplace (additive) smoothing. 0; 1; 5; 10

classif.xgboost 1. Nround The maximum number of boosting iterations. 100; 250; 500

2. Max_depth The maximum depth of a tree. 1; 5; 10

3. Eta How much the contribution of each tree is scaled to the overall approximation,

to control the learning rate.

0.1; 0.3; 0.5

regr.xgboost 1. Nround The maximum number of boosting iterations. 100; 250; 500

2. Eta How much the contribution of each tree is scaled to the overall approximation,

to control the learning rate.

0.1; 0.3; 0.5

https://doi.org/10.1371/journal.pone.0238757.t001
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For additional validation, we trained classification models based on discretized drug

responses in the GDSC cell lines and then predicted patient drug responses using tumor data

from TCGA. These patient responses were based on clinical data, having no direct relation to

IC50 values. Because the patient-response values were categorical in nature, we only performed

classification for these data. We used nested cross validation to perform hyperparameter opti-

mization using the GDSC (training) data. To evaluate the relationship between the predicted

labels and actual clinical responses, we calculated Spearman’s rank correlation coefficient and

a corresponding p-value for each combination of algorithm and data-subsampling scenario;

then we used the Benjamini-Hochberg False Discovery Rate to adjust for multiple tests [77].

Results

Using data from 987 cell lines, we used machine-learning algorithms to evaluate the potential

to predict cytotoxic responses based on genome-wide, DNA methylation profiles. Second, we

examined which genes were most predictive of these responses. Finally, we evaluated the feasi-

bility of predicting clinical responses in humans based on models derived from cell-line data.

Classification analysis using cell-line data

We collected DNA methylation data and IC50 response values for eight drugs from the GDSC

repository. In our initial analysis, we aimed to predict categories (classes) of drug sensitivity.

These categories represented whether each cell line exhibited a "low" or "high" response to

each drug, corresponding to relatively low or high IC50 values, respectively. This categorization

facilitated a simplified yet intuitive interpretation of the treatment outcomes and enabled us to

use classification algorithms, which have been implemented for a broader range of algorithmic

methodologies than regression algorithms.

Before performing classification, we categorized each cell line on a per-drug basis, accord-

ing to whether its IC50 value was greater than the median across all cell lines. One limitation of

categorizing the cell lines in this way was that cell lines just above or below the median thresh-

old showed a relatively small difference in IC50 values, even though they were assigned to dif-

ferent classes. Generally, IC50 values did not follow a multimodal distribution (Fig 1).

Therefore, we evaluated whether classification performance could be improved by excluding

cell lines with an IC50 value relatively close to the median, even though this would reduce the

amount of data available for training and testing. We evaluated ten scenarios that varied the

number of cell lines used. In the most extreme scenario, we used methylation data for cell lines

with the 5% lowest and 5% highest IC50 values. In describing these subsampling scenarios, we

use a notation that indicates the percentage of samples on each side of the distribution as well

as the algorithm type. For example, when we analyzed the samples with the 5% highest and 5%

lowest IC50 values and employed a classification algorithm, we indicate this using "+-5%c".

The equivalent scenario for regression was represented as +-5%r.

We evaluated the performance of five classification algorithms using six performance met-

rics (see Methods). In addition, we optimized hyperparameters via nested cross validation;

Table 1 lists the hyperparameters we evaluated. Initially, we evaluated Gefitinib, an EGFR

inhibitor. Overall, the algorithms performed best when relatively few cell lines (+-5%c and

+-10%c) were used to train and test the models, attaining area-under-the-receiver-operating-

characteristic curve (AUC) and classification-accuracy values as high as 0.93 and 0.84

(Table 2). This pattern was consistent across all five algorithms and all six metrics that we eval-

uated (Fig 2). However, the SVM algorithm consistently achieved higher classification perfor-

mance than the other algorithms for this drug.
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When evaluating the seven remaining drugs, we continued to see a trend in which using a

relatively small proportion of the data resulted in better classification performance. For Cis-

platin, Docetaxel, Doxorubicin, and Etoposide, the best performance was attained for +-5%c

and +-10%c, and the best-performing algorithms were always SVM or Random Forests (RF)

(S1–S7 Tables). In contrast, for Gemcitabine, the highest AUC value (0.82) was obtained for

+-15%c (SVM algorithm). For Paclitaxel, the Random Forests algorithm performed best for

+-10%c (AUC = 0.75). The overall highest AUC value was attained for Docetaxel (0.97, +-10%

c, Random Forests and SVM). S2–S8 Figs illustrate these results across all algorithms, metrics,

and drugs and show that generally the top-performing algorithms were consistent across all

metrics, although these patterns were less consistent in scenarios where the highest AUC val-

ues were lower than 0.80.

To further analyze combinations of subsampling scenarios and classification algorithms, we

ranked the AUC values for all combinations and for each drug (where the lowest rank was con-

sidered best and represented the highest AUC value). Subsequently, we calculated the average

AUC rank across all drugs. The best performance was attained for +-10%c (SVM) and +-10%c

(Random Forests), achieving average ranks of 4.75 and 5.13, respectively (Table 3). When we

evaluated the minimum, mean, and maximum AUC values for each combination of drug and

algorithm, Docetaxel attained the best overall performance (Table 4).

Regression analysis using cell-line data

We performed a regression analysis using the same DNA methylation data but with continu-

ous IC50 response values for the same eight drugs. For this analysis, we applied four regression

algorithms and evaluated their performance using nested cross validation and four perfor-

mance metrics (RMSE, MAE, R-squared and SCC). As with the classification analysis, we per-

formed data subsampling to evaluate the effects of using relatively extreme IC50 values. For

Gefitinib and the MAE and RMSE metrics, all algorithms performed best when all cell lines

Fig 1. Histograms for each drug based on drug response (IC50 values) for the GDSC dataset. The black line represents the median value for each subsample across all

available cell lines for each drug.

https://doi.org/10.1371/journal.pone.0238757.g001
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Table 2. Classification results for all subsampling scenarios and algorithms for Gefitinib.

