
Implementation of NAO Robot Maze
Navigation Based on Computer Vision
and Collaborative Learning
Daniela Magallán-Ramírez1, Jorge David Martínez-Aguilar 1, Areli Rodríguez-Tirado1,
David Balderas1, Edgar Omar López-Caudana1 and Carlos Francisco Moreno-García2*

1Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, United Kingdom, 2Robert Gordon University,
School of Computing, Aberdeen, United Kingdom

Maze navigation using one or more robots has become a recurring challenge in scientific
literature and real life practice, with fleets having to find faster and better ways to navigate
environments such as a travel hub, airports, or for evacuation of disaster zones. Many
methodologies have been explored to solve this issue, including the implementation of a
variety of sensors and other signal receiving systems. Most interestingly, camera-based
techniques have become more popular in this kind of scenarios, given their robustness
and scalability. In this paper, we implement an end-to-end strategy to address this
scenario, allowing a robot to solve a maze in an autonomous way, by using computer
vision and path planning. In addition, this robot shares the generated knowledge to
another by means of communication protocols, having to adapt its mechanical
characteristics to be capable of solving the same challenge. The paper presents
experimental validation of the four components of this solution, namely camera
calibration, maze mapping, path planning and robot communication. Finally, we
showcase some initial experimentation in a pair of robots with different mechanical
characteristics. Further implementations of this work include communicating the robots
for other tasks, such as teaching assistance, remote classes, and other innovations in
higher education.

Keywords: robot navigation, computer vision, mapping, NAO robot, educational innovation

1 INTRODUCTION

An autonomous system for maze navigation must be able to take real-time decisions for different
and sometimes unexpected problems that may occur. For instance, a robot might be aware of its
environment by using different sensors, data processing algorithms or other methods. In spite of
this, one of the most widely used methodologies consists of collecting the information that the
robot needs by means of the embedded cameras. This kind of techniques have been implemented
not just for high school/university competitions, as shown in Horn (1986), but also in practical
applications, such as airport navigation by a fleet of robots, as presented in Cortés et al. (2016).
The problem of using other sensors (e.g. sonar or infrared lights) is that these require conditional
programming, which particularizes each solution to a specific type and version of robot.
Therefore, academia and industry work hard to find methods that can be applied to
different robotic platforms and that would allow real-life applications in areas such as
education, industry 4.0, health, among others.

Edited by:
Antonios Gasteratos,

Democritus University of Thrace,
Greece

Reviewed by:
Kenia Picos,

Center for Technical and Higher
Education (CETYS), Mexico

KS. Nagla,
Dr. B. R. Ambedkar National Institute

of Technology Jalandhar, India

*Correspondence:
Carlos Francisco Moreno-García

c.moreno-garcia@rgu.ac.uk

Specialty section:
This article was submitted to
Robot and Machine Vision,

a section of the journal
Frontiers in Robotics and AI

Received: 22 December 2021
Accepted: 07 March 2022
Published: 04 April 2022

Citation:
Magallán-Ramírez D,
Martínez-Aguilar JD,

Rodríguez-Tirado A, Balderas D,
López-Caudana EO and

Moreno-García CF (2022)
Implementation of NAO Robot Maze

Navigation Based on Computer Vision
and Collaborative Learning.
Front. Robot. AI 9:834021.

doi: 10.3389/frobt.2022.834021

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8340211

ORIGINAL RESEARCH
published: 04 April 2022

doi: 10.3389/frobt.2022.834021

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.834021&domain=pdf&date_stamp=2022-04-04
https://www.frontiersin.org/articles/10.3389/frobt.2022.834021/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.834021/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.834021/full
http://creativecommons.org/licenses/by/4.0/
mailto:c.moreno-garcia@rgu.ac.uk
https://doi.org/10.3389/frobt.2022.834021
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.834021


