
sensors

Article

Multi-Scale Frequency Bands Ensemble Learning for
EEG-Based Emotion Recognition

Fangyao Shen 1, Yong Peng 1,2 , Wanzeng Kong 1,3 and Guojun Dai 1,3,*

����������
�������

Citation: Shen, F.; Peng, Y.; Kong, W.;

Dai, G. Multi-Scale Frequency Bands

Ensemble Learning for EEG-Based

Emotion Recognition. Sensors 2021,

21, 1262. https://doi.org/10.3390/

s21041262

Academic Editor: Raffaele Gravina

Received: 26 January 2021

Accepted: 6 February 2021

Published: 10 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China;
shenfangyao@hdu.edu.cn (F.S.); yongpeng@hdu.edu.cn (Y.P.); kongwanzeng@hdu.edu.cn (W.K.)

2 MoE Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment,
Anhui Polytechnic University, Wuhu 241000, China

3 Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
* Correspondence: daigj@hdu.edu.cn

Abstract: Emotion recognition has a wide range of potential applications in the real world. Among
the emotion recognition data sources, electroencephalography (EEG) signals can record the neural
activities across the human brain, providing us a reliable way to recognize the emotional states. Most
of existing EEG-based emotion recognition studies directly concatenated features extracted from all
EEG frequency bands for emotion classification. This way assumes that all frequency bands share the
same importance by default; however, it cannot always obtain the optimal performance. In this paper,
we present a novel multi-scale frequency bands ensemble learning (MSFBEL) method to perform
emotion recognition from EEG signals. Concretely, we first re-organize all frequency bands into
several local scales and one global scale. Then we train a base classifier on each scale. Finally we fuse
the results of all scales by designing an adaptive weight learning method which automatically assigns
larger weights to more important scales to further improve the performance. The proposed method is
validated on two public data sets. For the “SEED IV” data set, MSFBEL achieves average accuracies
of 82.75%, 87.87%, and 78.27% on the three sessions under the within-session experimental paradigm.
For the “DEAP” data set, it obtains average accuracy of 74.22% for four-category classification
under 5-fold cross validation. The experimental results demonstrate that the scale of frequency
bands influences the emotion recognition rate, while the global scale that directly concatenating
all frequency bands cannot always guarantee to obtain the best emotion recognition performance.
Different scales provide complementary information to each other, and the proposed adaptive weight
learning method can effectively fuse them to further enhance the performance.

Keywords: electroencephalography; emotion recognition; multi-scale; ensemble learning; frequency
bands

1. Introduction

Developing automatic and accurate emotion recognition technologies has gained more
and more attention due to its wide range of potential applications. In engineering, it facili-
tates the human–machine interaction more friendly, where machines might understand
emotions and interact with us according to our emotions [1,2]. In the medical research,
it is beneficial for diagnosing and treating various mental diseases, such as depression
and autism spectrum disorders [3,4]. In the education field, it helps to track and improve
the learning efficiency of students [5,6]. EEG signals record the neural activities of hu-
man cerebral cortex and reflect emotion states, providing an objective and reliable way to
perform emotion recognition [7–9]. Besides, the advantages of EEG such as noninvasive,
fast, and inexpensive in data acquisition make it become a preferred media in emotion
recognition [10]. A popular video evoked EEG-based emotion recognition system is shown
in Figure 1, which generally consists of the following stages. First, emotional video clips
should be collected and subjects should be recruited before the experiments, and then EEG
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signals could be recorded from subjects who generate corresponding emotion states during
watching emotional clips. Second, the raw EEG signals will be preprocessed including re-
moving noise and filtering. Third, related features will be extracted and fed into a classifier
to perform emotion classification. In this paper, we mainly focus on the last stage.

Stimuli
EEG

recording

Delta
Theta
Alpha
Beta
Gamma

Extract feature
in frequency bands

Happy Neutral FearSad

Classifier

Stage 1: Data Collection

Stage 2: PreprocessingStage 3: Feature extraction and classification

Figure 1. The flow chart of EEG-based emotion recognition system.

In the past decade, many feature extraction methods and classifiers were proposed for
EEG-based emotion recognition [10]. Basically, EEG features can be divided into two types,
the time-domain features and the frequency-domain features. The time-domain features
aim to extract the temporal information from EEG, e.g., the fractal dimension feature [11],
the Hjorth feature [12] and the higher order crossing feature [13]. For the frequency-
domain features, researchers usually first filter EEG signals into several frequency bands,
and then extract EEG features from each frequency band. The frequency interval of interest
is 1–50 Hz which is usually partitioned into five frequency bands, Delta (1–4 Hz), Theta
(4–8 Hz), Alpha (8–14 Hz), Beta (14–31 Hz), and Gamma (31–50 Hz). The frequency-domain
features mainly include the differential entropy (DE) feature [14], the power spectral density
(PSD) feature [15], the differential asymmetry (DASM) feature [11], the rational asymmetry
(RASM) feature [16] and so on. Lu et al. made a detailed comparison among these features,
and found that DE was the most stable and accurate feature for emotion recognition than the
others [14,17]. Therefore, the DE feature is adopted in this paper. On the classifiers, many
machine learning methods were proposed for EEG-based emotion recognition [18,19].
Peng et al. designed a discriminative manifold extreme learning machine (DMELM)
method for emotion recognition, and found that Beta and Gamma frequency bands were
more relevant to emotional states transition than the others [20]. Li et al. proposed a
hierarchical convolutional neural network (HCNN) to classify emotion states, and their
experimental results also indicated that the high frequency bands (Beta and Gamma)
performed better than the low frequency bands [21]. Moreover, Zheng et al. introduced
deep belief networks (DBNs) to construct EEG-based emotion recognition models, and their
results demonstrated that combining all frequency bands together performed better than
individual bands [22]. Yang et al. drew similar conclusion by designing a Continuous
Convolutional Neural Network [23]. The potential reason was that the multiple bands
could provide complementary information to each other.