Scenario Method ACC AUC F1 MCC Recall Specificity

+-5%c SVM 0.82 0.93 0.80 0.65 0.85 0.78

+-5%c Random Forest 0.82 0.82 0.82 0.66 0.89 0.74

+-5%c KNN 0.72 0.84 0.67 0.45 0.63 0.80

+-5%c XGBoost 0.77 0.83 0.75 0.54 0.76 0.78

+-5%c Naive Bayes 0.73 0.74 0.73 0.45 0.76 0.70

+-10%c SVM 0.84 0.92 0.82 0.69 0.85 0.83

+-10%c Random Forest 0.80 0.89 0.79 0.61 0.84 0.77

+-10%c KNN 0.75 0.86 0.71 0.49 0.68 0.83

+-10%c XGBoost 0.78 0.88 0.77 0.56 0.80 0.75

+-10%c Naive Bayes 0.68 0.69 0.66 0.35 0.68 0.67

+-15%c SVM 0.81 0.86 0.81 0.63 0.83 0.79

+-15%c Random Forest 0.75 0.84 0.75 0.50 0.78 0.71

+-15%c KNN 0.72 0.79 0.71 0.45 0.71 0.73

+-15%c XGBoost 0.74 0.83 0.75 0.51 0.80 0.68

+-15%c Naive Bayes 0.66 0.66 0.68 0.32 0.76 0.56

+-20%c SVM 0.75 0.83 0.75 0.51 0.77 0.73

+-20%c Random Forest 0.72 0.80 0.73 0.44 0.76 0.69

+-20%c KNN 0.68 0.78 0.69 0.37 0.71 0.66

+-20%c XGBoost 0.72 0.80 0.73 0.44 0.76 0.69

+-20%c Naive Bayes 0.64 0.64 0.68 0.28 0.79 0.48

+-25%c SVM 0.74 0.81 0.75 0.48 0.78 0.70

+-25%c Random Forest 0.72 0.79 0.74 0.45 0.79 0.66

+-25%c KNN 0.70 0.77 0.71 0.41 0.73 0.68

+-25%c XGBoost 0.72 0.79 0.72 0.43 0.74 0.70

+-25%c Naive Bayes 0.60 0.62 0.67 0.23 0.80 0.41

+-30%c SVM 0.72 0.78 0.74 0.45 0.78 0.66

+-30%c Random Forest 0.69 0.75 0.70 0.38 0.74 0.63

+-30%c KNN 0.68 0.75 0.70 0.37 0.74 0.63

+-30%c XGBoost 0.69 0.77 0.70 0.38 0.74 0.63

+-30%c Naive Bayes 0.60 0.60 0.66 0.21 0.79 0.41

+-35%c SVM 0.68 0.76 0.70 0.37 0.72 0.64

+-35%c Random Forest 0.67 0.73 0.69 0.34 0.73 0.60

+-35%c KNN 0.67 0.71 0.68 0.34 0.70 0.64

+-35%c XGBoost 0.66 0.70 0.67 0.32 0.69 0.62

+-35%c Naive Bayes 0.59 0.60 0.66 0.20 0.79 0.40

+-40%c SVM 0.67 0.73 0.68 0.35 0.71 0.63

+-40%c Random Forest 0.65 0.71 0.67 0.30 0.71 0.58

+-40%c KNN 0.60 0.66 0.61 0.21 0.64 0.57

+-40%c XGBoost 0.65 0.70 0.65 0.29 0.68 0.61

+-40%c Naive Bayes 0.57 0.58 0.64 0.16 0.78 0.36

+-45%c SVM 0.67 0.72 0.69 0.35 0.72 0.62

+-45%c Random Forest 0.64 0.70 0.66 0.30 0.71 0.57

+-45%c KNN 0.63 0.66 0.64 0.26 0.66 0.60

+-45%c XGBoost 0.65 0.69 0.65 0.31 0.67 0.62

+-45%c Naive Bayes 0.58 0.59 0.65 0.18 0.78 0.39

+-50%c SVM 0.65 0.70 0.66 0.30 0.70 0.60

+-50%c Random Forest 0.64 0.69 0.66 0.29 0.70 0.59

(Continued)
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were used to train and test the models, attaining RMSE values as low as 0.95 (lower is better,

see Table 5). However, for the R-squared and SCC metrics, the +-5%r subsampling scenario

resulted in the best performance in some cases. Typically, the magnitude of the differences

between the original and predicted IC50 values was larger toward the extremes, resulting in rel-

atively high MAE and RMSE values when middle values were excluded. In contrast, SCC is a

rank-based metric, and the algorithms struggled most to differentiate between IC50 values

toward the middle of the distribution. We observed similar patterns for the other seven drugs

(S8–S14 Tables).

Table 2. (Continued)

Scenario Method ACC AUC F1 MCC Recall Specificity

+-50%c KNN 0.60 0.65 0.60 0.20 0.61 0.59

+-50%c XGBoost 0.63 0.68 0.64 0.27 0.65 0.62

+-50%c Naive Bayes 0.58 0.59 0.64 0.17 0.77 0.39

Bold font indicates the best-performing combination for each metric.

https://doi.org/10.1371/journal.pone.0238757.t002

Fig 2. Gefitinib classification results across six metrics. These "spider" graphs illustrate how each classification algorithm performed in each subsampling scenario via

cross validation on the GDSC cell-line data. Results that are further away from the center represent higher metric values (relatively better performance) than results closer

to it. These metrics are accuracy (ACC), specificity, recall, Matthews correlation coefficient (MCC), F1 score (F1) and area under the receiver operating characteristic

curve (AUC). Scenarios that used relatively few cell lines—but those with the most extreme IC50 values—performed best for all algorithms. Specific metric values may be

found in Table 2.

https://doi.org/10.1371/journal.pone.0238757.g002
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Table 3. Summary of AUC values across all combinations of subsampling scenario and algorithm. We ranked the AUC values for each combination and then calcu-

lated the average rank across the combinations (lower ranks imply better performance). In addition, this table lists the minimum, maximum, and standard deviation AUC

value across the combinations.

Scenario Method Average AUC Rank Min AUC Value Max AUC Value Standard Deviation AUC Value

