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Preclinical and early human clinical studies of broadly neutralizing antibodies (bNAbs) 
to prevent and treat HIV infection support the clinical utility and potential of bNAbs for 
prevention, postexposure prophylaxis, and treatment of acute and chronic infection. 
Observed and potential limitations of bNAbs from these recent studies include the 
selection of resistant viral populations, immunogenicity resulting in the development of 
antidrug (Ab) responses, and the potentially toxic elimination of reservoir cells in regen-
eration-limited tissues. Here, we review opportunities to improve the clinical utility of HIV 
Abs to address these challenges and further accomplish functional targets for anti-HIV 
Ab therapy at various stages of exposure/infection. Before exposure, bNAbs’ ability to 
serve as prophylaxis by neutralization may be improved by increasing serum half-life to 
necessitate less frequent administration, delivering genes for durable in vivo expression, 
and targeting bNAbs to sites of exposure. After exposure and/or in the setting of acute 
infection, bNAb use to prevent/reduce viral reservoir establishment and spread may be 
enhanced by increasing the potency with which autologous adaptive immune responses 
are stimulated, clearing acutely infected cells, and preventing cell–cell transmission of 
virus. In the setting of chronic infection, bNAbs may better mediate viral remission or 
“cure” in combination with antiretroviral therapy and/or latency reversing agents, by 
targeting additional markers of tissue reservoirs or infected cell types, or by serving 
as targeting moieties in engineered cell therapy. While the clinical use of HIV Abs has 
never been closer, remaining studies to precisely define, model, and understand the 
complex roles and dynamics of HIV Abs and viral evolution in the context of the human 
immune system and anatomical compartmentalization will be critical to both optimize 
their clinical use in combination with existing agents and define further strategies with 
which to enhance their clinical safety and efficacy.

Keywords: Hiv antibodies, virus neutralization, passive immunotherapy, antibody prophylaxis, antibody 
engineering

iNTRODUCTiON

Antibody (Ab)-based therapies have a robust history of therapeutic utility in the setting of infectious 
diseases, first serving as serum therapy in the 1800s to treat diphtheria and most recently, as monoclonal 
antibody (mAb) preparations developed to combat emergent outbreaks such as Ebola. Endogenous 
antibodies raised within the context of HIV infection have similarly demonstrated antiviral activity 
(1), but typically arise too late in the natural history of infection to prevent disease progression 
(2). Within infected individuals, viral populations consistently outpace host immune responses in a 
coevolutionary race to gain functionally favorable mutations contributing to immune evasion or viral 
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FigURe 1 | Native Ab functions contributing to antiviral activity and their limitations in the natural course of infection. (A) For neutralization, Abs (red) bind viral envelope 
proteins to block interactions with cellular receptors. (B) For effector functions, Abs bound to both viruses and infected cells may engage innate effector cells (purple) to 
mediate ADCC or ADCP, or complement component C1q (green) to mediate CDC or interactions with complement receptors on innate effector cells for opsonization-
based phagocytosis. (C) To stimulate autologous antiviral immunity, Ab-bound infected cells may interact with dendritic cells to release type I interferons (blue stars) to 
stimulate NK cell activation and expression of antiviral proteins within infected cells. Alternatively, antigen presenting cells may phagocytose Ab-virus immune complexes 
and process viral antigens for presentation to T-cells to mediate cellular immune responses. Abbreviations: ADCC, Ab-dependent cellular cytotoxicity; ADCP, 
Ab-dependence cellular phagocytosis; CDC, complement dependent cytotoxicity; FcR, Fc receptor; MHC, major histocompatibility complex; TCR, T-cell receptor.
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neutralization/suppression, respectively. However, heterologous 
administration of particularly potent and broad antibodies prior 
to exposure or to acutely infected individuals has demonstrated 
therapeutic utility in humanized mice (3–7), macaques (8–13), 
and humans (14–19).

Several reviews have described the activity and potential of 
broadly neutralizing antibodies (bNAbs) for HIV prevention and 
therapy (20–27). Building upon a recent comprehensive review 
of engineering opportunities to extend the functional capacity 
and antiviral activity of bNAbs (28), this review incorporates 
findings from more recently published macaque and human 
bNAb clinical trials to explore both observed and potential 
challenges to successful bNAb implementation at various stages 
of exposure/disease to prevent infection, minimize viral spread, 
suppress viral growth, and eliminate viral populations.

Promise/Potential: bNAbs in Human 
Clinical and Macaque Preclinical Trials
The abundance of studies supporting the antiviral activity and 
potential of bNAbs to mediate protection from and control of 
HIV infection in animal models have renewed hope and interest 

in bNAbs for clinical use. Antibodies can exert antiviral activity 
through a combination of (1) virus neutralization, prevent-
ing initial infection, and viral spread, (2) Fc-mediated effector 
functions, contributing to the clearance of infected cells, and (3) 
enhancement of endogenous host antiviral immune responses 
(Figure 1). In the last 2 years alone, promising human clinical 
studies to investigate therapeutic benefit in postinfection settings 
(14–19) and additional preclinical studies to investigate protective 
efficacy in preexposure/infection settings (29, 30) have clarified 
the mechanisms of action and efficacy of bNAb administration.

Human clinical studies of VRC01 (14, 17, 31), 3BNC117 (15, 18,  
19, 32), and 10-1074 (16) have demonstrated the antiviral activity 
of bNAbs, offering therapeutic utility in both acute and chro-
nic infection settings. Beyond safety and tolerability, all three 
bNAbs reduced viral load (15–17) during administration and 
two, VRC01 and 3BNC117, successfully delayed viral rebound 
upon discontinuation of antiretroviral therapy (ART) (14, 18). 
Treatment dosing regimens remain to be optimized and may 
differ among Abs, dependent upon both the usual considerations  
of individual mAb pharmacokinetic and pharmacodynamic 
properties, but also each mAb’s HIV-specific pharmacodynamic 
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properties, such as the slope and completeness of neutralization  
(33), susceptibility to viral evasion, and propensity to mediate 
viral (or antigen) trafficking/processing/presentation. In addi-
tion, characteristics of individual subjects, such as viral load, 
diversity, and sensitivity to select bNAb(s) at time of treatment 
may be considered for more individualized regimens.

Concurrently with direct antiviral activity, treatment with 
3BNC117 stimulated and enhanced endogenous antiviral 
immune responses: in 14/15 viremic individuals treated with 
3BNC117, sera from week 24, well after serum levels of 3BNC117 
had dropped below detection limits, demonstrated increased 
breadth and/or potency against a pseudovirus panel as compared 
to week 0 (19). Interestingly, the increase in neutralization 
capacity of week 24 sera from ART-treated individuals receiving 
3BNC117 was less pronounced than in untreated individuals 
receiving 3BNC117, suggesting that viral replication and activity 
contributes to the development of heterologous neutralization 
(19). Previous studies have also demonstrated the enhancement 
(13, 34, 35) and importance (36) of autologous humoral and 
T-cell responses in response to bNAb therapy in macaque models 
of SHIV [reviewed in Ref. (37)].