This paper presents the test and comparison of different methods
that will conform an autonomous maze solution system for a pair of
NAO1 robots. This proposal will enable them to navigate a maze in
an autonomous way by means of four main parts: 1) camera
calibration, which allows the acquired images from the first robot
to be preprocessed and cleaned prior to their use; 2) mapping, which
consists in vision algorithms to analyze the images and generate an
internal map; 3) path planning, which enables the first robot tomake
decisions about the navigation to get out in the most optimal way
and; 4) communication, which transmits the generated knowledge to
allow a second robot to solve the considering its mechanical
characteristics. We have selected this particular robot brand since
it can be programmed using a multi-platform environment called
Choregraphe, which integrates script from languages such as C++,
YAML and Python. Moreover, NAO robots possess a variety of
sensors which can be integrated to our solution in future work, such
as touch sensors, omni-directional microphones and ultrasonic
sensors2. We developed this work in the 6th generation of these
robots, which are widely used in education and research.

This is an extension on the paper presented in Rodriguez-
Tirado et al. (2020), where we introduced an initial proposal
which would allow the navigation of robot into a maze by means
of the aforementioned pipeline framework. Nonetheless, in this
paper we present the following contributions:

1. We thoroughly review the state of the art in NAO robot
navigation.

2. We present an updated and easy to follow pipeline
methodology for NAO robot maze navigation.

3. We justify the reasons to choose the selected methods and
validate each step.

The modifications implemented in each step have as final
objective to fully integrate the system. Finally, this paper presents
the migration of this final integration into a real environment and
its applicability in higher education.

After the introduction in Section 1, this paper is organized as
follows. Section 2 contains a literature review of the existing
investigations and applications of similar methodologies in
various scenarios. Section 3 describes how to interconnect the
four modules proposed to solve robot navigation and introduces
the methods used in each module. Section 4 presents bot the
results of all tests in each step, and the integration of such
modules. Afterwards, Section 5 analyses these results. Finally,
Section 6 is reserved for conclusions and future directions.

2 RELATED WORK

2.1 Related Work on Camera Calibration
To improve the response time of a fleet of NAO robots playing
football soccer, Kastne et al. (2014) implemented a kinematic
calibration within the robots. Authors used a calibration method

originally proposed in Zhang (2000), which will also be
considered in our work. This method is based on a chess
pattern, and the calibration result was helpful to compensate
the errors of the NAO robots legs, which allowed these robots to
be able to better kick the ball. Another objective of such work was
to perform a fast calibration before a match, thus resulting on an
elapsed time of about 590 s. According to that paper, in a
10 minute match (without the calibration) the robots fell an
estimate of eleven times per match, and after the calibration,
this was reduced to six times.

NAO robots use camera calibration for other applications,
such as portrait sketching as shown in Singh and Nandi (2016). In
this implementation, it was necessary to change the plane from
3D to 2D by transforming the effector position into the NAO, so
that the robot, instead of having to compute the coordinates of a
tri-dimensional plane, could just perceive the x − and y −
coordinates to sketch a portrait. Authors evaluated three
solutions for the 3D-2D transformation, which were: 1)
fundamental matrix; 2) 4-point calibration and an; 3) an
artificial neural network (ANN) based regression analysis.
Comparing the experimental results of the three solutions, the
third option was the best since it derived on less square error.
Conversely, the method with the lowest computational time was
the 4-point calibration.

2.2 Related Work on Path Planning
One of the most widely used solutions used in this domain the
Tremaux algorithm, which has been subsequently applied in
literature by different authors. For instance, Li and Annaz
(2014) implemented this approach with the purpose of having
a mobile robot in a virtual environment be able to navigate and
find the minimum cost in the shortest time. As a result, the robot
was able to indicate the shortest path, without actually being able
to navigate it or to communicate the solution to a second robot.
An important feature of this work is that the robot was given the
location of the exit; something that may not necessarily be
our case.