Although the methods mentioned above have achieved improvement in EEG-based
emotion recognition, there still exists a problem. The way of frequency bands combination
of them is directly concatenating all frequency bands together, which termed as the global
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scale in this paper and depicted in Figure 2a. However, such way cannot always achieve the
best results since it essentially assumes that all frequency bands share the same importance.
In this paper, we make extension on the way of combining frequency bands, which is
termed as local scales and shown in Figure 2b. Here, by taking the face recognition task as
an example, we illustrate the rationality of such multi-scale setting. Human faces manifest
distinct characteristics and structures when observe in different scales, and different scales
provide complementary information to each other [24]. Similarly, we assume that different
scales of frequency bands hold different characteristics of emotion, as well as complement to
each other. In each scale, we combine adjacent frequency bands into patches. For example,
when the scale is 2, patches are formed by combining 2 adjacent frequency bands, and there
are 4 patches in total. It should be noted that we only combine adjacent frequency bands
into a patch because the frequency bands changing from Delta to Gamma reflects the
conscious mind going from weak to active, which is a continuous process [10]. Therefore,
it is reasonable to combine adjacent frequency bands.
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Figure 2. Different scales of frequency bands: (a) global scale, (b) local scales.

For each scale, we train a base classifier to obtain the single-scale classification result.
After that, the critical step is how to fuse the results of all scales to enhance the overall
performance. It essentially belongs to an ensemble learning task [25–27], which combines
the results of a set of base classifiers to perform better. In this paper, we design an adaptive
weight learning method to combine all scales, which considers the classifier on each scale
as a base classifier and learns the weight of each scale to fuse multi-scale results.

From the above, we propose a novel multi-scale frequency bands ensemble learning
(MSFBEL) for EEG-based emotion recognition. Generally, the main contributions of this
work are summarized as follows.

• We extended the way of combining different frequency bands into four local scales
and one global scale, and then performed emotion recognition on every scale with a
single-scale classifier.

• We proposed an effective adaptive weight learning method to ensemble multi-scale
results, which can adaptively learn the respective weights of different scales according
to the maximal margin criterion, whose objective can be formulated as a quadratic
programming problem with the simplex constraint.

• We conducted extensive experiments on benchmark emotional EEG data sets, and the
results demonstrated that the global scale that directly concatenating all frequency
bands cannot always guarantee to obtain the best emotion recognition performance.
Different scales provide complementary information to each other, and the proposed
method can effectively combine these information to further improve the performance.
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The rest of this paper is organized as follows. Section 2 presents the proposed method
in detail. Section 3 displays the emotional EEG data sets, experiments, and results of the
proposed method. Section 4 concludes the whole paper and presents the future work.

In this paper, vectors are written as boldface lowercase letters, and matrices are written
as boldface uppercase letters. The trace of matrix A is represented by Tr(A). For a vector
a, the `2-norm of it is denoted by ‖a‖2 = (aTa)

1
2 , where aT is the transpose of a. a ≥ 0

represents that every element of vector a is larger than or equal to zero. 1 and I represent a
column vector that all elements are “1” and an identity matrix, respectively. I denotes an
indicator function which takes the value of 1 when the condition is true, and 0 otherwise.

2. Method

In this section, we present the proposed method MSFBEL (Figure 3) in detail, which
mainly contains two stages. First, we re-arrange every EEG sample into different scales
as shown in Figure 2, and then perform emotion classification on each scale by a single-
scale classifier, called single-scale frequency band ensemble learning (SSFBEL). Second,
the results of all scales are fused by the adaptive weight learning method to further improve
the performance.
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2.1. Single-Scale Frequency Band Ensemble Learning

In this paper, we use DE feature to model emotion information from EEG signals.
Without loss of generality, supposing that DE features are extracted from s frequency bands,
we divide it into s scales. In each scale j (j = 1, 2, · · · , s), we combine j adjacent frequency
bands into patches and then obtain pj = s− j + 1 patches of this scale. Figure 2 displays
an example when s = 5, which represents that DE features are extracted from 5 frequency
bands (Delta, Theta, Alpha, Beta, and Gamma).

SSFBEL is proposed to perform emotion classification on each scale of frequency
bands, whose architecture is displayed in Figure 4, which takes an example with s = 5 and
j = 2. Below we give some explanations of it.

• First, given an unlabeled DE feature-based sample y ∈ Rd, we divide it into a set of
patches yi ∈ Rdj(i = 1, 2, · · · , pj). Here d is the feature dimension of EEG samples.
For example, if we use the DE-based EEG feature representation, d is equal to the
product of the numbers of channels and frequency bands. Similarly, dj denotes the
feature dimension of DE patches under scale j, that is, dj equals the product of the
numbers of channels and frequency bands in a patch.

• Second, these patches are, respectively fed into base classifiers and then the corre-
sponding predicted labels {z1, z2, · · · , zpj} can be obtained.

• Finally, the predicted labels of all patches are combined by simple majority voting [28]
to generate the final label rj for the sample y under scale j.
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Figure 4. The architecture of SSFBEL.

In SSFBEL, the collaborative representation based classification (CRC) [29] is used as
the base classifier. CRC usually represents a test sample with an over-complete dictionary
formed by training samples, whose representation coefficient vector is regularized with an
`2-norm to improve its computational efficiency. Once the representation coefficient vector
is obtained, the test sample can be categorized into the class which yields the minimum
reconstruction error. In current study, for each patch, we construct the corresponding
dictionary according to the principle that the combination and order of frequency bands of
them are consistent.