The use of HIV Abs in preclinical animal models have similarly 
demonstrated the potential of mAbs to provide pre- or postexpo-
sure prophylaxis, similarly to the early use of immunoglobulins to 
protect against infection by RSV and Hepatitis A [reviewed in Ref. 
(38)]. Protection against SHIV acquisition has been demonstrated 
for multiple bNAbs (9–11, 39–41) with protection dependent 
upon SHIV strain, bNAb dosage, and bNAb serum concentrations 
at time of challenge. In models of high-dose SHIV challenge, treat-
ment with ≥5 mg/kg 3BNC117 or 10-1074 successfully blocked 
SHIV acquisition after a single intrarectal challenge of 1,000 times 
the 50% tissue culture infectious dose (TCID50), or approximately 
three times the half-maximal animal infectious dose (42). In a 
larger study (60 challenged animals vs. 4), the same group deter-
mined that serum titers of bNAbs as low as 1:100 were sufficient 
to prevent SHIV acquisition in ~50% of macaques receiving a 
single intrarectal challenge at 1,000 TCID50 (8). More recently, 
the same three bNAbs studied in human clinical trials, VRC01, 
3BNC117, and 10-1074, have been tested in preclinical macaque 
models of repeated low-dose SHIV exposure with impressive 
results (29). A single infusion of 3BNC117 successfully prevented 
virus acquisition in models of repeated low-dose intrarectal chal-
lenges for up to 23 weekly intrarectal challenges at 10 times the 
TCID50, whereas control animals acquired infection after two to 
six challenges. Across the three bNAbs evaluated, the length of 
protection correlated with Ab potency and half-life. Similarly, in 
humanized mouse models of HIV acquisition, passive transfer of 
the bNAb PGT126 demonstrated sterilizing protection against 
multiple vaginal HIV challenges (30).

Role of Non-Neutralizing Abs (nnAbs)
As opposed to neutralizing Abs which bind epitopes on func-
tional trimeric Env to prevent cell receptor engagement, nnAbs 
bind epitopes exposed in non-infective conformations adopted 
by the unstable Env antigen, such as open Envelope trimers, 
gp140 monomers, and dissociated gp41 stumps (due to instability 
or induced by binding to cell receptors). nnAb responses have 

demonstrated protection through Fc-mediated effector functions 
and by exerting additional selective pressure and evolutionary 
constraints upon remaining viruses in humanized mice (43, 44). 
In a recent study, Horwitz et  al. demonstrated the capacity of 
nnAbs to modulate the course of HIV infection in humanized 
mice via Fc-mediated effector functions in two nnAb cases: 
(1) using anti-HA Abs in humanized mice challenged with a 
newly developed recombinant indicator HIV strain containing 
an HA-tag-, (HIVivoHA) or HIVivoHA-infected cells and (2) 
using a patient-derived nnAb 246D (45) targeting a linear gp41 
epitope in humanized mice challenged with HIV-1YU2 virus or  
HIV-1YU2-infected cells (44). In both cases, passive transfer of 
nnAbs mediated modest protection from viral challenge, reduced 
viral load in established infection, cleared virus-infected cells, and 
exerted selective pressure for escape mutations that ultimately 
deleted or concealed the targeted epitope, all in an Fc-dependent 
manner that was diminished or absent in passive transfer of the 
same nnAbs modified with mutations that abrogated binding 
to activating Fc-receptors (44). Older studies in macaques have 
suggested that nnAbs may decrease the number of transmitted/
founder variants and the viral load in acute viremia, but ulti-
mately did not protect from infection (46–48). Thus while the 
efficacy of nAbs has been linked to Fc-dependent mechanisms 
(40) the sufficiency of these antibody activities to drive protection 
from infection among nnAbs has not been established in NHP. 
Similarly, the protective capacity of non-neutralizing HIV Abs 
in humans has been suggested by mother-to-child-transmission 
studies [reviewed in Ref. (49)] and by the association of V1/V2 
nnAbs with protection in the RV144 HIV-1 vaccine trial (50, 51), 
but remains to be demonstrated.

Therapeutic Applications and goals  
by Stage of infection
Based on the established roles of mAbs in various infectious dis-
eases, autologous Abs in the natural history of HIV infection, and 
HIV Abs in clinical and preclinical trials, anti-HIV mAbs find 
multiple indications for clinical use with therapeutic goals defined 
by the stage of HIV exposure and disease (Figure 2). Before viral 
establishment, mAbs could be used either prior to exposure to 
prevent viral acquisition or postexposure to prevent or limit 
viral establishment. After viral acquisition in chronic infection 
settings, therapeutic goals extend to include viral suppression to 
stabilize and prevent progression of disease, and viral eradication 
to cure patients entirely of infection. This review investigates the 
current limitations of and engineering strategies with which to 
improve the utility of bNAbs at each stage of infection/disease to 
(1) prevent infection, (2) limit viral establishment/spread, and (3) 
treat chronic infection via suppression of viral growth and reduc-
tion/elimination of viral reservoirs (summarized in Table 1).

eNHANCiNg PReeXPOSURe 
PROPHYLACTiC POTeNTiAL: 
PReveNTiNg viRAL iNFeCTiON

Development of durable protection against HIV has remained 
a challenge due to the great diversity of HIV species and their 
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FigURe 2 | Clinical goals for the use of anti-HIV Abs vary according to (A) mechanisms of viral exposure/infection at the time of administration, and (B) the viral 
events which therapeutic Abs seek to inhibit among indicated use prior to exposure (green), as postexposure prophylaxis or treatment of acute infection (yellow), 
and for treatment of chronic infection (red).
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adaptive capacity to evade immune-mediated pressure. Viral 
strains can be described by clade or subtype with viral diversity 
profiles varying by geographic location, or by neutralization 
sensitivity designated as very high (tier 1A), above-average (1B), 
moderate (2), or low (3) sensitivity to Ab-mediated neutraliza-
tion (pooled plasma samples from four to six clade-matched 
infected individuals) (52). Clade-matched viral variants are 
often more sensitive to neutralization by plasma/NAbs from 
individuals infected by the same clade (52). Thus, the profiling 
of viral variants endemic to geographical regions could inform 
the selection of NAbs offering the greatest breadth and potency 
of neutralization. Ab-based vaccines may function to protect 
from infection in two ways: (1) neutralization to prevent viral 
infection in the first place and (2) rapid clearance of virus or 
virus-infected cells, which will be expanded upon in Section 
“Enhancing Prophylactic and Therapeutic Potential in Acute 
Infection: Preventing Viral Reservoir Establishment/Spread.” To 
offer sterilizing immunity, Abs must offer durable protection with 
sufficient targeting to anatomic sites of exposure to neutralize 
viruses and prevent infection. To clear virus and virus-infected 
cells, Abs must be both readily available at therapeutic concen-
trations and broadly reactive to maintain efficacy against the 
diversity of viral strains to which an individual might be exposed. 
Thus, current and potential limitations to the prophylactic use of 

bNAbs include: (1) development of viral resistance, (2) require-
ment for strict regimen adherence, (3) anatomical distribution 
to sites of exposure, and (4) risk of Ab-dependent enhancement 
(ADE) of infection.

viral Resistance
The arsenal of bNAbs available today targets epitopes spanning 
a significant portion of the surface of the trimeric HIV Envelope 
gp140 protein including the V1/V2 loops at the trimer apex, V3 
loop glycans, CD4 binding site (CD4bs), gp120-g41 interface, 
and membrane-proximal external region (MPER) [reviewed in 
Ref. (53)]. Individual bNAbs vary in neutralization breadth and 
potency, with some CD4bs targeting bNAbs able to neutralize 
>90% of global circulating HIV-1 strains at low concentrations 
(54). However, resistance can develop to even the most potent 
of bNAbs and has indeed been observed in human clinical trials 
of all three bNAbs tested thus far (14–17). Even among bNAbs 
targeting the same epitope, different barriers to resistance devel-
opment may exist from individual to individual and may arise in 
part from preexisting bNAb-resistant viral strains. Engineering 
strategies to combat the development of viral resistance reviewed 
previously (28) include (1) structure-based modifications to 
increase the breadth, potency (both neutralization and effector 
function), and half-life of individual bNAbs, (2) combinations of 
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TABLe 1 | Summary table of strategies for the improvement of anti-HIV Ab therapy.