Kumar et al. (2018) used path planning and other algorithms
aimed at avoiding obstacles to solve maze routes, by means of a
linear regression method. The robot was trained with 500
different scenarios. In a second part of the work, a second
robot with the same algorithmwas introduced to the same route.
The main purpose was that both robots could solve the puzzle
simultaneously without any collisions. The obstacles consisted
of cylinders, and the robots had to follow an establish path.
Therefore, robots just had to get from one point to another with
a given trajectory that would be adjusted depending of physical
obstructions. Although this holds similarity to our proposal,
authors do not specify whether the communicated knowledge to
the second robot considered different mechanical properties of
that robot.

Wikström and Sjögren (2016) worked on how a robot can
process its environment to map and navigate through a maze.
Using an infrared light sensor, the robot was able to obtain
information from its surroundings. Python 2was used to program
the mapping and path planning modules. In this thesis, the
efficiency between the Wall Followers and the Tremaux

1https://www.softbankrobotics.com/emea/en/nao
2http://doc.aldebaran.com/2-1/family/index.html

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8340212

Magallán-Ramírez et al. NAO Robot Maze Navigation

https://www.softbankrobotics.com/emea/en/nao
http://doc.aldebaran.com/2-1/family/index.html
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


algorithm were compared. It was concluded that the latter was
more effective to solve the task at hand. This work has some
similarities with our proposal, nonetheless no computer vision
algorithms were implemented in that case, which effectively
showed a reduction in reliability and accuracy of the obtained
solution.

More recently, Kashyap et al. (2020) presented a hybrid
technique for path planning in static and dynamic terrains
using NAO humanoid robots. Authors proposed the
hybridization of two techniques: Dynamic Window Approach
(DWA) and Teaching-Learning Based Optimization (TLBO).
This method requires the location of the obstacles as the input
target, so that DWA can decide the optimal velocity for the robot
to traverse in order to dodge the obstacles. Afterwards, TBLO
operates using a teacher-learner methodology (within the same
NAO robot) to teach itself how to effectively navigate the terrain.
This method showed promising results in terms of navigating
through rugged terrain, although the requirement of the obstacles
as the input make it less attractive for undiscovered maze
navigation solving.

The most recent work presented in this domain was published
last year by Muni et al. (2021). Authors suggested Prim’s
algorithm, which is a Minimum Spanning Tree (MST) greedy
method which generates sets from a weighted graph, picking the
least weighted edge to create non incidences and thus, a path to be
traversed. These edges are then transmitted to the NAO robot,
showing a decrease of 6% in deviations of navigational
parameters. This method appears to favor path length cover
against path time taken, which is the opposite from what it is
required in maze navigation contests or emergency evacuation
situations.

2.3 Related Work on Communication
Protocols
Simoens et al. (2018) defined and explained the potential benefits
of the Internet of Robotic Things (IoRT). Some of the key benefits
of this area of knowledge are perception, motion, manipulation,
interaction, adaptability, configuration and decision autonomy.
In particular, the latter has the ability of determine the best action
for a fleet of robots to undertake. In our work, we propose to
connect the NAO robots by means of commercial platforms such
as Ubidots, in which the data recall, such as the instruction for the
robot, can be download and transfer easily. This in effect has
some relation to the IoRT concept.

Bechon and Slotine (2013) implemented a swarm code to
coordinate the actions of eight NAO robots. As a result of this
work, the fleet was able to communicate among them by using
a global variable to synchronize the whole NAO robot group in
a dance choreography. The robots were synchronized using the
Network Time Protocol (NTP), getting all NAO robots
synchronized. Distance between the robots was an
important factor; while it increases, also the time to detect
and correct the next position does. Because of that, it was
necessary to implement a mesh network where all robots had
access to each other, so that each robot was able to
communicate with their closest neighbor. This type of

architectures are interesting for a future implementation of
this work, provided that we need to synchronize multiple
robots simultaneously.