Suppose that we have a patch yi and the corresponding dictionary formed by training
samples Xi = [Xi1, Xi2, · · · , Xic] ∈ Rdj×n, where c, dj, and n are the number of classes,
the feature dimension of DE patches under scale j, and the number of training samples,
respectively. Xik ∈ Rdj×nk (k = 1, 2, · · · , c) is the collection of samples from the k-th class
in which each column is a sample, where nk denotes the number of samples in the k-th
class. For the patch yi, its representation coefficient αi ∈ Rn can be obtained by solving the
following objective

min
αi
‖Xiαi − yi‖2

2 + λ‖αi‖2
2, (1)
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where λ is a regularization parameter. Obviously, the optimal representation coefficient to
(1) is

α∗i = (XT
i Xi + λI)−1XT

i yi. (2)

Let α∗ik ∈ Rnk represent the vector whose only nonzero entries are the entries of α∗i
associated with class k. The sample yi can be reconstructed by the training samples of class
k as yik = Xikα∗ik. The label of yi is determined as the class which yields the minimum
reconstruction error

zi = arg min
k
‖Xikα∗ik − yi‖2. (3)

In our experiments, to further improve the classification accuracy, we divided the above
reconstruction error by ‖α∗ik‖2, because it can bring some discrimination information for
classification [29]. Finally, the single-scale result rj is obtained, which combines all patches’

results zi (i = 1, 2, · · · , pj) by using majority voting rj = arg maxk∈[c]{∑
pj
i=1 I(zi = k)}.

2.2. Adaptive Weight Learning

Assuming that different scales of frequency bands might have complementary infor-
mation to each other, we combine the classification results of all scales obtained by SSFBEL
to enhance the emotion recognition performance. The whole architecture of the proposed
MSFBEL is shown in Figure 3.

Obviously, the current task is how to determine the optimal weights for different
scales in the ensemble stage. In this work, we propose an adaptive weight learning
method by maximizing the ensemble margin. Suppose the ensemble weight vector is
w = [w1; w2; · · · ; ws] ∈ Rs, where ∑s

j=1 wj = 1, and we learn it from data. Specifically,
we select m samples from the total n training samples, whose data and labels can be,
respectively represented as Xsub = [x1, x2, · · · , xm] ∈ Rd×m and Osub = [o1, o2, · · · , om] ∈
Rc×m, where xp ∈ Rd (p = 1, 2, · · · , m) represents the p-th DE-based EEG sample, op is the
corresponding ground-truth label. We divide a sample xp into s scales and feed them into
SSFBEL to obtain the classification result of each scale rpj (j = 1, 2, · · · , s). We define the
decision matrix D = [dpj] ∈ Rm×s as

dpj =

{
+1, if op = rpj

−1, if op 6= rpj.
(4)

Then, the ensemble margin of sample xp is defined as

ε(xp) =
s

∑
j=1

wjdpj. (5)

To get the optimal weight vector w, we should make the ensemble margin in (5)
as large as possible. Based on the studies of [30,31], margin maximization can be trans-
formed into a loss minimization problem. To be specific, the ensemble loss function can be
formulated as

loss =
m

∑
p=1

[1− ε(xp)]

=
m

∑
p=1

[1−
s

∑
j=1

wjdpj]

= ‖1m − Dw‖2
2,

(6)

where 1m = [1; 1; · · · ; 1] ∈ Rm is a column vector. Therefore, objective (6) is equivalent
to optimize

min
w≥0,wT1s=1

‖1m − Dw‖2
2, (7)
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where 1s = [1; 1; · · · ; 1] ∈ Rs is a column vector. By denoting M = DT D and b = 2DT1m,
we can rewrite the objective (7) as

min
w≥0,wT1s=1

Tr((1m − Dw)T(1m − Dw))

⇔ min
w≥0,wT1s=1

Tr(1T
m1m − 2wT DT1m + wT DT Dw)

⇔ min
w≥0,wT1s=1

Tr(wT DT Dw− 2wT DT1m)

⇔ min
w≥0,wT1s=1

Tr(wT Mw−wTb).

(8)

Since w is a column vector, objective (8) is equivalent to optimize

min
w≥0,wT1s=1

wT Mw−wTb. (9)

To make the above objective separable, we introduce an auxiliary variable v with
respect to w, then we get

min
w≥0,wT1s=1

vT Mw− vTb. (10)

According to the augmented Lagrangian multiplier (ALM) method [32,33], objective (10)
can be rewritten as

min
w≥0,wT1s=1,v

vT Mw− vTb +
µ

2
‖w− v +

β

µ
‖2

2, (11)

where µ is a quadratic penalty parameter and β ∈ Rs is the Lagrangian multiplier.
Accordingly, an alternative optimization method is applied to solving problem (11).

The details are given in Appendix A. Finally, we get the optimum solution w∗ to problem (11),
based on which we can make prediction on the test sample y as l = arg maxk∈[c]{∑

s
j=1 w∗j I

(rj = k)}. The procedure of MSFBEL framework is outlined in Algorithm 1.

Algorithm 1 The procedure for MSFBEL framework.

Input: Number of scales s, number of classes c, training data X ∈ Rd×n, training data label

O ∈ Rc×n, a subset of training data Xsub ∈ Rd×m, the labels of subset Osub ∈ Rc×m,

testing data y ∈ Rd;

Output: The label of testing data: l.

1: for j = 1 : s do

2: Compute the label of testing data under scale j via Algorithm 2;

3: end for

4: Compute decision matrix D by Equation (4) with Xsub and Osub;

5: Compute M = DT D and b = 2DT1m;

6: Compute the adaptive weight w∗ via Algorithm 3;

7: Compute l = arg maxk∈[c]{∑
s
j=1 w∗j I(rj = k)}.

3. Experiments and Results

In this section, we first describe two emotional EEG data sets used in the experiments,
including their data collection and feature extraction. Then, the experimental settings
are given based on which we perform EEG-based emotion recognition to evaluate the
effectiveness of MSFBEL.
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Algorithm 2 The procedure for SSFBEL framework.