indication goal Mechanism Limitation improvement Strategies

Vaccine Block viral entry Neutralization Viral resistance ↑ Breadth and potency Structure-based modifications to ↑ 
binding
Broadly neutralizing antibody (bNAb) 
cocktails
Bispecific and trispecific bNAbs

Strict requirement for 
adherence to dosing 
schedule

↑ t1/2 FC engineering

Glycan “masking”
Carrier proteins, peptides, RBCs

Continuous Ab expression (adeno-
associated virus)

↓ Immunogenicity to ↓ anti-bNAb 
responses
Targeting multiple tissues for 
comprehensive protection
Enable evolution of delivered Abs:  
B Cell engineering

Anatomical distribution ↑ Targeting to sites of exposure Topical gel delivery
↑ Binding to mucosal transporters
Targeted gene delivery

Risk of Ab-dependent 
enhancement

↑ Breadth and potency See above

Maintain protective concentrations 
of Abs

Dosing schedule or gene delivery

Postexposure 
prophylaxis and 
acute infection

Prevent reservoir 
establishment

Stimulate autologous 
antiviral immunity

Insufficient protection 
after bNAb levels decay

↑ Viral processing and presentation Coadministration of virus/infected cells 
(immune complex)

Counter virus-mediated 
immunosuppression

Coadministration of immunostimulatory 
drugs/Abs targeting characterized 
mechanisms

Further restrict viral evolutionary space Identify Abs targeting “non-survivor” 
epitopes

Clear acutely 
infected cells

Ab-mediated Effector 
functions

Low potency? Fc engineering for FcR/complement 
binding

Protein/glycoengineering, subclass 
switching

Add toxic payload Immunotoxin, Ab-drug conjugate

Prevent cell–cell 
transmission

Unclear limited understanding of 
mechanism

Elucidate mechanism, especially role of Env conformational changes to define 
“neutralizing” epitopes for cell–cell transmission

Chronic 
infection

Suppress viral 
replication

All of the above 
(AOTA)

Resistance Combine with antiretroviral therapy (ART) to suppress replication and 
opportunities tot evolution

Target virat 
reservoirs

AOTA Tissue distribution 
or Abs and reservoir 
accessibility

Tissue-targeted delivery Ex: liposomal delivery to central  
nervous system (CNS)

Cover diverse populations in 
compartmentalized tissue

Combine w/additional Abs, ART, 
latency-reversing agents

Low Env expression in 
chronic infection

Target Env epitopes of chronic infection

Target non-viral surface markers All potential reservoir cells, including 
uninfected (e.g., CD52), or upregulated  
on infected cells (e.g., CD32a)

Reactivate reservoirs Add LRAs

Long-term 
clearance of 
reservoir cells

Autologous T-cell-
mediated response

Low cytotoxic 
T-lymphocyte (CTL) 
response due to 
immune suppression

bNAb-based chimeric antigen 
receptors (CARs)

↑ Clinical safety (↓ risk of CAR  
mediating infection, synthetic biology 
“switch” on/off/homing strategies)

CTL trafficking 
limitations

Investigate/improve bnAb access to CTL sanctuaries

Virol eradication AOTA Costs of eliminating 
reservoir cells in certain 
tissues (e.g., CNS)

Pair with gene editing strategics so infected cells may survive

Overlap of therapeutic goals for listed indications (see Figure 2) are not shown in this table. Goals which are targets for multiple indications are grouped under the indication for 
which they are the primary focus.
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Abs in cocktail therapies, (3) modifying bNAbs to become bispe-
cific, to carry toxic payloads, or to redirect cells in bNAb-based 
therapies, and (4) altering delivery strategies.

Since the previous review, three additional studies of newly 
isolated neutralizing Abs have further supported the importance 
of structural Ab-Env interactions to neutralization breadth and 
viral evasion. Demonstrating the importance of Ab binding 
modes to development of viral resistance, N6, a new bNAb target-
ing the CD4bs with a novel mode of recognition, does so with 
amino acid features similar to previously identified mutations 
to increase the potency of VRC01-class Abs, and demonstrated 
near-pan neutralization breadth of 98% of HIV isolates tested, 
including many isolates resistant to other CD4bs antibodies 
(55). Defining a new neutralizing epitope, the recently isolated/
characterized bNAb N123-VRC34.01 recognizes a unique 
trimer-specific, cleavage-dependent epitope at the N terminus 
of the gp41 fusion peptide (56). Finally, two recently isolated 
V2-specific Abs, PGDM1400, and CAP256-VRC26.25, demon-
strated unprecedented neutralization potency, protecting against 
high-dose SHIV challenge at serum Ab concentrations <0.75 μg/
mL for CAP256-VRC26.25-LS (57). In addition, these V2-specific 
bNAbs exhibited neutralization breadth complementary to that 
of V3-specific bNAb PGT121 against Clade C viruses, ultimately 
resulting in >90% coverage when used in combination (57).

Recent studies have investigated optimal strategies for  
combining bNAbs in cocktail therapies (3, 58–61), bispecific 
formats (62, 63), and novel tri-specific molecules (64). A com-
bination of only three bNAbs targeting different epitopes has 
been suggested to be sufficient to cover transmitted viral diversity 
and evolution based on a study conducted in humanized mice 
(58) and predictive in  silico models of neutralization breadth 
and potency (59). In an alternative form of combining epitope 
specificities, the most potent and broad bispecific Ab to date, 
10E8v2.0/iMab, demonstrated 100% neutralization breadth 
across a 118-member pseudotyped panel with mean inhibitory 
concentration of 0.002  µg/mL and prevented HIV acquisition 
in humanized mouse models of infection, demonstrating the 
synergistic potential of bispecific Abs targeting distinct epitopes 
(63). In another study, a novel bispecific Ab hinge engineering 
strategy employing the IgG3 hinge to increase Fab domain flex-
ibility for bivalent binding and to maintain IgG1-Fc function 
enhanced the in vivo therapeutic activity of bispecific bNAbs (62), 
emphasizing the synergistic avidity-enhancing effect of intratri-
meric, heterobivalent crosslinking of Fab arms to increase Ab 
potency (65). In another novel approach, trispecific Ab molecules 
containing bNAb specificities against the V1V2 loop trimer apex 
(PGDM1400), CD4bs (VRC01 and N6), and MPER (10E8v4) 
were found to mediate increased breadth and potency compared 
to individual parental bNAbs both in vitro and in SHIV challenge 
models (64). The authors speculated that the tri-specific bNAb 
may have decreased risk of viral resistance compared to cocktail 
strategies where differences in component bNAb half-lives may 
decrease selective pressure (64). However, whether these trim-
eric molecules engage multiple epitopes simultaneously and/or  
otherwise confer added benefit over a cocktail consisting of the 
same three bNAbs remains to be determined.

Beyond development of viral resistance within an individual 
to bNAb therapy, implications of widespread use of bNAbs as 
prevention may influence the composition and evolutionary 
dynamics of worldwide HIV strains. HIV drug resistance is 
increasingly observed due to poor patient adherence enabling 
the development of resistance, and subsequent transmission of 
newly developed drug-resistant strains (66). Similar potential 
for the development of bNAb-resistant “super-strains” of HIV 
exists, as bNAb-resistant strains often coexist or arise within 
individuals from whom bNAbs were isolated. Trade-offs between 
viral evasion and fitness costs incurred by some resistance muta-
tions (67–70) may mitigate these concerns. However, resistance 
mutations without fitness costs (70, 71) and the development 
of compensatory mutations to restore fitness have also been 
described (67), and antibodies vary with respect to sensitivity 
to evasion and ease of compensation. Combination strategies 
such as the cocktails or multispecific molecules described above 
may best prevent the development of “super-strains” of HIV by 
further restricting the viral evolutionary landscape. Thus, strate-
gies to optimize bNAb administration and pharmacokinetics to 
make treatment regimens manageable and supportive of strong 
treatment adherence will be critical to avoid the development of 
bNAb-resistance on a more global scale.