2.4 Other Systems
Evidently, maze navigation can be applied to multiple other
robotic standards in the industry. For instance, Gul et al.
(2019) explained how different navigation techniques can be
applied into a mobile robot to follow a dynamic path. The
robot had to go from the start to the end by avoiding
obstacles between the points and analyzing a 2D plane. Some
of the algorithms used were the Dijkstra method (which will be
explored in this paper). This was found to be a simple, effective
and less time and computational complex method with a very
high efficiency for the task.

Delfin et al. (2016) aimed at localizing and helping a NAO
robot to navigate into an environment by using a visual memory
which consisted on a set of key images. First, the NAO got into the
environment and tried to solve by mimicking a human. In
parallel, images were acquired and used to generate a graph in
which a path planning method was applied to help the robot
optimize it trajectory in the environment. To our knowledge this
is the closest work in literature to our proposal. Nonetheless, we
have the added complexity of a second robot which has to solve
the same challenge based on a shared knowledge and considering
different mechanical characteristics.

3 METHODOLOGY

The system starts by establishing the communication between
the robot and the computer which controls the robot. Then,
camera calibration is applied before the robot gets into the
maze, as the robot must use the cameras to solve it. Afterwards,
the robot is ready to start the maze, and thus, the NAO robot
will collect and process an image to begin generating a section
of the maze map. That section of the map will then be used in
path planning related tasks to tell the robot what step to take in
order to exit the maze. When the robot finishes its movement,
it will continue acquiring these images to create the internal
map and advance according to the process that was mentioned
before. This process will repeat until the image that the robot
detected depicts the exit. When the robot exits, it will then
know a route to exit the maze, and will also have acquired an
internal map of the part of the maze where it passed. This
information will be used to select the best path according to the
robot’s experience, and transmit this to the second one. Due to
the nature of this process, we will present the four main parts
sequentially.

3.1 Camera Calibration Methodology
Camera calibration is a process that helps minimize image
imperfections caused by of intrinsic and extrinsic camera
parameters. This pre-processing step is used to accurately
establish a relationship between 3D point (in the real world)
and its projection in a 2D plane (image pixel). Moreover, the
camera must be calibrated so that it captures images that are not

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8340213

Magallán-Ramírez et al. NAO Robot Maze Navigation

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


distorted, and that the results obtained from the computer vision
algorithms are less prone to errors. Furthermore, the robot will
collect information such as the distances between the images, and
thus the importance of this stage.

To achieve this, we implemented the method presented in
Zhang (2000) which generates a calibration matrix to correct
these distortions by taking multiple images of a well-defined
object, in this case, a checkerboard. Some parameters such as
brightness, saturation, and focal length must be manually
adjusted to get the best possible image. Then, we generate the
matrix by taking the corner patterns of the checkerboard which
has dimensions of 6 × 5. Afterwards, we detect the corner and get
the camera matrix and its distortion coefficients using modules
contained in the OpenCV framework3. Finally, with the obtained
information we generate a new matrix that will be used to un-
distort the images.

3.2 Mapping Methodology
Robotic mapping refers to the ability of an autonomous robot to
construct a map while being able to position itself within it.
Navigation and mapping are closely related, and these concepts
rely on different algorithms. However, while investigating the
existing approaches, we found that most of them use different
sensors (e.g. infrared sensors, odometers, GPS, etc.) which
contrasts from our proposed scenario and therefore, adapting
existing solutions is not an affordable task. As a result, we will be
presenting a proprietary solution in this paper based on computer
vision as the input.

Moreover, due to the COVID-19 worldwide pandemic, access
to the NAO robots and the material for building up a test
environment was restricted at the beginning of this project.
From that perspective, the best solution was to take advantage
of existing software tools to start the mapping module
development. To this end, we used Coppelia Sim software4,
which is a 3D model of a maze which was deployed virtually
to record a video simulating the first robot traversing the maze.
Then, that video was used to try out the map reconstruction with
the proprietary code. To simulate the navigation a robot model
that comes by default in Coppelia (called Ackerman), steering car
having ease of control with the keyboard arrows was used.
Additionally, a camera was attached to an Ackerman robot,
and using OBS Studio video editing software, the video was
recorded.