Input: s, c, λ, Xi = [Xi1, Xi2, · · · , Xic] ∈ Rdj×n, yi ∈ Rdj , where i = 1, 2, · · · , pj and

pj = s− j + 1;

Output: The label of testing data under scale j: rj.

1: Compute α∗i by Equation (2);

2: Compute zi by Equation (3);

3: Compute rj = arg maxk∈[c]{∑
pj
i=1 I(zi = k)}.

Algorithm 3 The algorithm to solve problem (11).

Input: M and b;

Output: The weight vector w ∈ Rs.

1: Initialize v, β, µ, and ρ;

2: while not converged do

3: Update v by Equation (A1);

4: Update w by solving problem (A3) via Algorithm 4;

5: Update β = β + µ(w− v);

6: Update µ = ρµ;

7: end while

Algorithm 4 The algorithm to solve problem (A3).

Input: M, v, β, µ and s;

Output: The weight vector w ∈ Rs.

1: Compute g = v− β+MTv
µ ∈ Rs;

2: Compute h = g − 1T
s g
s 1s +

1
s 1s;

3: Use Newton’s method to obtain the root η̄∗ of Equation (A12);

4: The optimal solution w∗j = (hj − η̄∗)+, where j = 1, 2, · · · , s.

3.1. Data Set
3.1.1. SEED IV

The “SEED IV” is a publicly available emotional EEG data set [34]. The EEG sig-
nals were collected from 15 healthy subjects when they watched emotion-eliciting videos.
In the EEG data collection experiment, 24 two-minute video clips were played to each
subject. There are four types of emotional video clips, sadness, fear, happiness, and neu-
tral, and each emotion has 6 video clips. While watching video clips, EEG signals of
subjects were recorded at a 1000 Hz sampling rate by the 62-channel ESI NeuroScan system
(https://compumedicsneuroscan.com/ (accessed on 6 August 2020)). Every subject was
asked to complete the experiment three times on different days, and therefore we obtained
three sessions of EEG signals for each subject.

In our experiments, we used the “EEG_feature_smooth” EEG data recordings down-
loaded from the “SEED IV” web site (http://bcmi.sjtu.edu.cn/home/seed/seed-iv.html
(accessed on 20 December 2019)). Preprocessing and feature extraction of EEG data had
already been conducted, including downsampling all data to 200 Hz, filtering out noise and
artifacts by linear dynamic system (LDS) [35], and extracting DE features from 5 frequency
bands: Delta, Theta, Alpha, Beta, and Gamma, with a four-second time window without

https://compumedicsneuroscan.com/
http://bcmi.sjtu.edu.cn/home/seed/seed-iv.html
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overlapping. The dimensions of DE feature were 62×W1 × 5 (format: # channel × #
samples × # frequency bands), where W1 was the number of samples of one subject in
each trial. We reshaped the 62 points of each of the 5 frequency bands, and then obtained
DE features with the shape of 310×W1. Since the time durations of different video clips
in each session were slightly different, the total sample numbers for each subject in each
session were approximately 830.

3.1.2. DEAP

Another emotional EEG data set used to validate our proposed method is “DEAP” [36].
It is a music video evoked EEG data set. There were 32 subjects invited to watch 40 one-
minute music video clips. At the end of each video, subjects were asked to make a self-
assessment of their level in terms of arousal, valence, liking, and dominance. During the
experiment, the EEG signals were recorded by Biosemi ActiveTwo system (http://www.
biosemi.com (accessed on 6 August 2020) with 32-channel electrode according to the
international 10–20 system placement. The sampling rate is 512 Hz.

In our experiments, we utilized the “Data_preprocessed_matlab” EEG data recordings
downloaded from the “DEAP” web site (http://www.eecs.qmul.ac.uk/mmv/datasets/
deap/index.html (accessed on 20 December 2019)). EEG signals were down-sampled to
128 Hz. EOG artefacts were removed by using a blind source separation technique (http://
www.cs.tut.fi/gomezher/projects/eeg/aar.htm (accessed on 6 August 2020)). A bandpass
frequency filter from 4.0 to 45.0 Hz was applied. Then, we extracted DE features from 4
frequency bands: Theta, Alpha, Beta, and Gamma, with a one-second window size without
overlapping. The dimensions of DE feature were 32×W2 × 4, where W2 was the number
of samples in each trial. We concatenated the 32 values of the 4 frequency bands and
then obtained DE features with the shape of 128×W2. We got 63 samples for each trial in
which the first 3 samples were baseline signals, and the last 60 sample were trial signals.
According to the study of Yang et al. [37] that the baseline signals were useful for emotion
recognition, we further processed the data as they did: calculating the deviation between
every trial sample and the average of 3 baseline samples as the final input. Therefore, we
obtained 60 samples in each trial, and there were totally 2400 samples for each subject.

3.2. Experimental Settings

We evaluated methods on every subject of the two data sets. For the “SEED IV”
data set, we evaluated methods under the within-session experimental paradigm as [34].
Specifically, for every subject in each session, we utilized the last 8 trials as the test data,
which not only contained all emotional states but also guaranteed that each emotional
state has exact 2 trials, and the rest 16 trials as the training data. On the “DEAP” data set,
we split every subject’s data as [36], which chose 5 as a threshold to divide all samples
into four categories according to the different levels of valence and arousal: high valence
and high arousal (HVHA), high valence and low arousal (HVLA), low valence and high
arousal (LVHA), low valence and low arousal (LVLA). Then we performed 5-fold cross
validation on each subject’s data. The recognition accuracy and standard deviation were
used as evaluation metrics. The average accuracy and standard deviation of all subjects
represent the final performance of a method.