+-10%c Random Forest 4.75 0.72 0.97 0.08

+-10%c SVM 5.13 0.65 0.97 0.10

+-5%c SVM 5.14 0.74 0.95 0.08

+-15%c XGBoost 7.50 0.68 0.94 0.09

+-15%c SVM 7.63 0.66 0.93 0.10

+-5%c Random Forest 7.71 0.77 0.93 0.06

+-5%c XGBoost 7.86 0.69 0.96 0.09

+-15%c Random Forest 9.13 0.70 0.92 0.08

+-10%c XGBoost 10.13 0.58 0.94 0.12

+-20%c SVM 10.75 0.66 0.92 0.09

+-25%c SVM 11.25 0.70 0.90 0.07

+-10%c KNN 12.75 0.67 0.91 0.09

+-5%c KNN 13.14 0.69 0.92 0.07

+-25%c XGBoost 15.38 0.67 0.89 0.07

+-20%c XGBoost 15.88 0.65 0.91 0.09

+-20%c Random Forest 16.00 0.64 0.91 0.08

+-30%c SVM 16.25 0.68 0.86 0.06

+-25%c Random Forest 16.50 0.70 0.88 0.07

+-35%c SVM 19.00 0.68 0.84 0.05

+-30%c XGBoost 20.50 0.62 0.87 0.08

+-30%c Random Forest 20.63 0.65 0.85 0.07

+-15%c KNN 21.25 0.61 0.87 0.10

+-20%c KNN 23.38 0.63 0.88 0.09

+-35%c Random Forest 24.13 0.65 0.82 0.06

+-35%c XGBoost 25.25 0.61 0.83 0.07

+-40%c SVM 26.00 0.66 0.81 0.05

+-25%c KNN 26.63 0.62 0.85 0.08

+-30%c KNN 26.63 0.64 0.83 0.07

+-40%c XGBoost 26.88 0.62 0.79 0.05

+-45%c SVM 28.25 0.65 0.77 0.04

+-5%c Naive Bayes 28.57 0.64 0.79 0.05

+-40%c Random Forest 28.63 0.65 0.79 0.05

+-35%c KNN 32.25 0.62 0.78 0.06

+-50%c SVM 32.38 0.64 0.76 0.04

+-45%c XGBoost 32.63 0.61 0.76 0.05

+-50%c XGBoost 32.63 0.59 0.78 0.06

+-45%c Random Forest 33.00 0.62 0.77 0.05

+-10%c Naive Bayes 34.75 0.57 0.81 0.09

+-50%c Random Forest 36.38 0.62 0.76 0.05

+-40%c KNN 37.50 0.62 0.75 0.05

+-45%c KNN 39.00 0.60 0.72 0.04

+-15%c Naive Bayes 41.13 0.57 0.75 0.07

+-50%c KNN 41.88 0.59 0.71 0.04

+-20%c Naive Bayes 43.38 0.54 0.76 0.07

+-25%c Naive Bayes 44.13 0.57 0.72 0.06

+-30%c Naive Bayes 44.25 0.57 0.71 0.05

(Continued)
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Table 3. (Continued)

Scenario Method Average AUC Rank Min AUC Value Max AUC Value Standard Deviation AUC Value

+-35%c Naive Bayes 45.50 0.57 0.68 0.04

+-40%c Naive Bayes 47.13 0.57 0.67 0.04

+-45%c Naive Bayes 47.63 0.56 0.66 0.04

+-50%c Naive Bayes 48.75 0.55 0.64 0.04

https://doi.org/10.1371/journal.pone.0238757.t003

Table 4. Minimum, mean and maximum AUC value for each combination of drug and algorithm, averaged across all subsampling scenarios.

Drug Method Min Mean Max

Gefitinib SVM 0.70 0.80 0.93

Gefitinib Random Forest 0.69 0.77 0.89

Gefitinib Naive Bayes 0.58 0.63 0.74

Gefitinib KNN 0.65 0.75 0.86

Gefitinib XGBoost 0.68 0.77 0.88

Cisplatin SVM 0.66 0.78 0.88

Cisplatin Random Forest 0.65 0.76 0.86

Cisplatin Naive Bayes 0.59 0.63 0.73

Cisplatin KNN 0.60 0.72 0.84

Cisplatin XGBoost 0.69 0.78 0.87

Paclitaxel SVM 0.65 0.68 0.72

Paclitaxel Random Forest 0.64 0.69 0.72

Paclitaxel Naive Bayes 0.54 0.58 0.61

Paclitaxel KNN 0.61 0.65 0.68

Paclitaxel XGBoost 0.58 0.67 0.73

Temozolomide SVM 0.74 0.84 0.95

Temozolomide Random Forest 0.73 0.82 0.90

Temozolomide Naive Bayes 0.63 0.69 0.76

Temozolomide KNN 0.68 0.79 0.92

Temozolomide XGBoost 0.74 0.83 0.93

Etoposide SVM 0.66 0.75 0.88

Etoposide Random Forest 0.63 0.71 0.89

Etoposide Naive Bayes 0.56 0.61 0.71

Etoposide KNN 0.59 0.68 0.84

Etoposide XGBoost 0.66 0.74 0.86

Gemcitabine SVM 0.65 0.74 0.82

Gemcitabine Random Forest 0.66 0.72 0.78

Gemcitabine Naive Bayes 0.56 0.59 0.73

Gemcitabine KNN 0.62 0.66 0.69

Gemcitabine XGBoost 0.67 0.73 0.79

Docetaxel SVM 0.76 0.87 0.97

Docetaxel Random Forest 0.76 0.86 0.97

Docetaxel Naive Bayes 0.64 0.72 0.81

Docetaxel KNN 0.71 0.81 0.91

Docetaxel XGBoost 0.76 0.87 0.96

Doxorubicin SVM 0.64 0.70 0.80

Doxorubicin Random Forest 0.62 0.68 0.78

Doxorubicin Naive Bayes 0.56 0.58 0.64

Doxorubicin KNN 0.59 0.65 0.79

Doxorubicin XGBoost 0.59 0.65 0.71

https://doi.org/10.1371/journal.pone.0238757.t004

PLOS ONE Predicting drug sensitivity of cancer cells based on DNA methylation levels

PLOS ONE | https://doi.org/10.1371/journal.pone.0238757 September 10, 2021 11 / 32

https://doi.org/10.1371/journal.pone.0238757.t003
https://doi.org/10.1371/journal.pone.0238757.t004
https://doi.org/10.1371/journal.pone.0238757


Across all drugs and metrics, the SVM and Random Forests algorithms performed best for

every combination of drug and performance metric (Fig 3). Furthermore, predictive perfor-

mance was highly consistent for all metrics (S9–S15 Figs). When evaluating the mean RMSE

ranked values (where the lowest rank was considered best and represented the lowest RMSE

value), the RF and SVM algorithms and the +-50%r scenarios performed best (Table 6), and

Table 5. Regression results for all combinations of subsampling scenarios and algorithms for Gefitinib.

Scenario Method MAE RMSE R2 Spearman

+-5%r SVM 1.28 1.54 0.50 0.63

+-5%r Random Forest 1.61 1.83 0.31 0.51

+-5%r KNN 1.54 1.96 0.18 0.46

+-5%r XGBoost 1.36 1.84 0.36 0.48

+-10%r SVM 1.08 1.36 0.46 0.60

+-10%r Random Forest 1.26 1.53 0.34 0.53

+-10%r KNN 1.27 1.65 0.21 0.47

+-10%r XGBoost 1.17 1.56 0.31 0.50

+-15%r SVM 1.11 1.37 0.35 0.57

+-15%r Random Forest 1.18 1.41 0.33 0.53

+-15%r KNN 1.18 1.52 0.20 0.47

+-15%r XGBoost 1.16 1.48 0.25 0.50

+-20%r SVM 1.04 1.27 0.35 0.59

+-20%r Random Forest 1.11 1.32 0.30 0.53

+-20%r KNN 1.10 1.42 0.18 0.48

+-20%r XGBoost 1.13 1.42 0.18 0.44

+-25%r SVM 0.99 1.21 0.31 0.54

+-25%r Random Forest 1.04 1.24 0.28 0.52

+-25%r KNN 1.02 1.32 0.18 0.47

+-25%r XGBoost 1.03 1.26 0.26 0.51

+-30%r SVM 0.92 1.14 0.31 0.54

+-30%r Random Forest 0.97 1.18 0.26 0.49

+-30%r KNN 0.96 1.25 0.17 0.45

+-30%r XGBoost 0.97 1.20 0.23 0.47

+-35%r SVM 0.88 1.10 0.25 0.52

+-35%r Random Forest 0.93 1.14 0.21 0.45

+-35%r KNN 0.92 1.20 0.10 0.40

+-35%r XGBoost 0.92 1.15 0.18 0.42

+-40%r SVM 0.84 1.06 0.22 0.44

+-40%r Random Forest 0.86 1.06 0.21 0.43

+-40%r KNN 0.88 1.14 0.10 0.36

+-40%r XGBoost 0.88 1.10 0.16 0.39

+-45%r SVM 0.79 1.01 0.21 0.44

+-45%r Random Forest 0.80 1.02 0.21 0.42

+-45%r KNN 0.84 1.10 0.06 0.35

+-45%r XGBoost 0.81 1.04 0.18 0.40

+-50%r SVM 0.73 0.95 0.23 0.45

+-50%r Random Forest 0.74 0.95 0.22 0.43

+-50%r KNN 0.78 1.02 0.10 0.36

+-50%r XGBoost 0.75 0.95 0.22 0.41

Bold font indicates the best-performing combination for each metric.