Alleviating Requirements for Regimen 
Adherence
Because viral rebound quickly occurs upon bNAb decay and 
renewed replication enables opportunities for viral evolution, 
protective bNAb dosing schedules must be strictly followed 
to prevent both viremia and viral resistance. Two methods to 
decrease the frequency of dosing are (1) increasing the serum 
half-life of bNAbs and (2) bNAb gene delivery for continuous 
in vivo expression.

Increasing Serum Half-Life of bNAbs
Interestingly, bNAb levels decayed more quickly in HIV(+) indi-
viduals as compared to controls in human clinical trials, potentially 
due to the formation of Ab-virus immune complexes in infected 
individuals that are more rapidly cleared from circulation. For 
bNAbs to offer prevention potential, and to avoid the development 
of resistance, serum half-life would need to be long enough to 
maintain protective concentrations at reasonable dosing schedules. 
Fc engineering strategies to increase the half-life of bNAbs have 
been described [reviewed in Ref. (28, 72)], including studies of the 
VRC01-LS variant which demonstrated a threefold longer serum 
half-life and increased translocation to mucosal tissues, ultimately 
leading to improved potency and protection against high-dose rectal 
challenge in non-human primates (29, 73, 74). VRC01-LS (M428L 
and N434S) (29, 74) has now advanced into Phase I clinical trials 
(NCT02797171, NCT02840474, NCT02599896, NCT02256631).

Continuous Protection via Gene Delivery:  
In Vivo Expression of bNAbs
In an indirect way to extend the lifetime of bNAb therapy, gene 
delivery has been increasingly explored to achieve durable Ab 
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concentrations, most prominently by adeno-associated virus 
(AAV) vectors [reviewed in Ref. (75)]. Historically, AAV delivery-
based gene therapy has demonstrated safety and efficacy in both 
macaques (76–79) and humans (80–85) for a variety of diseases, 
and has become the first clinically and government-approved 
gene therapy in Europe (86, 87). Within the realm of HIV, AAV-
delivered HIV-specific bNAbs and Ab-like molecules such as 
CD4-Ig have demonstrated sterilizing and durable protection 
against SIV/SHIV infection in macaques (73, 88–90) and HIV 
infection in humanized mice (4, 91), and are now undergoing 
Phase I human clinical trials to evaluate safety, deliverability, and 
potential efficacy in England (NCT01937455).

Current limitations to bNAb gene delivery include the devel-
opment of anti-bNAb responses and the virus independence of 
bNAb expression. First, several studies of AAV-delivered bNAbs 
to macaques have demonstrated the development of anti-bNAb 
responses (73, 88, 90, 92), despite “rhesus-ization” of bNAbs 
and addition of immunosuppressive therapy, potentially due to 
immune-stimulating effects of the AAV itself which can trig-
ger innate pattern recognition receptors and toll-like receptors 
or engage preexisting cellular (93) or humoral (94) immunity. 
Side-by-side comparisons of anti-bNAb responses in passively 
transferred bNAbs vs. AAV-delivered bNAb treatment have been 
proposed to delineate immunogenic contributions from AAV vs. 
Ab (75). Engineering strategies to decrease the immunogenicity 
of AAV capsids and coadministration of immunosuppressive 
agents (cyclosporine, T-cell inhibition, IVIG, corticosteroid) have 
been proposed and shown promise (75). However, immunosup-
pressive agents may also decrease bNAb Fc-mediated effector 
function and the development of autologous antiviral responses, 
placing the bulk of protection on neutralization. Thus, studies  
to determine the costs and benefits of adding immunosuppressive 
agents to AAV-delivery regimens are warranted.

Second, current AAV-delivery of bNAbs results in bNAb 
expression independent of viral trafficking, replication, and 
evolution, and therefore (1) may not be ideally distributed for 
prevention of infection/reservoir establishment and (2) cannot 
respond to changes in the viral population. Intramuscular deliv-
ery of vectored gene therapy to skeletal muscle is most extensively 
studied thanks to muscle tissue’s amenability to long-term gene 
expression, abundant vascular supply for quick transport to the 
systemic circulation, and ease of accessibility (95). However, 
vectored gene delivery to additional tissues including the liver, 
brain, spinal canal, skin, and eyes have been described (95). 
Targeted gene delivery to these tissues may be especially useful 
if protective Ab concentrations in these tissues are not possible 
from circulation alone.

However, such bNAb-expressing tissues are unable to respond 
to viral evolution, and may become less useful as viral popula-
tions develop resistance to the administered Ab. Thus, strategic 
delivery of bNAb genes to B-cells for integration at native 
BCR loci (gene targeting into the Igh locus) under the normal 
regulation of heavy-chain expression, Ab class-switching, and 
somatic mutation may offer the added benefit of coevolution 
with viral populations. A similar technology of in vivo bNAb-
as-BCR evolution has been used in HIV Env immunogen stud-
ies in transgenic knock-in mice containing B-cells expressing 

germline heavy chain variants of VRC01-class Abs (96–98), 
which were successfully activated/expanded and underwent 
somatic hypermutation in response to various Env immunogen 
regimens. Viral challenge of similarly generated knock-in mice 
containing genes for mature bNAbs as BCRs may demonstrate 
proof-of-concept for bNAb-based BCR engineering. Clinical 
translation of such a strategy could parallel chimeric antigen 
receptor (CAR) T-cell procedures, whereby B-cells could be 
extracted from a patient and engineered ex vivo to expressed 
bNAb-based BCRs prior to reinfusion. Investigations into 
efficient and targeted IgH knock-in would be critical to this 
approach and increased understanding of B-cell differentiation 
and subtypes, BCR editing, and tolerance checkpoints would 
be beneficial. Additionally, switchable gene expression may be 
desired to prevent unchecked expansion/growth. While this 
ability to coevolve may not ultimately provide any benefit, natu-
ral infection histories provide both reasons for optimism and 
pessimism. In favor of the optimistic possibilities, the ability of 
bnAbs to improve autologous antibody neutralization potency, 
and their ability to collaborate with other lineages for beneficial 
outcomes suggests that the ability to adapt over time could be 
advantageous.