We compare MSFBEL with support vector machine (SVM), K Nearest Neighbors
(KNN) and SSFBEL. Linear kernel was used in SVM and the regularization parameter
C was determined by grid search from {10−5, 10−4, · · · , 105}. For KNN, Euclidean dis-
tance measure was used and the number of neighboring samples K was searched from
{10, 20, 30, · · · , 150}. The regularization parameter λ in objective (2) of SSFBEL was fine-
tuned with grid search from {10−5, 10−4, · · · , 10−1}. The parameters µ in objective (11)
of MSFBEL was fine-tuned with grid search from {10−5, 10−4, · · · , 10−1}, β and ρ were
initialized with [1; 1; · · · ; 1] ∈ Rs and 1.1, respectively. To learn the optimal weights corre-
sponding to different scales, we need to get the decision matrix D defined in Equation (4).
Therefore, we divided the training data into two parts; one was used for training and the

http://www.biosemi.com
http://www.biosemi.com
http://www.eecs.qmul.ac.uk/mmv/datasets/deap/index.html
http://www.eecs.qmul.ac.uk/mmv/datasets/deap/index.html
http://www.cs.tut.fi/gomezher/projects/eeg/aar.htm
http://www.cs.tut.fi/gomezher/projects/eeg/aar.htm
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other was used for validation. For the “SEED IV” data set, each part contained 2 trials of
each emotional state. For the “DEAP” data set, each part contained half samples of each
emotional category. Then we calculated the decision matrix D based on the ground truth
labels and the estimated labels of samples in the validation set.

3.3. Experimental Results and Analysis
3.3.1. The Effect of Different Scales

In this section, we compare the performance of global scale and local scales of fre-
quency bands for emotion recognition by SSFBEL. First, we perform classification on
different scales for every subject’ data from the “SEED IV” and “DEAP” data sets, and the
results are shown in Tables 1–4, respectively. The best results are highlighted in boldface.
From these tables, we can observe that not every subject gets the best results on the global
scale (scale = 5 for “SEED IV”, and scale = 4 for “DEAP”). For example, for subject #1 in
Table 1, SSFBEL gets the best accuracy 84.85% when scale = 1, which exceeds the accuracy
of scale = 5 by 1.17%. For subject #6, it obtains the optimal result 79.25% when scale = 2,
which outperforms the result of scale = 5 by 12.58%. We can find similar results from the
other three tables. Second, we calculate the average accuracy of all subjects in each scale of
frequency bands. The average accuracies of each scale on the three sessions of “SEED IV”
data set are shown in Figure 5. From this figure, we can find that the global scale cannot
always achieve the optimal accuracy on every session. For example, in session 1, SSFBEL
achieves the highest average accuracy 81.65% on scale = 1, which is higher than that of
scale = 5 by 1.46%. These results are consistent with our proposed idea that the global scale
of frequency bands which direct concatenating all frequency bands together cannot always
achieve the best performance. That is, sometimes local scales can achieve higher emotion
recognition accuracy than the global scale. Therefore, it is reasonable for us to re-organize
all frequency bands into different scales, which can provide more potential for improving
the performance of emotion recognition.
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Figure 5. The average accuracies of different scales of frequency bands on the three sessions of “SEED
IV” by using SSFBEL.
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Table 1. The accuracies (%) of different scales of frequency bands on session 1 of “SEED IV” by
using SSFBEL.

Subject
Local Scale Global Scale

Scale = 1 Scale = 2 Scale = 3 Scale = 4 Scale = 5

1 84.85 73.43 80.19 76.69 83.68
2 96.04 100 100 90.68 100
3 82.75 72.26 81.82 67.60 82.05
4 100 92.07 89.74 89.74 89.74
5 68.30 73.66 69.00 75.29 79.72
6 65.73 79.25 78.55 72.73 66.67
7 97.20 96.04 69.93 76.92 79.72
8 65.03 79.49 83.22 70.63 77.86
9 93.47 93.47 93.47 93.47 93.47
10 83.45 74.13 63.64 65.27 66.20
11 80.19 69.00 81.82 75.29 76.46
12 79.95 77.62 77.62 74.13 73.66
13 66.67 75.76 80.65 76.92 76.69
14 72.49 84.15 77.39 70.86 70.86
15 88.58 82.28 81.59 85.55 83.92

Average 81.65 81.51 80.57 77.45 80.05

Table 2. The accuracies (%) of different scales of frequency bands on session 2 of “SEED IV” by
using SSFBEL.

Subject
Local Scale Global Scale

Scale = 1 Scale = 2 Scale = 3 Scale = 4 Scale = 5

1 64.06 67.97 76.28 72.13 76.28
2 97.56 91.69 97.56 96.33 88.51
3 91.20 85.82 88.75 91.20 91.20
4 82.89 88.75 84.11 88.75 88.75
5 80.93 82.40 88.51 88.51 88.51
6 88.75 92.18 94.13 85.09 89.49
7 97.31 97.56 92.91 97.56 97.56
8 71.15 78.24 87.04 78.24 80.93
9 88.75 75.79 73.11 73.35 73.11
10 88.75 94.13 92.91 94.13 94.13
11 69.68 82.64 80.68 78.00 80.68
12 77.26 79.95 85.57 71.39 79.95
13 78.97 73.11 72.37 79.22 75.79
14 74.82 73.11 80.68 86.55 82.40
15 100 94.13 91.69 91.69 94.13

Average 83.47 83.83 85.75 84.81 85.43

However, there still exists a problem that the optimal scale of frequency bands varies
in terms of different subjects. For example, in Table 1, some subjects (#1, #3, #4, #7, #9,
#10, #12, and #15) get the best result on scale = 1, and some subjects (#2, #6, #9, and #14)
obtain the optimal result on scale = 2, and so on. Besides, some subjects (#2 and #9)
achieve the best result on several scales at the same time. These problems can be found
in the other three tables. The uncertainty of the optimal scale may be influenced by the
characteristics of the EEG signals, which not only have low signal-to-noise ratio (SNR) but
also exhibit significant differences across subjects [38]. Therefore, it is necessary to fuse
all scales to reduce the impact of these factors. In this paper, MSFBEL is proposed to fuse
different scales, in which the adaptive weight learning can fuse all scales’ results through
automatically assigning larger weights to more important scales to further enhance the
performance. The effectiveness of MSFBEL will be evaluated in Section 3.3.2.
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Table 3. The accuracies (%) of different scales of frequency bands on session 3 of “SEED IV” by
using SSFBEL.