To achieve the mapping, the first step consists on applying the
Canny algorithm presented in Canny (1986) to divide the image
into different areas which allow to better control what the robot
detects and maps.

The Canny algorithm needs many stages, with each one of
them using a different operator to detect the edges of every image.
In the first stage, the algorithm assumes that the image is affected
by white noise, so it applies a first order Gaussian blur in the
image to reduce the noise and to take out unwanted details and
textures. The mathematical representation of the filter is based on

two one-dimensional convolutions, one for horizontal axis and
another for the vertical axis, merges together in Equation (1) as:

Gσ x, y( ) � 1
2πσ2

exp − x2 + y2( )
2σ2

( ) (1)

Then, the Gaussian function is applied to the acquired image,
as shown in :

g x, y( ) � Gσ x, y( ) · I x, y( ) (2)
As shown in the last equation, the filter is a convolution

between a two-dimensional mask or matrix and the target image f
(m, n). Usually, the masks dimensions are about 5 × 5 and the
result depends on the value assigned to σ. This value is chosen
depending on a wanted behavior; for instance, a large value
implies the detection of big scale edges, while a smaller value
would lead to the detection of finer features.

Figure 1 shows the three zones are obtained: 1) the top zone
(i.e. the farthest); 2) the middle zone and; 3) the bottom zone (i.e.
the closest). The robot uses just the middle zone to sketch the
maze, and anything above or beyond zones one and three is
discarded. To make the distinction between zones, the Canny
edges of each section are stored in different arrays. This way, we
can manage them individually as appropriate. Afterwards, the
probabilistic Hough transform as presented in Hough (1962),
Matas et al. (1998), followed by a merge algorithm5, is applied to
each zone to find the lines which define the maze. This merging
algorithm was considered since it makes the resulting array of
probabilistic Hough lines smaller, thus making then easier to
manipulate it frame by frame.

At this point, wall detection is carried out by changing the state
of the two flags within the code, depending on whether the left or
right wall is detected. If there is no wall, the Hough algorithm
returns an empty array for the analyzed region, causing the flag to
be deactivated within the code. Otherwise, if the array has

FIGURE 1 | The three areas obtained by the robot, divided by green and
red lines.

3https://opencv.org/
4https://www.coppeliarobotics.com/helpFiles/index.html

5https://stackoverflow.com/questions/45531074/how-to-merge-lines-after-
houghlinesp

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8340214

Magallán-Ramírez et al. NAO Robot Maze Navigation

https://opencv.org/
https://www.coppeliarobotics.com/helpFiles/index.html
https://stackoverflow.com/questions/45531074/how-to-merge-lines-after-houghlinesp
https://stackoverflow.com/questions/45531074/how-to-merge-lines-after-houghlinesp
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


elements, the flag is activated (provided that there is a wall). Then,
the obtained middle lines (if any) are superimposed over a black
image using a transform algorithm 6 which allows a better
perspective of the space in front the robot, allowing it to
determine approximate distances from the surrounding
environment. For the estimation of distances, we used the
Euclidean distances based on the pixels.

Subsequently in a new black image, the map sketching takes
place by using a previously defined starting point, and then taking
the distances to a 10 : 1 ratio, so that the entire map fits into a
single image. The lateral lines that the robot visualizes in each
frame are drawn from the starting point and when the sketching
for this frame ends, the starting point is updated, taking as the
new starting point the last coordinate of the drawn lines. In this
way, the next segment of the map will be sketched just after what
has already been plotted.