Targeting Anatomical Sites of exposure
One probit analysis of bNAb-treated macaques suggested that a 
serum level of 100 times the bNAb IC50 affords 50% protection 
against intrarectal infection (41), a level that is estimated to be 
attainable by biannual passive Ab injections given the serum Ab 
levels and half-lives of VRC01 and 3BNC117 in human clinical 
trials (25). In an SHIV macaque study, IV infusion of 2 mg/kg 
PGT121 completely protected subjects from intravaginal chal-
lenge with 5 × 104 TCID50 SHIV-SF162P3, with no detectable 
viral RNA or DNA found in distal tissue sites by day 10 after 
challenge (99). However, concentrating Abs at the sites of viral 
exposure may allow even lower doses to be protective. Because 
viral exposure often occurs at mucous membranes including 
the rectal and vaginal tracts, the presence of bNAbs at mucosal 
sites to mediate immune exclusion may improve protection. 
Therapeutic administration and Ab engineering strategies to 
improve bNAb use for mucosal immunity were described previ-
ously (28) and included topical gel delivery, Fc engineering to 
enhance binding to FcRn and pIgR at mucosal sites, and design-
ing IgA and chimeric IgGA variants of bNAbs. In addition, some 
of the strategies described above such as targeted AAV-delivery 
of bNAb genes to specific tissue sites or BCR engineering to 
express class-switched IgA versions of bNAbs may be beneficial. 
Studies have found contrasting evidence for (100–103) and 
against (104) a role for bNAbs, formatted as various isotypes, 
in preventing transepithelial migration. The reason for this 
discrepancy is unknown but may be related to the utilization of 
older-generation or less potent bNAbs in the prior studies (2F5, 
2G12, 4E10), whereas the most recent studies investigate newer-
generation, more potent bNAbs. In that study of bNAbs targeting 
a wide range of epitopes, bNAbs did not block the transcytosis 
of either cell-free or cell-associated HIV-1 in vitro and instead 
relied upon neutralization to decrease the infectivity of transcy-
tosed viruses (105). Thus, increasing the local concentration and 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


8

Hua and Ackerman Engineering Anti-HIV Antibodies: Clinical Translation

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1655

neutralization breadth and potency of bNAbs at mucosal sites 
may enhance protection against mucosal infection.

Potential Risks: ADe of infection
Thus far, ADE of HIV infection has only been observed in vitro 
and grouped into complement- (106–108), Fc Receptor (FcR)- 
(109–112), and conformationally mediated (113, 114) mechanisms 
which ultimately facilitate virus internalization or receptor-inde-
pendent virus-cell membrane fusion [reviewed in Ref. (115, 116)]. 
In addition, antibody-virus immune complexes could increase 
trafficking of infectious virions to lymph nodes, thereby amplify-
ing rates of viral infection and replication. While debate exists over 
whether ADE occurs in natural HIV infection, the presence of 
enhancing Abs have been correlated with disease progression in 
some studies of sera from HIV-infected individuals (117, 118) [but 
not others (119)] and suggested to explain increased rates of infec-
tion in individuals with relatively low Ab responses in vaccine trials 
(120) and correlations of particular FcR genotypes characterized by 
stronger Fc-binding affinities with higher infection risk (121, 122). 
Both nnAb and neutralizing Ab at subneutralizing concentrations 
can enhance infection in vitro (109), and epitope specificity does 
not necessarily determine an Ab’s potential for ADE (115). Thus, 
maintaining protective concentrations of bNAbs via repeated dos-
ing or continuous expression (AAV) may be especially critical to 
decrease the risk of ADE.

eNHANCiNg PROPHYLACTiC AND 
THeRAPeUTiC POTeNTiAL iN ACUTe 
iNFeCTiON: PReveNTiNg viRAL 
ReSeRvOiR eSTABLiSHMeNT/SPReAD

After exposure, bNAbs may be used as prophylaxis to prevent 
the establishment and spread of viral reservoirs [reviewed in 
Ref. (123, 124)]. Successful elicitation or administration of 
HIV-specific Abs in macaque models of acute SHIV challenge 
and infection have correlated with reduced acute viremia 
and limited reservoir seeding (46, 125, 126). The window for 
postexposure prophylaxis has been estimated to be as short as 
24 h to block infection by cell-free virus in macaque models 
of SHIV infection (127, 128) and within the first 9–10  days 
to limit viral reservoir seeding and spread (129). Resistance 
continues to be a major concern for all of the described bNAb 
indications in this review, but may be especially relevant in 
postexposure settings where autologous viral populations 
may be screened for preexisting resistance to bNAbs. Mucosal 
barriers and/or autologous immune responses often limit the 
diversity of transmitted/founder (T/F) strains; in one study, 
80% of individuals infected through heterosexual and 60% 
through homosexual contact were found to have a single 
founder virus strain (130). Thus, the low viral diversity present 
in acute postexposure settings render it a particularly useful 
time at which to screen viral populations to inform the choice 
of bNAb(s) therapy. Efforts to adequately sample viral diversity 
later during chronic infection become more difficult as latent 
reservoirs are established and thus viral sensitivity screening 
may be less useful at later time points.

In addition to the previously described goals to neutralize 
virus to prevent initial infection, postexposure prophylactic 
use of Abs additionally seeks to limit reservoir seeding 
and spread. Enhancing the ability of mAb therapies to (1) 
increase autologous immune responses and (2) target acutely 
infected cells represent two strategies by which to accomplish  
this goal.

increasing Protection by influencing the 
Autologous Adaptive immune Response
Both neutralizing Ab and nnAbs depend upon Fc-mediated effec-
tor functions for antiviral activity in vivo (131, 132). Through the 
Fc portion, elicitation of even nnAb responses offers therapeutic 
utility, demonstrating protective effects in both vaccination  
(121, 133) and passive transfer studies (44, 134, 135). Stimulation 
of autologous Ab responses, whether neutralizing or not, thus 
remains a promising means by which to generate durable effects 
from Ab therapy.

Broadly neutralizing antibody therapy has been associated 
with enhanced autologous antiviral immune responses in both 
human (19) and macaque (13, 34, 35) studies. Proposed mecha-
nisms for this observed effect include (1) facilitation of viral 
processing and presentation, (2) potential immune-stimulating 
effects in an otherwise suppressed adaptive immune background 
conferred by HIV infection, and (3) restriction of viral evolution-
ary space by both administered bNAbs and elicited autologous 
Abs. Efforts to increase autologous Ab responses may thus focus 
upon enhancing each of these mechanisms.

Enhancing Viral Processing and Presentation
Increasing the effector function capacity of anti-HIV Abs by 
Fc engineering to skew binding toward particular Fc receptors 
represents one mechanism by which to engage and stimulate 
endogenous immunity, and has been previously reviewed in 
Ref. (28, 72). Beyond engineering bNAb molecules, adjunctive 
coadministration of envelope, virus or infected cells with Abs in 
immune complexes can engage FcɣRs on antigen-presenting cells 
to facilitate antigen internalization and enhance APC activation 
and presentation, ultimately “boosting” endogenous antiviral 
immunity [reviewed in Ref. (136)]. Although one study found 
that opsonization of HIV-1 with polyclonal anti-HIV IgGs was 
associated with decreased dendritic cell activity (137), further 
investigations of Abs of varying neutralization potency formatted 
as different isotypes have been proposed to clarify the generaliz-
ability of that study (136). In another study, administration of 
HIV-1 gp120 Env and a CD4bs mAb resulted in enhanced neu-
tralization potency of elicited humoral responses in mice (138). 
Notably, Fab-mediated effects that resulted in greater presenta-
tion of particular epitopes in the Ab-bound immune complex 
were determined to be at least partially responsible for the 
increased neutralization potency of the elicited antibody response 
(139–141). Additional parameters to be investigated in the use of 
immune complexes to stimulate endogenous antiviral immunity 
include antigen format (soluble vs. virus vs. infected cell), Ab 
format (neutralization capacity, isotype, Fc variants), ideal ratios 
of Ab:Ag to form complexes, and routes of administration (136).
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Combatting Viral-Mediated Suppression of the 
Antiviral Immune Response during Acute HIV 
Infection
Acute HIV infection is characterized by early suppression of 
antiviral immune responses to support viral growth and spread. 
Mechanisms for this antiviral-specific immunosuppression include 
increased activation of the NLRX1 inflammasome (129, 142),  
which negatively regulates interferon-stimulated antiviral genes, 
and increased secretion of TGF-beta (129) that inhibits adaptive 
immune responses. In addition, viral interactions can induce 
early activation of regulatory T-cells (143, 144), and increase 
the expression of inhibitory T-cell markers PD-1 and CTLA-4  
(145, 146). The effect of these immunosuppressive mechanisms on 
Ab-mediated effector function remains to be determined (124), 
but likely decreases the efficiency with which Ab-mediated stimu-
lation of autologous immune responses arise. Combination with 
immunostimulatory drugs and antibodies targeting these specific 
mechanisms of immunosuppression may thereby increase the 
development of autologous antiviral immune responses, but may 
be a double-edged sword as there is a concomitantly increased 
risk of enhancing the development of anti-bNAb responses or the 
pool of CD4+ T-cells available for infection. In vivo studies of 
such approaches will be especially critical to determine the utility 
and/or feasibility of this approach.