Subject
Local Scale Global Scale

Scale = 1 Scale = 2 Scale = 3 Scale = 4 Scale = 5

1 60.32 78.82 80.16 80.43 69.97
2 89.01 89.01 89.01 89.01 89.01
3 56.57 60.59 61.13 56.57 78.55
4 89.01 80.16 89.01 91.96 89.01
5 64.34 72.12 72.12 85.79 72.12
6 70.24 80.97 88.47 89.01 89.01
7 89.01 94.91 84.45 70.24 84.99
8 63.00 71.58 78.55 75.87 86.33
9 54.96 62.73 62.73 62.73 66.49
10 64.61 64.61 69.17 64.61 74.80
11 67.29 56.57 61.13 61.13 61.13
12 54.96 49.06 49.06 53.62 53.62
13 61.13 64.34 61.13 61.13 61.13
14 79.36 70.24 95.44 89.01 95.44
15 78.55 78.55 78.55 78.55 78.82

Average 69.49 71.62 74.67 73.98 76.79

Table 4. The accuracies of different scales of frequency bands on the “DEAP” by using SSFBEL (%).

Subject Local Scale Global Scale

Scale = 1 Scale = 2 Scale = 3 Scale = 4

1 60.21 77.92 80.42 86.88
2 41.04 50.42 51.67 57.92
3 53.13 60.63 62.50 73.75
4 55.42 60.21 67.29 63.54
5 48.54 58.33 58.54 68.33
6 58.54 67.50 72.71 77.71
7 45.63 60.00 60.83 71.88
8 45.63 65.63 63.54 75.00
9 47.92 60.83 63.75 67.08
10 65.42 78.04 72.92 75.92
11 42.92 56.88 58.33 64.38
12 51.25 64.79 62.71 64.21
13 73.13 74.17 80.17 77.58
14 55.00 63.96 76.04 72.50
15 71.04 79.79 80.42 84.58
16 67.08 82.29 88.75 87.71
17 48.33 65.63 66.67 77.08
18 49.58 69.58 70.63 81.67
19 47.92 57.08 57.50 64.17
20 58.33 69.79 73.54 77.50
21 48.54 60.21 61.25 67.71
22 42.71 54.04 50.21 51.75
23 64.38 78.75 83.75 87.29
24 54.17 59.79 63.54 61.67
25 58.96 66.67 68.75 70.83
26 51.88 64.79 66.25 70.21
27 62.50 63.54 64.17 67.50
28 49.79 73.33 72.92 80.21
29 47.29 62.29 64.17 72.71
30 44.17 62.50 64.38 72.50
31 46.67 62.92 66.88 73.75
32 49.38 56.67 68.54 65.00

Average 53.33 65.28 67.62 72.20



Sensors 2021, 21, 1262 13 of 20

3.3.2. The Performance of MSFBEL

In this part, we compare MSFBEL with SVM, KNN and SSFBEL to show the effec-
tiveness of it. In this experiment, SVM and KNN take global scale frequency bands as
input. As for SSFBEL, we choose the best frequency band scale for every data set as input.
Specifically, according to the average accuracies shown in Tables 1–4, we choose the results
of 1, 3, and 5 for session 1, 2, and 3 of the “SEED IV” data set, and we select the results
of scale = 4 for the “DEAP” data set. MSFBEL method takes all frequency band scales
as input.

For the “SEED IV” data set, emotion recognition accuracies of the four methods in
the three sessions are shown in Table 5. From the experimental results, we observe that
MSFBEL achieves the best average recognition rates of 82.75%, 87.87%, and 78.27% in the
three sessions, respectively. When compared with SVM, MSFBEL respectively achieves
11.53%, 10.27% and 6.51% improvements in the three sessions. As for KNN, MSFBEL
respectively obtains 11.78%, 7.69% and 9.33% improvements than it in the three sessions.
Moreover, MSFBEL exceeds SSFBEL by 1.10%, 2.12%, and 1.57% corresponding to the
three sessions. For the “DEAP” data set, accuracies of the four methods are displayed
in Table 6. From this table, we can find that MSFBEL achieves the average accuracy of
74.23%, which obtains 20.63% and 11.5% improvements in comparison with SVM and
KNN. In addition, the performance of MSFBEL is better than SSFBEL by 2.03% in terms of
average accuracy. Besides, Figure 6 presents the overall performance of the four methods.
We observe that MSFBEL achieves better performance than the other three methods on both
data sets. The underlying reason may be the combination of different scales of frequency
bands by assigning larger weights to important scales by MSFBEL, while the other three
methods only conduct classification on one scale. Therefore, we declare that there are
complementary information among different scales, and the proposed adaptive weight
learning method effectively fuses these information to enhance classification performance.

Table 5. The comparison of different methods on the “SEED IV” (%).