https://doi.org/10.1371/journal.pone.0238757.t005

PLOS ONE Predicting drug sensitivity of cancer cells based on DNA methylation levels

PLOS ONE | https://doi.org/10.1371/journal.pone.0238757 September 10, 2021 12 / 32

https://doi.org/10.1371/journal.pone.0238757.t005
https://doi.org/10.1371/journal.pone.0238757


predictions for Temozolomide were more accurate overall than those for other drugs

(Table 7).

Classification and regression evaluation

As a way to compare the predictions of the classification versus regression algorithms, we used

SCC as a nonparametric measure. For the classification algorithms, we calculated the SCC

between the probabilistic predictions that these algorithms produced and the original IC50 val-

ues. For the regression algorithms we used the SCC values that quantified the correlation

between the predicted and actual IC50 values. Then for each combination of subsampling

Fig 3. Gefitinib regression results across four metrics. These "spider" graphs illustrate how each regression algorithm performed in each subsampling scenario via cross

validation on the GDSC cell-line data. Results that are further away from the center represent higher metric values (relatively better performance) than results closer to it.

These metrics are RMSE (Root Mean Square Error), MAE (Mean Absolute Error), R-squared and Spearman correlation coefficient. Scenarios that used all cell lines

performed best for all algorithms. Specific metric values may be found in Table 5.

https://doi.org/10.1371/journal.pone.0238757.g003
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scenario and drug, we compared the SCC for the same algorithm types against each other (Fig

4). These coefficients were strongly correlated with each other, illustrating that the classifica-

tion and regression algorithms typically ranked the patients similarly in relation to the original

IC50 values.

Table 6. Average RMSE rank for all combinations of subsampling scenarios and algorithms. RMSE values were ranked for each drug and were then averaged. Lower

ranks imply a better result. We also include standard deviation and the minimum and maximum RMSE values.

Scenario Method Average RMSE Rank Min RMSE Value Max RMSE Value Standard Deviation RMSE Value

+-50%r Random Forest 1.50 0.67 2.53 0.61

+-50%r SVM 1.75 0.68 2.56 0.61

+-50%r XGBoost 2.88 0.69 2.54 0.61

+-45%r SVM 4.38 0.69 2.66 0.64

+-45%r Random Forest 4.75 0.70 2.65 0.63

+-50%r KNN 6.75 0.73 2.70 0.64

+-45%r XGBoost 6.88 0.73 2.67 0.64

+-40%r SVM 8.00 0.72 2.77 0.67

+-40%r Random Forest 8.88 0.73 2.78 0.67

+-45%r KNN 10.50 0.78 2.82 0.66

+-40%r XGBoost 11.00 0.78 2.82 0.67

+-35%r SVM 11.75 0.76 2.92 0.71

+-35%r Random Forest 13.00 0.76 2.94 0.71

+-40%r KNN 13.88 0.81 2.94 0.69

+-30%r SVM 15.38 0.80 3.07 0.75

+-35%r XGBoost 15.88 0.81 3.02 0.74

+-30%r Random Forest 16.63 0.79 3.09 0.75

+-35%r KNN 18.75 0.84 3.09 0.73

+-30%r XGBoost 19.25 0.84 3.17 0.77

+-25%r SVM 19.88 0.80 3.25 0.81

+-25%r Random Forest 21.25 0.84 3.33 0.82

+-30%r KNN 21.63 0.88 3.28 0.79

+-20%r SVM 23.13 0.82 3.50 0.89

+-25%r XGBoost 23.25 0.88 3.40 0.82

+-25%r KNN 25.13 0.92 3.48 0.84

+-20%r Random Forest 25.75 0.90 3.55 0.89

+-15%r SVM 26.88 0.86 3.57 0.91

+-20%r XGBoost 28.75 0.93 3.71 0.92

+-20%r KNN 29.50 0.97 3.82 0.94

+-15%r Random Forest 29.63 0.95 3.71 0.92

+-10%r SVM 30.25 0.93 3.94 1.02

+-15%r KNN 32.50 1.03 4.07 1.01

+-15%r XGBoost 33.13 1.06 4.00 1.02

+-10%r Random Forest 33.63 1.02 4.14 1.04

+-10%r XGBoost 35.38 1.11 4.37 1.13

+-5%r SVM 36.25 1.16 4.15 1.04

+-10%r KNN 36.25 1.16 4.51 1.11

+-5%r Random Forest 37.50 1.28 4.30 1.01

+-5%r KNN 38.88 1.35 4.47 1.01

+-5%r XGBoost 39.75 1.49 4.79 1.28

Bold font indicates the best-performing combination for each metric.

https://doi.org/10.1371/journal.pone.0238757.t006
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Informative genes for predicting cell-line responses

The DNA methylation assays target CpG islands associated with genes across the genome.

After identifying analysis scenarios that resulted in optimal performance for classification and

regression, we used feature ranking to identify genes that were most informative in these sce-

narios. For the classification analysis, we focused on the +-5%c scenario. For the regression

task, we focused on the +-50%r scenario. Table 8 lists the 20 top-ranked genes for Gefitinib.

The CTGF gene was ranked 1st for the classification analysis and 13th for the regression analy-

sis. The CTGF protein plays important roles in signaling pathways that control tissue remodel-

ing via cellular adhesion, extracellular matrix deposition, and myofibroblast activation [78];

these processes are known to influence tumorigenesis and may alter drug responses [79]. For

example, EGFR is expressed in many head and neck squamous cell carcinomas and non-small

cell lung carcinomas, yet many of these patients do not respond to Gefitinib treatment [80].

This lack of response has been associated with a loss of cell-cell adhesion, elongation of cells,

Table 7. Minimum, mean and maximum RMSE value for each drug and algorithm combination, averaged across all subsampling scenarios.