As the tests were conducted, it was decided that during the
orientation changes, the mapping would stop drawing the
maximum possible number of useless lines as possible; the
rationale behind this will be explained in more detail in
Section 4.2. Moreover, as the tests were made by means of a
video, and there was no way of knowing when the robot was
positioned, we had to define in advance when to stop mapping.
This sketching process resumes once the presence of both walls is
detected, as this indicates that it is rejoined into a corridor.

3.3 Path Planning Methodology
For this stage, we require a path planning method which allows
the robot to navigate the maze without having a notion of where
the exit is, while simultaneously intending to calculate the best
possible route. Moreover, we need to deploy an algorithm which
is simple enough to run in any operating system, any Python
version (2 or 3) and that outputs a stream of simple data (i.e.
binary directions) that can be transmitted from the central system
to the master robot, and from the master robot to the slave robot,
with low overhead and latency. Although some more recent and
complex options have been implemented in NAO robots Kashyap
et al. (2020) or Muni et al. (2021), due to the reasons stated in
Section 2 we opted to use the Dijkstra Shortest Path algorithm
presented in Ably et al. (2016). This method generates a tree of
shortest paths from the starting point to all other points in the
plane. Each possible step is a node that consists of two values, the
distance to the start point and the last neighbor to get to that point
with the least cost. There is a queue while it is not empty, as there
are unknown possible nodes to visit. Also, there is a list that
contains all the visited nodes with its characteristics. This method
is based on discovering the new areas by extending a circular
trajectory, and it is necessary to go back to the beginning to
calculate distances. In this way, it ensures that the entity
traversing the route will discover each possible step in all
directions until the exit is found. Moreover, the second option
considered was the Trémaux algorithm, which is widely known as
an efficient method to get out of a maze, as shown in work such as
Wilkins and Nelson (2008). It mark all the steps and the direction

were the robot comes from. In this method, the navigator avoids
traversing the same path twice by means of two lists. The first list
contains all visited nodes in the order that they were found. The
second list stores the path towards the exit. In principle, this
second list will be a copy of the first one, but each time that the
robot comes back to a node, all preceding nodes will be erased.
For the actual implementation in the robot, we set priorities to
four possible moves in the following order: 1) front step; 2) left
step; 3) right step and; 4) back step.

We made an exception to the Tremaux’s algorithm rule of
never having to go back to a node twice because this could get the
robot caught in some situations like the one shown in Figure 2. In
that case, the node marked in red has been crossed more than
once, however we allow the robot to cross again to find the exit,
even when there is a priority to go to the nodes with less visits.

3.4 Communication Methodology
The NAO robot can communicate with a computer via Ethernet
and WiFi to be programmed. In our case, WiFi was selected
because the NAO robot will be in constant motion as it traverses
the maze. Evidently, it would not be comfortable walking behind
the NAO robot with the Ethernet cable connected to a
computer. The connection via WiFi has the advantage of
connecting with other web services, and any data can be
transmitted and received directly between the computer and
the NAO robot, such as temperature measure of some motor.
This communication architecture is similar to Ad-hoc, but in
this case, there is an access point that works as an intermediary.
As mentioned before, Choregraphe is the official software
developed by Aldebaran Robotics for the programming of the
NAO robot, which uses the NAOqi framework so that it can be
programmed in different programming languages, such as C ++,
Python, Java, Matlab, Urbi and.Net, among others. To establish
the wireless communication, the robot uses the registered port
9559. Note that registered ports are only used by some specific
application or service7. The main technologies used for this
stage, namely Ubidots, firebase and Google Drive API, are
described in the following sections.

3.4.1 Ubidots
Ubidots is a web page where data can be loaded through a JSON
format file, then stored and viewed through many different
widgets on a dashboard. This gives users an attractive user
interface with a more professional touch without the user
having to do any programming. This platform was used
because it already has libraries created compatible with Python
2.7, facilitating communication with this web page. In addition,
with a free account it allowed us to view up to ten simultaneous
widgets on the dashboard. In addition, it offers you an
authentication service through two credentials to be able to
access your devices or registered projects. This platform was
chosen because the first step to work communication between
two NAO robots is that they send and receive a single value, for
instance a Boolean, string or an integer.