Subject
Session 1 Session 2 Session 3

SVM KNN SSFBEL MSFBEL SVM KNN SSFBEL MSFBEL SVM KNN SSFBEL MSFBEL

1 73.43 65.97 84.85 80.19 76.28 75.06 76.28 76.28 63.27 57.91 69.97 80.16
2 86.01 100 96.04 100 97.56 94.62 97.56 97.56 81.77 70.24 89.01 89.01
3 75.99 75.76 82.75 73.66 75.06 81.91 88.75 91.20 56.57 49.06 78.55 78.55
4 83.22 79.25 100 100 71.15 84.11 84.11 88.75 94.91 89.01 89.01 91.42
5 52.68 59.21 68.30 75.29 82.64 77.26 88.51 85.57 78.02 76.14 72.12 75.87
6 59.44 54.55 65.73 66.67 64.55 80.44 94.13 93.40 69.71 89.01 89.01 89.01
7 52.45 71.33 97.20 97.20 91.69 97.56 92.91 99.27 85.25 80.16 84.99 94.91
8 77.16 77.16 65.03 79.49 66.99 88.02 87.04 87.04 89.54 81.23 86.33 86.33
9 83.22 87.41 93.47 100 73.11 67.24 73.11 74.82 62.73 62.73 66.49 66.49
10 45.22 58.28 83.45 73.66 85.33 91.20 92.91 91.69 68.36 75.07 74.80 64.88
11 70.16 72.49 80.19 79.72 80.93 66.99 80.68 80.68 61.13 49.06 61.13 67.29
12 75.76 71.33 79.95 77.62 57.21 61.37 85.57 83.86 49.06 59.52 53.62 54.96
13 83.68 60.14 66.67 77.62 78.48 62.59 72.37 87.29 61.13 61.13 61.13 61.13
14 64.34 66.90 72.49 72.49 77.75 74.33 80.68 86.55 86.60 54.96 95.44 95.44
15 85.55 64.80 88.58 87.65 85.33 100 91.69 94.13 68.36 78.82 78.82 78.55

Average 71.22 70.97 81.65 82.75 77.60 80.18 85.75 87.87 71.76 68.94 76.69 78.27
Std 12.94 11.58 11.57 10.92 10.07 12.05 7.52 6.83 13.03 13.08 12.02 12.45
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Table 6. The comparison of different methods on the “SEED IV” (%).

Subject SVM KNN SSFBEL MSFBEL Subject SVM KNN SSFBEL MSFBEL

1 59.79 75.83 86.88 87.71 17 56.04 59.79 77.08 75.63
2 43.75 57.50 57.92 59.79 18 55.42 72.29 81.67 82.92
3 52.71 66.04 73.75 75.63 19 61.25 64.58 64.17 65.63
4 54.17 62.50 63.54 70.21 20 61.04 62.92 77.50 79.38
5 42.71 55.63 68.33 68.33 21 54.38 62.50 67.71 69.58
6 49.58 61.88 77.71 80.83 22 36.88 50.21 51.75 63.96
7 63.13 71.88 71.88 73.54 23 62.92 76.25 87.29 85.00
8 51.25 60.21 75.00 76.04 24 56.67 60.42 61.67 64.58
9 52.50 56.88 67.08 67.29 25 52.29 63.75 70.83 74.38
10 55.83 60.21 75.92 77.92 26 52.50 55.42 70.21 69.79
11 34.38 51.67 64.38 70.21 27 62.08 68.75 67.50 68.75
12 56.46 61.25 64.21 66.04 28 48.33 61.04 80.21 82.92
13 68.13 69.38 77.58 81.88 29 53.33 60.42 72.71 73.54
14 54.79 59.38 72.50 73.54 30 46.46 61.67 72.50 73.96
15 59.79 70.42 84.58 84.17 31 52.71 64.17 73.75 73.75
16 57.08 68.33 87.71 88.96 32 46.88 54.17 65.00 69.38

Method SVM KNN SSFBEL MSFBEL

Average 53.60 62.73 72.20 74.23
Std 7.32 6.34 8.42 7.23
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Figure 6. The average accuracies of different methods on the two data sets for EEG-based emo-
tion recognition.

Besides the comparison of average accuracy of these four methods, we perform the
Friedman test [39] to illustrate the statistical significance among them. The Friedman
test is a non-parametric statistical test, which is used to detect differences of multiple
methods across multiple test results. The null-hypothesis is “all the methods have the same
performance”. If the null-hypothesis is rejected, the Nemenyi test is utilized to further
distinguish whether the performances of the two among all methods are significantly
different. We analyze the difference in performance among the four methods, and the
results are shown in Figure 7. In the figure, the solid circle represents the average rank of
each method, and the vertical line represents the critical distance (CD) of Nemenyi test,
which is defined as follows

CD = qα

√
k(k + 1)

6N
. (12)

where k denotes the number of methods, N denotes the number of result groups, and qα is
the critical value which is defaulted as 0.05 [40]. In this paper, we set k = 4 because there
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are four methods in total. For “SEED IV” data set, N = 45 because there are 15 subjects
and each subject has 3 sessions. For “DEAP” data set, N = 32 since there are 32 subjects.
If two vertical lines do not have overlap, it means that the corresponding methods have
statistically different performance. As shown in Figure 7, both on “SEED IV” and “DEAP”
data set, SSFBEL and MSFBEL do not have overlap with SVM and KNN, which represents
that our proposed methods are significantly different in performance with these two
compared methods.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

3.5

4

MSFBEL: 1.72

SSFBEL: 2.06

KNN: 3.14

SVM: 3.06

(a) SEED IV

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

MSFBEL: 1.72

SSFBEL: 2.06

KNN: 3.14

SVM: 3.06

(b) DEAP

Figure 7. Friedman test of different methods on the two data sets.