Drug Method Min Mean Max

Gefitinib SVM 0.95 1.20 1.54

Gefitinib Random Forest 0.95 1.27 1.83

Gefitinib KNN 1.02 1.36 1.96

Gefitinib XGBoost 0.95 1.30 1.84

Cisplatin SVM 1.04 1.36 2.14

Cisplatin Random Forest 1.04 1.38 2.11

Cisplatin KNN 1.10 1.44 2.16

Cisplatin XGBoost 1.05 1.43 2.16

Paclitaxel SVM 1.87 2.50 3.56

Paclitaxel Random Forest 1.84 2.50 3.58

Paclitaxel KNN 1.95 2.64 3.74

Paclitaxel XGBoost 1.91 2.75 4.74

Temozolomide SVM 0.68 0.82 1.16

Temozolomide Random Forest 0.67 0.86 1.28

Temozolomide KNN 0.73 0.95 1.35

Temozolomide XGBoost 0.69 0.93 1.49

Etoposide SVM 1.80 2.30 2.93

Etoposide Random Forest 1.84 2.36 2.93

Etoposide KNN 1.94 2.49 3.03

Etoposide XGBoost 1.89 2.48 3.28

Gemcitabine SVM 2.56 3.24 4.15

Gemcitabine Random Forest 2.53 3.30 4.30

Gemcitabine KNN 2.70 3.52 4.51

Gemcitabine XGBoost 2.54 3.45 4.79

Docetaxel SVM 1.22 1.47 1.99

Docetaxel Random Forest 1.23 1.52 2.14

Docetaxel KNN 1.34 1.69 2.74

Docetaxel XGBoost 1.25 1.55 2.23

Doxorubicin SVM 1.59 2.14 3.17

Doxorubicin Random Forest 1.58 2.16 3.28

Doxorubicin KNN 1.69 2.24 3.21

Doxorubicin XGBoost 1.61 2.25 3.51

https://doi.org/10.1371/journal.pone.0238757.t007
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Fig 4. Spearman correlation coefficient results for classification algorithms (predicted probabilities) and regression algorithms (predicted IC50 values). For the

classification analyses, we calculated the Spearman correlation coefficient between the predicted probabilities and the original IC50 values. These are represented on the

x-axis. The y-axis represents the Spearman coefficients from the regression analyses. Each dot reflects results for a particular combination of drug, subsampling scenario,

and algorithm.

https://doi.org/10.1371/journal.pone.0238757.g004

Table 8. Most informative genes for predicting cell-line responses for Gefitinib. We used an information-gain analysis to rank genes based on their association with

Gefitinib drug response. Genomic coordinates are based on build 37 of the human genome. We used information gain to rank the genes; higher scores indicate more

informativeness.

Classification Regression

Gene Coordinates Score Gene Coordinates Score
CTGF chr6:132271356–132271658 0.272 SNAI2 chr8:49835987–49836231 0.060

F11R chr1:160990718–160991225 0.248 CARD10 chr22:37914768–37915883 0.055

MUM1 chr19:1354420–1355350 0.228 PTGFRN chr1:117452203–117453452 0.053

RXRB, SLC39A7 chr6:33167885–33168715 0.220 PNMAL1 chr19:46974557–46975073 0.053

DUSP7 chr3:52089652–52090845 0.204 A2M, LOC144571 chr12:9217328–9217715 0.052

TFAP2A chr6:10419399–10420323 0.203 DGKZ chr11:46366876–46367101 0.052

C20orf56 chr20:22559553–22560001 0.201 SDCBP2 chr20:1305899–1306554 0.052

RAB38 chr11:87908243–87908614 0.201 ACAP1, KCTD11, TMEM95 chr17:7254622–7255808 0.052

RAB34 chr17:27044168–27045049 0.196 ANKRD57, SEPT10 chr2:110370906–110373301 0.051

VIM chr10:17270430–17272617 0.192 SLC44A2 chr19:10735999–10736396 0.050

PAK6 chr15:40531244–40531589 0.192 ALOX12 chr17:6898820–6900427 0.049

GATA2 chr3:128215212–128216905 0.190 ZNF625 chr19:12266998–12267686 0.048

SLC9A2 chr2:103235376–103236554 0.188 CTGF chr6:132271356–132271658 0.048

C20orf56 chr20:22557517–22559240 0.187 KLF5 chr13:73632860–73634370 0.048

FERMT1 chr20:6103436–6103970 0.186 NCOR2 chr12:125003217–125003482 0.048

RBM4B chr11:66444997–66445471 0.185 TBCD, ZNF750 chr17:80790368–80790581 0.047

ORAI2 chr7:102073605–102074334 0.183 F11R chr1:160990718–160991225 0.046

LOC338799, SETD1B chr12:122240899–122243390 0.181 OR10H1 chr19:15918423–15918704 0.045

ABHD5 chr3:43731998–43733108 0.181 PLEK2 chr14:67878534–67879167 0.044

MAZ chr16:29818681–29819554 0.176 DGUOK chr2:74153853–74154281 0.043

https://doi.org/10.1371/journal.pone.0238757.t008
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and tumor-cell invasion of the extracellular matrix [81–83]. F11R was ranked second in impor-

tance for the classification analysis and seventeenth for the regression analysis. The protein

encoded by this gene is a junctional adhesion molecule that regulates the integrity of tight

junctions and permeability [84]. Although these associations provide some support for our fea-

ture-ranking results and that adhesion processes are important to Gefitinib responses, none of

the other top-20 genes overlapped between the classification and regression analysis. The lack

of agreement between the classification and regression results is not surprising. For example,

even though the Random Forests algorithm uses a similar methodology for classification and

regression, it is not unlikely that different genes would be selected for classification versus

regression. We used data for thousands of genes, and different genes may exhibit similar meth-

ylation patterns, so the algorithms may choose different (correlated) genes by random chance.

Secondly, the algorithms optimized against different objective functions for classification ver-

sus regression; even small differences in how the algorithms prioritized genes could lead to

large differences in the gene ranks. However, the SVM and RF models represent multivariate

patterns; thus, known cancer genes may alter drug responses in combination with the genes

identified via our univariate feature-selection approach, even if they are not among the top-

ranked genes.

S15–S21 Tables indicate the top-20 ranked genes for the other 7 drugs. To gain insight

regarding the roles that these genes might play in drug responses, we identified gene sets (e.g.,

pathways, oncogenic signatures) that significantly overlapped with these genes (S22, S23

Tables). For the classification analysis, we identified significant gene sets for 5 drugs (Gefitinib,

Cisplatin, Docetaxel, Doxorubicin, Etoposide). Many of these gene sets are associated with cell

differentiation, cell-cell communication, and drug resistance; however, these mechanisms did

not always align with the respective drugs or target proteins that we expected based on the

drugs’ known mechanisms. We observed similar patterns for the regression analysis. Two per-

haps notable findings are that 1) a gene set associated with EGFR overexpression was associ-

ated with Gefitinib responses (this drug targets EGFR) and 2) a gene set associated with

Gefitinib resistance was associated with Cisplatin responses, and it has been shown that

Cisplatin’s ability to induce cell death is dependent in part on EGFR signaling in some cases

[85].