6https://github.com/ndrplz/self-driving-car 7https://www.iana.org/form/ports-services

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8340215

Magallán-Ramírez et al. NAO Robot Maze Navigation

https://github.com/ndrplz/self-driving-car
https://www.iana.org/form/ports-services
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


3.4.2 Firebase
Firebase is a real-time storage base, which does not require users
to have deep knowledge about the management of servers or
APIs. The libraries available are created for different
programming languages, including Python 2.7, making
handling and administration very simple. It is a BaaS service
created by Google Cloud Platform, and therefore, it is
compatible with any Google application. By creating a free
account, users can store up to 1 GB of data, make 20,000
write requests and 50,000 read requests per day through
JSON format files. This platform was used since the shared
knowledge between NAO robots is a hexadecimal image or
arrangement that represents the maze map and thus, the storage
provided is sufficient for this transmission.

3.4.3 Google Drive API
Google APIs allows the integration of an enormous variety of
Google services, including Google Drive API. This is quite
convenient, since from any application one can have the same
control of a storage drive as when logged in from a browser. The
programming languages supported are Java, Node.js and any
version of Python. Google developed libraries for all of its services,
facilitating integration with any application, and maintaining
support for older Python versions, such as the one used by the
NAO robot. This API was selected because Google Drive can
store any type of file, which gives us greater freedom to choose the
format of the maze map. For instance, if a hexadecimal string that
represents an image is requested, a NAO robot can create and
upload a CSV file, which can later be downloaded by the second
NAO robot directly store the maze map image. Also, Google
Drive allows 50,000 write requests per day, which is sufficient for
our testing needs.

4 TEST BENCH

4.1 Camera Calibration Test Bench
By taking several pictures of a checkerboard in different angles
and under different lighting conditions, we generate an image
database for the calibration. This calibration focuses on a ROI,
which is the checkerboard itself. Evidently, the more images that
are obtained, the better results that can be achieved. Nonetheless,

we decided to stop at 51 images, since the matrix calibration
parameter adjusted well to the image ones, as shown in Table 1.
The dimension of the images are 680, ×, 420 and the calibration
matrix use the center of the image, i.e. cx and cy, so base on those
we calculate the error (%cx and %cy) between the real centers and
the ones of the matrix. We can see that the error of both centers at
51 images is of less than 0.05. Moreover, Figure 3A,B show how
the calibration works with different number of samples.

4.2 Mapping Test Bench
The Canny edge detection function contained in Python’s
skimage package8 requires the configuration of three main
parameter: two thresholds (one upper and one lower) and the
aperture size for the Sobel operator. Therefore, the performance
of this function was tested with different values to find the ideal
configuration for this application. The first parameter that was
experimented was the size of the Sobel operator, since this is used
on the second step of the Canny algorithm after smoothing the
image and so, it is the most significant parameter. This operator
allows to acquire the orientation that each pixel is pointing at, by
returning the value of the first derivative for the horizontal and
vertical direction. We initialized the parameter with a value of 3,
given that during our literature research we found that this is the
standard size used; however, tests were run with aperture sizes of
5 and 7 as well. Ultimately, we confirmed that an aperture of three
would yield the best performance.

FIGURE 2 | An image representing why a robot could pass 3 times in the same node while looking for an exit.

TABLE 1 | Comparative table between the centers of the real image and those of
the matrix (the best results achieved are highlighted in red).