Figures 8 and 9 present the confusion matrices for the emotion recognition results
of SVM, KNN, SSFBEL, and MSFBEL on the two data sets, respectively. From them, we
first can obtain the average recognition accuracies of every emotional state. For example,
in Figure 8, the average accuracy of the “neutral” emotional state classified by SVM, KNN,
SSFBEL, and MSFBEL are 80.48%, 79.31%, 82.36%, and 87.73%, respectively. In Figure 9,
the average accuracies of the “HVHA” emotional state classified by these four methods are
72.45%, 76.7%, 85.74%, and 86.89%, respectively. Second, we can get the misclassification
rate of each emotion state. For example, from the confusion matrix of MSFBEL on the
“SEED IV” data set (Figure 8d), 87.73% of the EEG samples are correctly recognized as
“neutral” state while 4.59%, 1.19%, 6.5% of them are incorrectly classified as “sad”, “fear”,
and “happy” states, respectively. From the confusion matrix of MSFBEL on the “DEAP”
data set (Figure 9d), 86.89% of the EEG samples are correctly classified as “HVHA” state
while 3.13%, 6.26%, 3.36% of them are misclassified as “HVLA”, “LVHA”, and “LVLA”
states, respectively. Third, comparing with the other three methods, MSFBEL shows
improvement on each of the four emotional state. For instance, as shown in Figure 8,
MSFBEL exceeds the accuracies of SVM, KNN, and SSFBEL on the “neutral” state recog-
nition by 7.25%, 8.42%, and 5.37%, respectively. Further, we notice that “neutral” state
always gets the highest accuracies on the four methods, which can deduce that it is the
easiest emotional state to be identified. As displayed in Figure 9, MSFBEL exceeds the
accuracies of other three methods on the “HVHA” state recognition by 14.44%, 10.19%,
and 1.15%, respectively.
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(a) SVM (b) KNN

(c) SSFBEL (d) MSFBEL

Figure 8. Confusion matrices of different methods on the “SEED IV” data set.

(a) SVM (b) KNN

(c) SSFBEL (d) MSFBEL

Figure 9. Confusion matrices of different methods on the “DEAP” data set.

4. Conclusions and Future Work

In this paper, a new frequency bands ensemble method (MSFBEL) was proposed to
recognize the emotional states from EEG data. The main advantages of MSFBEL are that
(1) It re-organizes all frequency bands into different scales (several local scales and one
global scale) to extract features and classify. (2) It combines the results of different scales
by learning an adaptive weight to further improve emotion classification performance.
Extensive experiments were conducted on the “SEED IV” and “DEAP” data set to evaluate
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the performance of MSFBEL. The results demonstrate that the scale of frequency bands
influences the emotion recognition rate, while the global scale that directly concatenating
all frequency bands cannot always guarantee to obtain the best emotion recognition perfor-
mance. Moreover, the results also illustrate that different scales of frequency bands provide
complementary information to each other, and the proposed adaptive weight learning
method can effectively fuse these information. The results indicate the effectiveness of our
proposed MSFBEL model in emotion recognition task.

In the future, we will focus on the following problem not covered in this paper. We will
explore the cross subject or cross session domain adaptation problem, so that we may try
to find the optimal scale of frequency bands for EEG-based emotion recognition.
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Appendix A

Below we give the solution of the problem (11). We alternately optimize w and v,
which updates one variable with the other fixed.

(1) Update v with w fixed. By taking the derivative of objective (11) with respect to v
and setting it to zero, we get

v = w +
b + β−Mw

µ
. (A1)

(2) Update w with v fixed. When v is fixed, objective (11) becomes

min
w≥0,wT1s=1

vT Mw +
µ

2
‖w− v +

β

µ
‖2

2. (A2)

By completing the square form with respect to w, we rewrite the above objective as

min
w≥0,wT1s=1

µ

2
‖w− v +

β + MTv
µ

‖2
2. (A3)

Problem (A3) is a typical Euclidean projection on the simplex [33,41], and we solve it

as below. By denoting g = v− β+MTv
µ , the Lagrangian function of problem (A3) is

L(w, γ, η) =
1
2
‖w− g‖2

2 − γ(wT1s − 1)− ηTw, (A4)
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where γ and η ∈ Rs are the Lagrangian multipliers. Suppose that w∗ is the optimal solution,
γ∗ and η∗ are the corresponding Lagrangian multipliers. According to KKT condition [42],
we get the equations for every j (j = 1, 2, · · · , s) as follows

w∗j − gj − γ∗ − η∗j = 0

w∗j ≥ 0

η∗j ≥ 0

w∗j η∗j = 0.

(A5)

The first equation of Equation (A5) can be reformulated into the following form

w∗ − g − γ∗1s − η∗ = 0. (A6)

With the constraint wT1s = 1, the above equation becomes

γ∗ =
1− 1T

s g − 1T
s η∗

s
. (A7)

By substituting Equation (A7) into Equation (A6), we obtain

w∗ = g − 1T
s g
s

1s +
1
s

1s −
1T

s η∗

s
1s + η∗. (A8)

Suppose η̄∗ = 1T
s η∗

s and h = g − 1T
s g
s 1s +

1
s 1s, Equation (A8) becomes

w∗ = h + η∗ − η̄∗1s. (A9)

Hence, for every j, we obtain

w∗j = hj + η∗j − η̄∗. (A10)

According to Equations (A5) and (A10), we obtain hj + η∗j − η̄∗ = (hj − η̄∗)+, where
( f (·))+ = max( f (·), 0). Hence, we have

w∗j = (hj − η̄∗)+. (A11)

Once the optimal η̄∗ is determined, the optimal solution w∗ will be obtained from
Equation (A11). Similarly, Equation (A10) can also be reformulated into η∗j = w∗j + η̄∗ − hj

such that η∗j = (η̄∗ − hj)+. Thus, η̄∗ can be computed by

η̄∗ =
1
s

s

∑
t=1

(η̄∗ − hj)+. (A12)

Defining a function as

f (η̄) =
1
s

s

∑
t=1

(η̄ − hj)+ − η̄. (A13)

When Equation (A13) equals to zero, the optimal η̄∗ can be obtained by Newton
method [43] to find the root of Equation (A13) as following

η̄p+1 = η̄p −
f (η̄p)

f ′(η̄p)
. (A14)
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