Using methylation profiles from cell lines to predict tumor/patient drug

responses

The above analyses used methylation profiles to predict drug responses in cell lines. Via cross

validation, we showed that high levels of predictive accuracy are attainable using this approach.

We also found that subsampled datasets with more extreme IC50 values yielded the best classi-

fication results and that the SVM and Random Forests algorithms typically produced the most

accurate results. Next we evaluated whether this performance would hold true in a transla-

tional-medicine context. The GDSC repository provides methylation profiles for 6,035 tumors

from TCGA; these data had been preprocessed using the same methodology as the GDSC sam-

ples, thus enabling easier integration and reducing technical biases. For 1,638 TCGA patients,

clinical drug-response information was available. These data indicate clinical outcomes over

the course of the patients’ treatment by physicians (not as part of clinical trials). In many cases,

drug-response values for multiple drugs were recorded for a given patient. Each response

value was categorized as "clinical progressive disease," "stable disease," "partial response," or

"complete response". These respective categories represent increasing levels of response to a

given drug.
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We trained the SVM and Random Forests classification algorithms on the full GDSC data-

set and predicted drug-response categories for each TCGA patient for which methylation and

drug-response data were available. Based on our cross-validation results from the GDSC analy-

sis, we focused on the +-5%c and +-10%c scenarios. For each TCGA test sample, our models

generated a probabilistic prediction indicating whether that patient would respond to a given

drug. We compared these predictions against the ordinal clinical responses for each combina-

tion of subsampling scenario (+-5%c and +-10%c), drug, and algorithm (SVM and RF); we cal-

culated the SCC and a corresponding p-value for each comparison and adjusted for multiple

tests. Generally, the predictions exhibited low correlation with clinical responses (Table 9);

However, the predictions for lower-grade glioma patients who had been treated with Temozolo-

mide were relatively strongly correlated with clinical responses (rho = 0.372; FDR = 0.014),

though this result was specific to the Random Forests algorithm and the +-5%c scenario (Fig 5).

Table 9. Correlation between predicted drug responses based on GDSC cell lines and recorded clinical responses in TCGA patients for selected combinations of

subsampling scenarios and algorithms across all drugs. We treated the clinical drug responses as an ordinal variable and used the Spearman rank correlation coefficient

to assess the extent to which the predicted responses correlated with the clinical responses.

Drug Scenario Algorithm # Samples Spearman P-value FDR

Gefitinib +-5%c SVM 2 1.000 1.00E+00 1.000

Gefitinib +-5%c Random Forest 2 1.000 1.00E+00 1.000

Gefitinib +-10%c SVM 2 1.000 1.00E+00 1.000

Gefitinib +-10%c Random Forest 2 -1.000 1.00E+00 1.000

Cisplatin +-5%c SVM 189 -0.127 8.11E-02 0.331

Cisplatin +-5%c Random Forest 189 0.041 5.72E-01 0.721

Cisplatin +-10%c SVM 189 -0.051 4.82E-01 0.697

Cisplatin +-10%c Random Forest 189 0.100 1.72E-01 0.424

Paclitaxel +-5%c SVM 110 0.234 1.40E-02 0.149

Paclitaxel +-5%c Random Forest 110 -0.163 8.84E-02 0.331

Paclitaxel +-10%c SVM 110 0.104 2.80E-01 0.498

Paclitaxel +-10%c Random Forest 110 -0.073 4.48E-01 0.697

Temozolomide +-5%c SVM 85 -0.217 4.65E-02 0.331

Temozolomide +-5%c Random Forest 85 0.372 4.53E-04 0.014

Temozolomide +-10%c SVM 85 -0.060 5.86E-01 0.721

Temozolomide +-10%c Random Forest 85 0.176 1.07E-01 0.343

Etoposide +-5%c SVM 31 0.125 5.01E-01 0.697

Etoposide +-5%c Random Forest 31 -0.260 1.58E-01 0.422

Etoposide +-10%c SVM 31 0.083 6.58E-01 0.753

Etoposide +-10%c Random Forest 31 -0.223 2.29E-01 0.440

Gemcitabine +-5%c SVM 56 -0.235 8.11E-02 0.331

Gemcitabine +-5%c Random Forest 56 0.227 9.30E-02 0.331

Gemcitabine +-10%c SVM 56 -0.170 2.10E-01 0.440

Gemcitabine +-10%c Random Forest 56 0.207 1.25E-01 0.364

Docetaxel +-5%c SVM 61 0.132 3.09E-01 0.521

Docetaxel +-5%c Random Forest 61 -0.158 2.25E-01 0.440

Docetaxel +-10%c SVM 61 0.096 4.60E-01 0.697

Docetaxel +-10%c Random Forest 61 -0.155 2.34E-01 0.440

Doxorubicin +-5%c SVM 61 -0.237 6.56E-02 0.331

Doxorubicin +-5%c Random Forest 61 0.338 7.78E-03 0.125

Doxorubicin +-10%c SVM 61 -0.063 6.31E-01 0.748

Doxorubicin +-10%c Random Forest 61 0.075 5.67E-01 0.721

FDR = Benjamini-Hochberg False Discovery Rate.

https://doi.org/10.1371/journal.pone.0238757.t009
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Temozolomide is an oral alkylating agent, is used commonly to treat lower-grade glioma

patients, and may reduce seizures and improve prognosis [10].

Discussion

In an ideal setting, patient data would be used to train predictive models for clinical drug

responses directly, as these data may accurately reflect tumor behavior in patients. Environ-

mental factors, the tumor microenvironment, co-existing conditions, and a variety of other

factors can affect a tumor’s behavior in ways that may not be accounted for in preclinical stud-

ies. However, acquiring drug-response data directly from human patients may require con-

ducting many experimental tests on a given patient, which could be unethical, harmful, and

subject to many confounding factors. In addition, patients are typically assigned standard-of-

care protocols based on their specific cancer type. As a result, experimental drug-response data

for large patient cohorts are scarcely available. An alternative approach is to use preclinical

samples to identify molecular signatures of drug response and later use those signatures to pre-

dict clinical drug responses in patients.

Cell lines serve as preclinical models for drug development. Being able to accurately predict

drug responses for a given cell line based on molecular features may help in optimizing drug-

development pipelines and explain mechanisms behind treatment responses. We focused on

DNA methylation profiles as one type of molecular feature that is known to drive tumorigene-

sis and modulate treatment responses [47]. When using classification or regression algorithms

to predict discrete or continuous responses, respectively, we consistently observed excellent

predictive performance when the training and test sets both consisted of cell-line data.

Although conventional wisdom advises against discretizing a continuous response variable,

where possible, due to loss of information, we wished to evaluate the potential to make effec-

tive predictions in this scenario, in part because clinical treatment responses are sometimes

represented as discrete values.

Of note, this study focuses primarily on evaluating the effect of subsampling on model per-

formance rather than on introducing new algorithms. Using subsampling, we observed that

classification performance generally improved as more extreme examples were used for train-

ing and testing, whereas the opposite was often true for the regression analyses. This suggests

that during regression, the algorithms benefitted from seeing examples across a diverse range

of IC50 values for a given drug, whereas the classification algorithms were confounded by see-

ing examples with relatively similar drug responses, even though sample sizes were smaller.