Identifying Abs Targeting “Non-Survivor”  
Epitopes: Limiting Viral Evolution
Finally, autologous Ab responses may have antiviral effects by 
limiting the space for viral evolution through the targeting of 
“non-survivor” epitopes, regions in which resistance mutations 
incur survival costs or complete lethality [reviewed in Ref. (43)]. 
These epitopes can be distinct from epitopes recognized by bNAbs, 
against which resistance mutations commonly develop and are 
often contemporaneous with the presence of the bNAb in individu-
als from which they are isolated. Thus neutralizing epitopes identi-
fied thus far are largely “survivor” epitopes and a recent review has 
raised the concern of “survivor bias” in present studies of protective 
humoral responses (43). Potential non-survivor epitopes include 
functionally critical regions targeted by non-neutralizing epitopes 
that become exposed upon conformational changes including 
CD4-inducible epitopes (147) and gp41 epitopes like the fusion 
peptide (46, 56): passive transfer of nnAbs targeting these regions 
successfully decreased the number of transmitted/founder viruses 
from high-dose SHIV challenge in macaques (46).

Clearing Acutely infected Cells
Acutely infected cells must be cleared early to prevent the estab-
lishment of reservoirs. Toward this goal, Abs can engage innate 
effector cells through the Fc portion to stimulate Ab-dependent 
cellular cytotoxicity (ADCC), Ab-dependent cellular phagocy-
tosis (ADCP), or complement-dependent cytotoxicity (CDC). 
To further improve Abs’ capacity for cell-clearance, bNAbs may 
be engineered for enhanced Fc-mediated effector functions 
[described previously in Ref. (28, 72)] or modified through the 
conjugation of toxic payloads [reviewed in Ref. (148)].

Enhancing Ab Effector Function
Engineering strategies to augment Fc-mediated effector functions 
of HIV Abs were described in detail previously (28, 72), includ-
ing IgG subclass switching and protein/glycoengineering to bias 
Fc receptor/complement component binding profiles. Multiple 
Fc-engineered mAbs have now entered and/or demonstrated 
safety and efficacy in various phases of clinical trials as well 
[reviewed in Ref. (149)]. The results of these studies will inform 
the capacity of in vitro and animal models of Fc-engineered Ab 
function to predict effector function in humans. They may fur-
ther help to model the relationships between changes in Ab-Ag 
binding affinity, Fc-Fc receptor binding affinities, and clinically 
significant differences in effector functions in humans as has 
been described in animal models (150–152), and to determine 
whether there is an optimal Fc receptor binding affinity profile 
to elicit particular effector functions.

Immunotoxins
In acute infection, potent, transient cytotoxicity may be sufficient 
to inhibit reservoir establishment. Thus, conjugation of Abs with 
more toxic payloads such as bacterial exotoxins may be tolerable 
as a short-term solution to ensure rapid and complete cytotoxicity 
in place of or in addition to Fc-mediated effector functions to 
treat acute infection. In contrast, Ab-based immunotherapies that 
are more amenable to long-term use with more durable effects 
will be discussed in Section “Enhancing Therapeutic Potential for 
Chronic Infection” to treat chronic infection. In addition, viral 
Env has been suggested to be more highly expressed during early 
infection (153), making viral Env-targeting Abs potentially more 
useful as targeting agents during this period.

In one study, HIV-specific recombinant immunotoxin (RIT) 
employing Pseudomonas exotoxin A, 3B3-PE38, in combination 
with ART significantly decreased the number of HIV RNA-
producing cells compared to ART alone in BLT humanized 
mouse models of HIV infection (154), although a potential for 
toxin immunogenicity and viral resistance were cited as limita-
tions to chronic use of the immunotoxin. In a recent study testing 
a panel of HIV-specific mAbs as RITs, epitope specificity was 
found to correlate most with cytotoxicity against H9/NL4-2 cells 
(HIV Env expressing cell line), as compared to binding/neutrali-
zation potency (155). The most effective RIT employed mAbs 
targeting a non-neutralizing epitope in the gp41 loop region, 
which lies close to the plasma membrane and may thus allow the 
toxin to enter the cell more effectively (155, 156). Combination 
with soluble CD4 (sCD4) further increased the cytotoxicity of 
gp41 loop-targeting RITs, likely due to increased exposure of 
the gp41 epitope after sCD4 binding induced conformational 
changes in Env and increased internalization of Env-bound RITs 
in the presence of sCD4 (155, 157).

In vivo studies of another gp41-specific RIT employing a Ricin 
A chain (RAC) toxin, 7B2-RAC, also demonstrated efficacy in 
SHIV-infected macaques prior to the development of antidrug 
Abs after 2–3  weeks due to RIT immunogenicity (158). In the 
same study, to combat this observed immunogenicity, the authors 
PEGylated RITs prior to use in mouse models of HIV, which 
resulted in lower antidrug Ab levels in a subset of mice (158). 
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However, additional methods to decrease RIT immunogenicity 
[reviewed in Ref. (159)] may be required. In addition, cytotoxic 
payloads with decreased immunogenicity may be used instead 
of protein toxins to make antibody-drug conjugates (ADCs).  
In the SHIV macaque study of 7B2-RAC, ADCs employing 
existing small molecule cytotoxic drugs were also tested but were 
less efficacious than the RIT, likely because their drug toxicities 
were 1-log less potent than the RAC toxin (158). Thus, ADCs 
may become more competitive as more potent cytotoxic small 
molecule drugs are developed to rival recombinant toxins.

Preventing Cell–Cell Transmission
In addition to infection by free HIV, cells may become infected 
by horizontal transmission from other infected cells [reviewed 
in Ref. (160)]. The frequency with which cell–cell transmission 
occurs in  vivo is unknown, but infection by cell-associated 
virus has been demonstrated in Macaque models of infection 
by SHIV-infected splenocytes (161), and suggested by studies of 
mother-to-child transmission of HIV during pregnancy, labor, 
and delivery [reviewed in Ref. (162)] and by spatial segregation 
of viral sequences (163). In addition, cell–cell transmission of 
virus was found to be more efficient than infection by free virus 
in vitro (164) and could lead to multiple infections of a single 
cell (165). A recent study found that different bNAbs exhibited 
Ab- and viral strain-dependent capacities to inhibit cell–cell 
transmission: for non-CD4bs-epitope targeting Abs, mAbs 
with increased potency of free virus neutralization exhibited 
greater losses in neutralization activity of cell–cell transmis-
sion, suggesting that optimal binding characteristics for free 
virus neutralization differ from those for cell–cell transmission 
neutralization (166). In another recent macaque study, bNAb 
PGT121 administered at protective concentrations against cell-
free virus were only partially efficacious (3/6 macaques) at pro-
tecting from SHIV-infected splenocyte challenge (161). Studies 
to elucidate the mechanisms by which cell–cell transmission 
occurs and conformational differences in Env structure during 
transmission (167) would be beneficial to defining a strategy to 
improve this type of neutralization.

eNHANCiNg THeRAPeUTiC POTeNTiAL 
FOR CHRONiC iNFeCTiON

Current therapy for chronic infection aims to suppress viremia 
to prevent symptoms from virus-stimulated immune activation 
and to prevent the growth/spread of viral reservoirs to preserve 
CD4+ T-cells. Today, ART largely accomplishes these goals to 
maintain low viral loads by blocking viral replication, but its use 
is limited by long-term end-organ drug toxicities, a strict require-
ment for treatment regimen adherence, and the development of 
viral resistance (168). In addition, persistent low-level viremia 
can remain even under ART treatment (169–171), potentially 
from cells infected prior to therapy initiation or in tissues with 
poor drug penetration (172) or residual virus replication in 
latently infected cells (169, 173, 174). Thus, therapeutic alterna-
tives for chronic HIV infection that may lessen the burden or 
address limitations of ART are desired.