However, again we note that the regression results often differed depending on the evaluation

metric used. These results have potential financial implications: if researchers can identify cell

lines that are extreme responders for a particular drug, they may only need to generate costly

molecular profiles for those cell lines. Future research may elucidate whether this finding gen-

eralizes to other types of molecular data and other drugs.

Previous efforts to associate DNA methylation levels with drug responses include work

from Shen et al. (2007) [86] who quantified methylation for 32 CpG islands in the NCI-60 cell

lines, creating a sensitivity database for ~30k drugs and identifying biomarkers that predict

drug sensitivity. Instead, our work uses microarray data to quantify methylation levels for

thousands of genes across 987 cell lines but for fewer drugs. Rather than searching for individ-

ual genes that predict drug sensitivity, we constructed predictive models that represent

Fig 5. Predicting patient drug response from cell-line methylation profiles for Temozolomide (n = 85). For each TCGA test

sample, we used classification models from the GDSC data (+-5%c Random Forest) to generate probabilistic predictions of drug

response.

https://doi.org/10.1371/journal.pone.0238757.g005
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patterns spanning as many as thousands of genes. Such an approach may better represent

complex interactions among genes and thus yield improved predictive power, but a tradeoff is

reduced model interpretability. We sought to shed some insight into the biological mecha-

nisms that influence drug responses via feature selection, but methods for deriving such

insights from genome-wide data are still in their infancy. Recent work using mathematical

optimization models shows promise as a way to integrate molecular data from cell lines with

drug-sensitivity information to infer resistance mechanisms [87, 88].

A variety of computational methods have been proposed to predict drug responses for cell

lines based on molecular data. Classical algorithms like decision trees and support vector

machines have been used to predict the clinical efficiency of anti-cancer drugs and to classify

drug responses [44, 89–93]. Neural networks [36] and deep neural networks [43] have been

used to predict drug response based on genomic profiles from cell lines. Other techniques

have included elastic net regression [44, 92, 94], linear ridge regression [45], and LASSO

regression [54]. Alternative approaches based on computational linear algebra or network

structures have also been applied to infer drug response in cell lines; these include matrix fac-

torization [95], matrix completion [96], and link prediction [97] methods. Finally, a commu-

nity-based competition assessed the ability to predict therapeutic responses in cell lines using

44 regression-based algorithms [17]. In our study we used diverse algorithms, but our primary

focus was data subsampling and evaluating the potential to make accurate predictions of drug

response in cell lines using relatively extreme responders, rather than to introduce new

algorithms.

We attempted to predict clinical responses for patients from TCGA, but the accuracy of

these predictions was typically poor. Integrating datasets can introduce batch effects [98] and

other systematic biases; we attempted to mitigate these biases using data that had been prepro-

cessed identically for GDSC and TCGA and using an empirical Bayesian method. However,

subtle differences in the way biological samples are handled and processed in the lab can make

generalization difficult to achieve. Furthermore, inherent differences between cell lines and

tumors may confound such predictions. Cell lines are grown in a controlled environment, and

the cells are relatively homogeneous, whereas tumor samples are a heterogeneous milieu of

cells. In addition, TCGA tumor responses were based on clinical observations, so there was no

direct mapping between these measurements and IC50 values for the cell lines. Furthermore,

our approach to quantifying predictive performance was different for the GDSC cross-valida-

tion analysis compared to the TCGA training/testing analysis. In the former, the class variable

represented two possible outcomes (response and non-response). In the latter, the class vari-

able was ordinal. Yet another challenge was that we used cell lines from all available cell types

in GDSC. Better accuracy might be attained when training and testing on a single cell type;

however, larger sample sizes would be necessary.

Our study has additional limitations that could be addressed in future research. For one, we

focused on DNA methylation profiles in isolation, but other types of molecular features likely

modulate treatment responses. A number of cell-line studies have used gene-expression pro-

files to predict drug responses, and future studies could evaluate the potential benefits of incor-

porating more than one type of molecular feature into response-prediction models. The

treatment-response data were often imbalanced, meaning that not all response classes included

similar numbers of patients. Hence, additional work could analyze the effect of class imbalance

on model performance. Finally, we adjusted the methylation data for dataset and cell type

using an empirical Bayesian framework. However, as few as 2–3 samples were available for

some of the cell types, so the correction method may have had difficulty adjusting based on

such small numbers of examples.

PLOS ONE Predicting drug sensitivity of cancer cells based on DNA methylation levels

PLOS ONE | https://doi.org/10.1371/journal.pone.0238757 September 10, 2021 21 / 32

https://doi.org/10.1371/journal.pone.0238757


Conclusion

We applied machine-learning algorithms to predict cytotoxic responses for eight anti-cancer

drugs using genome-wide, DNA methylation profiles from 987 cell lines from the Genomics

of Drug Sensitivity in Cancer (GDSC) database. We then compared the performance of the

classification and regression algorithms and evaluated the effect of sample size on model per-

formance by artificially subsampling the data to varying degrees. The classification algorithms

performed best when relatively few cell lines were used to train and test the models, attaining

AUC values as high as 0.97. In contrast, the regression algorithms typically performed best

when all cell lines were used to train and test the models, though this result depended on the

evaluation metric used. For additional validation, we evaluated our ability to train a model

based on drug responses in the GDSC cell lines and then accurately predict patient drug

responses using data from The Cancer Genome Atlas (TCGA). Because patient-response val-

ues are categorical in nature, we only performed classification for these data. In most cases,

classification algorithms trained on the full GDSC dataset to predict drug-response categories

for TCGA patients were unable to identify patterns in the cell-line methylation data that trans-

lated to patient responses.

Supporting information

S1 Fig. Example of subsampling process. When performing classification, we discretized

drug-response (IC50) values. To evaluate alternative thresholds for discretization, we performed

a subsampling analysis. In Scenario 1 illustrated above, we considered the cell lines with the low-

est and highest 5% of IC50 values. In Scenario 2, we considered the cell lines with the lowest and

highest 10% of IC50 values. Each scenario used 10% more data than the previous scenario (5%

on each side). This pattern continues until all data were considered in the analysis.

(TIF)

S2 Fig. Graphs for Cisplatin classification analysis. The graphs compare different scenarios

ranked in order of best result. GDSC cell-line data were used to generate ten subsampling sce-

narios, which we then tested via nested cross validation. Scenarios that are further away from

the center represent higher metric values than scenarios closer to it. The evaluated metrics for

each algorithm are accuracy (ACC), specificity, recall, Matthews correlation coefficient

(MCC), F1 score (F1) and area under the receiver operating characteristic curve (AUC).

(TIF)

S3 Fig. Graphs for Docetaxel classification analysis. The graphs compare different scenarios

ranked in order of best result. GDSC cell-line data were used to generate ten subsampling sce-

narios, which we then tested via nested cross validation. Scenarios that are further away from

the center represent higher metric values than scenarios closer to it. The evaluated metrics for

each algorithm are accuracy (ACC), specificity, recall, Matthews correlation coefficient

(MCC), F1 score (F1) and area under the receiver operating characteristic curve (AUC).

(TIF)

S4 Fig. Graphs for Doxorubicin classification analysis. The graphs compare different scenar-

ios ranked in order of best result. GDSC cell-line data were used to generate ten subsampling

scenarios, which we then tested via nested cross validation. Scenarios that are further away

from the center represent higher metric values than scenarios closer to it. The evaluated met-

rics for each algorithm are accuracy (ACC), specificity, recall, Matthews correlation coefficient

(MCC), F1 score (F1) and area under the receiver operating characteristic curve (AUC).

(TIF)
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S5 Fig. Graphs for Etoposide classification analysis. The graphs compare different scenarios

ranked in order of best result. GDSC cell-line data were used to generate ten subsampling sce-

narios, which we then tested via nested cross validation. Scenarios that are further away from

the center represent higher metric values than scenarios closer to it. The evaluated metrics for

each algorithm are accuracy (ACC), specificity, recall, Matthews correlation coefficient

(MCC), F1 score (F1) and area under the receiver operating characteristic curve (AUC).

(TIF)

S6 Fig. Graphs for Gemcitabine classification analysis. The graphs compare different scenar-

ios ranked in order of best result. GDSC cell-line data were used to generate ten subsampling

scenarios, which we then tested via nested cross validation. Scenarios that are further away

from the center represent higher metric values than scenarios closer to it. The evaluated met-

rics for each algorithm are accuracy (ACC), specificity, recall, Matthews correlation coefficient

(MCC), F1 score (F1) and area under the receiver operating characteristic curve (AUC).

(TIF)

S7 Fig. Graphs for Paclitaxel classification analysis. The graphs compare different scenarios

ranked in order of best result. GDSC cell-line data were used to generate ten subsampling sce-

narios, which we then tested via nested cross validation. Scenarios that are further away from

the center represent higher metric values than scenarios closer to it. The evaluated metrics for

each algorithm are accuracy (ACC), specificity, recall, Matthews correlation coefficient

(MCC), F1 score (F1) and area under the receiver operating characteristic curve (AUC).

(TIF)

S8 Fig. Graphs for Temozolomide classification analysis. The graphs compare different sce-

narios ranked in order of best result. GDSC cell-line data were used to generate ten subsam-

pling scenarios, which we then tested via nested cross validation. Scenarios that are further

away from the center represent higher metric values than scenarios closer to it. The evaluated

metrics for each algorithm are accuracy (ACC), specificity, recall, Matthews correlation coeffi-

cient (MCC), F1 score (F1) and area under the receiver operating characteristic curve (AUC).

(TIF)

S9 Fig. Graphs for Cisplatin regression analysis. We used DNA methylation data from cell

lines to predict continuous IC50 response values using four regression algorithms. We evalu-

ated the algorithms’ performance via nested cross validation for ten subsampling scenarios.

Graphs illustrate performance for these scenarios, ranked in order of relative performance for

four metrics: RMSE (Root Mean Square Error), MAE (Mean Absolute Error), R-squared and

Spearman correlation coefficient. Scenarios further away from the center represent relatively

low metric values (and thus better performance). Scenarios that used all cell lines performed

best for all algorithms.

(TIF)

S10 Fig. Graphs for Docetaxel regression analysis. We used DNA methylation data from cell

lines to predict continuous IC50 response values using four regression algorithms. We evalu-

ated the algorithms’ performance via nested cross validation for ten subsampling scenarios.

Graphs illustrate performance for these scenarios, ranked in order of relative performance for

four metrics: RMSE (Root Mean Square Error), MAE (Mean Absolute Error), R-squared and

Spearman correlation coefficient. Scenarios further away from the center represent relatively

low metric values (and thus better performance). Scenarios that used all cell lines performed

best for all algorithms.

(TIF)
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S11 Fig. Graphs for Doxorubicin regression analysis. We used DNA methylation data from

cell lines to predict continuous IC50 response values using four regression algorithms. We eval-

uated the algorithms’ performance via nested cross validation for ten subsampling scenarios.

Graphs illustrate performance for these scenarios, ranked in order of relative performance for

four metrics: RMSE (Root Mean Square Error), MAE (Mean Absolute Error), R-squared and

Spearman correlation coefficient. Scenarios further away from the center represent relatively

low metric values (and thus better performance). Scenarios that used all cell lines performed

best for all algorithms.

(TIF)

S12 Fig. Graphs for Etoposide regression analysis. We used DNA methylation data from cell

lines to predict continuous IC50 response values using four regression algorithms. We evalu-

ated the algorithms’ performance via nested cross validation for ten subsampling scenarios.

Graphs illustrate performance for these scenarios, ranked in order of relative performance for

four metrics: RMSE (Root Mean Square Error), MAE (Mean Absolute Error), R-squared and

Spearman correlation coefficient. Scenarios further away from the center represent relatively

low metric values (and thus better performance). Scenarios that used all cell lines performed

best for all algorithms.

(TIF)

S13 Fig. Graphs for Gemcitabine regression analysis. We used DNA methylation data from

cell lines to predict continuous IC50 response values using four regression algorithms. We eval-

uated the algorithms’ performance via nested cross validation for ten subsampling scenarios.

Graphs illustrate performance for these scenarios, ranked in order of relative performance for

four metrics: RMSE (Root Mean Square Error), MAE (Mean Absolute Error), R-squared and

Spearman correlation coefficient. Scenarios further away from the center represent relatively

low metric values (and thus better performance). Scenarios that used all cell lines performed

best for all algorithms.

(TIF)

S14 Fig. Graphs for Paclitaxel regression analysis. We used DNA methylation data from cell

lines to predict continuous IC50 response values using four regression algorithms. We evalu-

ated the algorithms’ performance via nested cross validation for ten subsampling scenarios.

Graphs illustrate performance for these scenarios, ranked in order of relative performance for

four metrics: RMSE (Root Mean Square Error), MAE (Mean Absolute Error), R-squared and

Spearman correlation coefficient. Scenarios further away from the center represent relatively

low metric values (and thus better performance). Scenarios that used all cell lines performed

best for all algorithms.

(TIF)

S15 Fig. Graphs for Temozolomide regression analysis. We used DNA methylation data

from cell lines to predict continuous IC50 response values using four regression algorithms.

We evaluated the algorithms’ performance via nested cross validation for ten subsampling sce-

narios. Graphs illustrate performance for these scenarios, ranked in order of relative perfor-

mance for four metrics: RMSE (Root Mean Square Error), MAE (Mean Absolute Error), R-

squared and Spearman correlation coefficient. Scenarios further away from the center repre-

sent relatively low metric values (and thus better performance). Scenarios that used all cell

lines performed best for all algorithms.

(TIF)
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