Encouraging results for the utility of bNAbs as treatment for 
chronic infection [reviewed in Ref. (26, 168)] from recent human 
clinical trials include effective suppression of circulating free 
virus in individuals harboring bNAb-sensitive strains (15, 17), 
delayed viral rebound after ART treatment interruption (14, 19) 
suggesting reduction of cell-associated virus or viral reservoir 
size (32), elicitation of host immune responses (19), and sup-
pression of HIV replication in reservoir cells (175). Most of these 
results were found in a subset of treated individuals, dependent 
upon the preexisting resistance of circulating/reservoir strains, 
and in all cases viremia rapidly rebounded upon bNAb decay or 
cessation. Thus, strategies to combat both preexisting and de novo 
development of viral resistance remain a target of Ab therapy  
for chronic infection.

Combination with ARTs
Given the relative success of existing ART in treating chronic HIV 
infection, the comparison between bNAb therapy vs. ART or the 
benefit of adding bNAb therapy to ART has garnered interest. 
The potential for bNAbs to enhance the effects of ART lies in the 
ability to address residual sources of viral replication and further 
limit the development of viral resistance. One study found that 
the combination of bNAbs with ART was no better than treatment 
with ART alone in macaque models of SHIV infection (126), 
likely due to the already low level of viral replication and in some 
cases undetectable viremia of subjects undergoing ART alone in 
the observed period. On the other hand, ART significantly limits, 
but may not completely prevent, viral evolution of both circulat-
ing and tissue reservoir populations (176, 177). Thus bNAbs may 
be especially useful in combination with ART, which removes 
the major limitation of evolving resistance. In addition, the tissue 
distribution of ART and bNAbs or bNAb-based therapies may 
complement each other, with bNAbs “cleaning up” after persistent 
viral replication from virus-infected cells in tissue compartments 
receiving subtherapeutic levels of ART, such as lymph node 
germinal centers which may be more readily accessible to Ab- or 
Ab-based bispecific molecules interacting with APCs or T-cells 
(168). On the other hand, ART-mediated suppression of viral rep-
lication decreases the expression of Env epitopes on the surface 
of infected cells, and may thereby require more potent bNAbs or 
Abs targeting non-Env markers of infection.

Targeting viral Reservoirs: Accessing 
Tissues and identifying Cell Targets
Distinguishing which tissues and cell types can support viral 
reactivation and/or contribute to AIDS progression is critical to 
defining the extent of viral eradication desired/needed and the 
development of strategies with which to target cellular reservoirs. 
For viral remission, accepting persistent viral latency in some 
reservoirs with low reactivation potential and/or high costs of 
cellular/tissue damage may be acceptable. Multiple studies have 
suggested that decreasing the size of the viral reservoir delays viral 
rebound after ART is stopped (178–180), with one modeling study 
suggesting that a four-log reduction of the simulated 3 × 105 mem-
ber reservoir size comparable to observed reservoirs of 105–107 
(181) could prevent viral rebound after ART altogether (182).
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Tissue Reservoirs: Distribution and Accessibility
Viral reservoirs may establish in multiple tissue sites (183) and 
cell types (184), making sufficient access to and efficacy in reser-
voir tissue sites and identification of target cells key components 
of combatting latent HIV infection. The primary site for viral 
replication occurs in central lymphoid tissues (18, 19), with 
lymph nodes, spleen, and GI tract lymphoid tissue harboring 
the largest numbers of HIV-infected cells (183). Unfortunately, 
these secondary lymphoid organs can act as pharmacologic 
sanctuaries limiting ART concentrations and viral suppres-
sion: lower concentrations of ART in lymph nodes (vs. blood) 
have been associated with persistent viral replication within 
lymph nodes (185). However, viral RNA/DNA has been found 
in nearly all tissues, including immune-privileged sites such as 
the central nervous system (CNS), testes, and placenta (183). 
Mixed evidence for compartmentalization, or differences in viral 
populations among different tissues and in circulation, exists  
(183) and may indicate a need for combination therapy with addi-
tional Abs, ART, or latency reversing agents (LRAs) with wider 
tissue penetration or more tissue-specific administration/target-
ing, such as liposomal delivery of drugs to the CNS [reviewed in 
Ref. (186)].

Reservoir Cell Types: Surface Markers of Infection
Within individual tissues, CD4+ T-cells comprise the majority 
of cell types harboring latent virus but viral DNA has been found 
in non-CD4+ T-cells [reviewed in Ref. (187)], including CD4−/
CD8− T-cells (188), macrophages [reviewed in Ref. (189)], 
monocytes, tissue macrophages (190), and follicular dendritic 
cells (191, 192). Identifying reservoir cells can be challenging due 
to their relative quiescence and transient expression of low levels 
of viral antigens. Expression of HIV Env may additionally be 
different in latent cells as compared to cells with active viral rep-
lication. Given the instability of trimeric Env, non-neutralizing 
epitopes accessible on monomeric gp140 or gp41 stumps have 
been suggested to be displayed on the surface of infected cells 
over time (193). Thus, epitope targets of therapeutic HIV mAbs 
for chronic infection may vary significantly from those for the 
acute postexposure setting, reflective of the differing goals of 
targeting latent cells vs. active virus.

One strategy to combat this challenge is to identify non- 
viral surface markers that are expressed, or preferably upregu-
lated, on infected cells. In an extreme example, CD52 expression 
on a wide breadth of immune cells capable of serving as reservoirs 
during HIV infection—nearly all T-cells, B-cells, and plasmacy-
toid dendritic cells—may be targeted by anti-CD52 Abs to deplete 
reservoir cells (194, 195), but uninfected immune cells may also 
be affected. Instead, Abs recognizing markers suggested to be 
upregulated by infection (196) may preferentially target reservoir 
cells and ameliorate some of the side effects expected from more 
general immune depletion strategies. In addition, these Abs may 
be used to guide the delivery of more toxic payloads in Ab-based 
therapies such as immunotoxins, bispecific T-cell engagers, or 
CARs in cellular therapy.

In another approach, LRAs may be used to re-activate cells 
and increase expression of viral antigens. However, the reacti-
vation of virus increases the production of viral particles and 

risk of increasing cellular infection rates, and therefore must be 
balanced with potent elimination therapy, including bNAbs, in 
“shock and kill” strategies to quickly and efficiently eliminate 
reactivated cells. Coadministration of bNAbs with three viral 
inducers in humanized mice reduced the proportion of mice 
with viral rebound after Ab levels decayed, whereas Abs alone or 
combinations of bNAbs with a single inducer failed to affect viral 
rebound rates (132). Thus, strategies to optimize the combina-
tions of Abs and inducers (25, 197) or to increase the potency 
or long-term effects (e.g., autologous immune responses) of Abs  
as elimination therapy may be necessary to maintain viral sup-
pression after the decay of therapeutic Ab.

Long-term Clearance of infected 
Reservoir Cells: Cellular Therapy
Natural Abs rely upon Fc-mediated effector function to clear 
infected cells. However, Ab-mediated effector functions may be 
less active or unavailable in infected tissue reservoirs with immu-
nosuppressed or immune-privileged microenvironments. Thus,  
an alternative strategy to increase the potency with which Abs 
may destroy infected cells focuses upon addressing the limita-
tions of T-cell-mediated responses. Effective cytotoxic T-cell 
responses have been associated with viral control in studies of 
relatively rare long-term non-progressors (198, 199) and HIV-
exposed seronegative individuals (200). Similarly, persistent 
viral suppression after Ab therapy in a subset of SHIV-infected 
macaques (3 out of 18) was associated with improved host virus-
specific cytotoxic T-lymphocyte (CTL) responses (13). Thus, 
anti-HIV Abs may be used to augment or complement cellular 
immune responses for long-term term viral control.

Engineering for Enhanced Cytotoxic  
Responses: CAR Cells
Rather than relying upon the natural development of host CTL 
responses, an alternative strategy employs HIV-specific Abs to 
re-direct T-cells toward HIV-infected cells. Promising bispecific 
T-cell engaging molecules (201, 202) and CAR T-cells (203, 204) 
have been previously reviewed (28) and are increasingly viable 
given the recent advent of the FDA’s first recommendation for 
clinical approval of a CAR T-cell therapy (Novartis CTL019). 
Strategies with which to enhance the cytotoxic activity of bispe-
cific T-cell engaging molecules and HIV-specific CAR T-cell 
approaches were described previously (28). This review thus 
focuses upon strategies with which to improve the clinical safety 
and efficacy of CAR therapies for HIV infection.

One concern is that HIV-binding CARs may render T-cells 
more susceptible to infection, especially CD4ζ-based CARs 
(205). Thus, strategies to protect anti-HIV CAR-modified cells 
include the cotransduction/expression of fusion inhibitors 
(206, 207), and knock-out/knock-down of CCR5 expression 
(208–211). A second concern is that the necessary expansion 
of engineered T-cells can lead to exhaustion and loss of activity 
(205), compounded by the fact that T-cells often already express 
inhibitory markers associated with exhaustion during chronic 
HIV infection (145, 146). To combat this predisposition for 
T-cell exhaustion, stem/progenitor cells may be modified with 
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CARs instead with the added benefits of the generation of more 
durable and potentially diversified cell types bearing the CAR, 
as well as the built-in thymic immune tolerance checkpoints 
through which T-cells developing from stem/progenitor cells 
must proceed (205). Hematopoietic stem/progenitor cells 
modified with a CD4ζ-CAR in humanized mouse models of 
HIV infection successfully differentiated and maintained CAR 
expression in multiple cell types, including T-cells and NK-cells, 
and reduced viral loads in treated animals (204).

More general concerns with the clinical use of cellular 
therapies as a class have been reviewed (212), and include the 
potential for cytokine storm from mass T-cell activation and 
cytotoxicity (213, 214), cellular transformation from genomic 
integration of viral vectors due to insertional mutagenesis (215), 
and autoreactivity (216). Strategies to mitigate these risks employ 
synthetic biology tools [reviewed in Ref. (217)] such as inducible 
suicide or “switch” strategies to induce apoptosis of CAR T-cells 
(218, 219), feedback-based “pause” switches (220), and prefer-
ential homing/activation based on “logic gate” requirements for 
engagement of multiple antigens (221–225).

Complementing Autologous T-Cell Responses: 
Access to T-Cell Sanctuaries
Cytotoxic T-lymphocyte trafficking patterns may limit their 
ability to access all viral reservoir sites (226). In one macaque 
study of SIV infection, the viral reservoir population of elite 
controllers was found to differ from that of progressors: elite 
controller macaques largely harbored virus in follicular helper 
T-cells (TFH) whereas progressor monkeys harbored virus 
across a wider breadth of T-cell subtypes (226), suggesting 
that protective CTL responses may not be able to access TFH 
reservoir cells. Thus the ability of bNAbs (or other anti-HIV 
Abs) to access and clear reservoir cells from CTL sanctuaries 
(such as TFHs in B-cell follicles) is of particular interest (25).

Potential for a True “Cure”: viral 
eradication vs. Reservoir eradication
A true HIV “cure” would entail the complete eradication of virus 
from an infected individual, including all latent reservoir cells. 
By this definition, an extremely potent form of “shock-and-kill” 
strategies would likely be necessary to expose and eliminate all 
reservoir cells using HIV mAbs. In addition, the tangled link 
between viral eradication and tissue reservoir cell eradication 
poses a potential cost to these types of immunotherapy, espe-
cially in cases such as CNS reservoirs, where cells have limited 
regeneration capacity but make vital functional contributions to 
quality of life (186). Thus, alternative gene-editing approaches to 
specifically excise integrated viral DNA from infected cells (227) 
may be needed in combination with mAb-based approaches to 
achieve such a “cure.”

In an alternative definition, a “cure” may be functionally 
described as undetectable levels of virus in the absence of addi-
tional therapy. Such a “functional cure” may be more feasible by the 
Ab-based strategies described above, with particular emphasis on 
the life-long delivery of immunotherapy (gene or cellular therapy) 

or the stimulation of sufficiently broad and potent autologous 
immune responses for life-long immune surveillance.

CONCLUSiON

Preclinical studies of bNAbs to prevent and treat SHIV infection in 
macaques and Phase I human clinical trials demonstrating reduc-
tion of viral load and even reservoir size support the clinical utility 
and potential of bNAbs for prevention, postexposure prophylaxis, 
and therapy of acute and chronic infection. Observed and potential 
limitations of bNAbs noted thus far in these recent studies include 
the selection of resistant viral populations, immunogenicity 
resulting in the development of antidrug (Ab) responses, and the 
potentially toxic elimination of reservoir cells in regeneration-
limited tissues. Opportunities to improve the utility of HIV Abs 
address these challenges and build upon each other as the timing/
stage of infection progresses. Before exposure, bNAbs’ ability to 
prevent infection by neutralization may be improved by increasing 
serum half-life to necessitate less frequent administration, deliver-
ing genes for durable in vivo expression, and targeting bNAbs to 
sites of exposure. After exposure and/or in the setting of acute 
infection, bNAb use to prevent/reduce viral reservoir establish-
ment and spread may be enhanced by increasing the potency with 
which autologous adaptive immune responses are stimulated, 
clearing acutely infected cells, and preventing cell–cell transmis-
sion of virus. In the setting of chronic infection, bNAbs may better 
mediate viral remission in combination with ARTs and/or LRAs, 
by targeting additional markers of tissue reservoirs or infected cell 
types, or by serving as targeting moieties in engineered cell therapy. 
Finally, various combinations of the described bNAb applications 
may play a role in the development of a true “cure” for HIV to 
eradicate HIV entirely, although the risk of eliminating certain 
reservoir tissue cells may encourage the use of alternative strategies 
to eliminate viral DNA from latent cells without eradicating the 
cells. In conclusion, bNAbs are potent and promising agents for 
HIV prevention and treatment at various stages of infection. Their 
sole use as therapy faces challenges of viral evasion, immunogenic-
ity, and reservoir latency, which can be combatted by employing 
various, often complementary strategies in combination with 
each other and/or existing ART regimens. While the clinical use 
of HIV Abs has never been closer, remaining studies to precisely 
define, model, and understand the complex roles and dynamics of 
HIV Abs and viral evolution in the context of the human immune 
system and anatomical compartmentalization will be critical to 
optimizing their clinical safety and efficacy.
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