Images cx cy %cx %cy

10 170.003 42.4261 0.469 0.823
20 159.479 28.9455 0.502 0.879
30 248.704 222.34 0.223 0.074
35 349.239 222.55 0.091 0.073
40 377.333 205.08 0.179 0.146
45 331 233 0.033 0.028
47 394 130 0.232 0.459
49 357 198 0.117 0.177
51 320.229 236.477 0.001 0.015

8https://scikit-image.org/docs/dev/auto_examples/edges/plot_canny.html

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8340216

Magallán-Ramírez et al. NAO Robot Maze Navigation

https://scikit-image.org/docs/dev/auto_examples/edges/plot_canny.html
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


To determine the upper threshold, we decided to start the tests
with a threshold equal to 200, which was arbitrarily assigned. We
noticed that its performance was not poor; however, the image
returned showed many lines on both the walls and the floor. The
threshold value was increased in steps of 10 until the optimal
value was achieved. At a value of 250 the number of lines detected
diminished. Furthermore, when reaching a threshold of 300 we
observed that the images of the walls were significantly cleaner,
and only one line was detected on the floor. From that threshold
onward, the changes began to be less significant; when the
threshold reached 400 we observed that a few lines were
cleaned on the walls, but there was no significant changes.
Finally, at a threshold of 500 no improvement was noticed,
and thus this value (and any further) were discarded.

Therefore, it can be concluded that an acceptable value for the
upper threshold could be found at the range of 250–400. It was
then decided to use a value of 300 for this threshold, leaving it at
an arbitrary but at the same time optimal value. On the other
hand, in order to clean the image more and achieve better results,
the lower threshold was adjusted as well. Experiments showed
that the best image is obtained with a value of 150 since, if we
using a filter of 200, certain empty spaces in the image begin to
appear as full. This can cause problems in the lines detection,
hence it was decided that it was better to leave the threshold at a
150; however, it is observed that the image is not completely
cleaned.

In spite of the simulation results, the second filter was not
discarded as an option for real time tests since, on a real
environment, the floor actually presents many lines that could
affect the performance of the algorithm.

On the testing phase, the possibility of using a corner detection
algorithm instead of a line detection algorithm was considered;
however, corner detection had a reduced performance on
detecting corners of the rendered image, and thus, in a real
situation with smoother images, those characteristics would not
be present. A comparative of both algorithms implemented in the

simulation environment is shown in Figure 4A and Figure 4B
respectively, and it can be seen that line detection seems to be
more precise. Also, we did not want to limit the functionality of
the system to a maze with corners, as we expect that this project
can be implemented in different tasks and scenarios. For those
reasons, this option was discarded and wee worked with lines
detection using probabilistic Hough transform, as mentioned in
Section 3.2.

For the sketching part, many tests were carried out and
therefore, as considered this to be one of the most challenging
stages. Firstly, as mentioned in Section 3.2 we had to stop
mapping during turns because the sequence of the hallways
was lost at these points.

Finally, it was found that, when a wall was not being detected,
the distance was computed from the center to the first pixel of the
image, which caused again useless line traces. This gave us yet
another reason to keep using the flags which indicates the
presence or absence of walls.

4.3 Path Planning Test Bench
When running the Dijkstra algorithm, a circle search is initiated,
It can be seen that the maze navigator covers all possible areas of
the maze. The color intensity of the each pixel creates circles,
depending on the cost of that point to the starting point. The
colors of the circles repeat given the limitations of the available
colors; therefore, this does not mean that such pixels have the
same cost.

Conversely, when we applied the Trémaux algorithm on the
original maze, some loops are obtained in the trajectories. Thus,
we adjusted the map that means we left each row and wall with
the size of one pixel, which resulted in a bigger difference. Notice
how the route of this maze seems more natural than the previous
one. Most importantly, the robot does not have to walk
everywhere in the maze, because the walls and paths are better
defined. The intensity of each pixel represents how many times
the robot has visited that node of the maze.

FIGURE 3 | Calibration examples. (A) Un-distorted image with 10 samples. (B) Un-distorted image with 20 samples.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8340217

Magallán-Ramírez et al. NAO Robot Maze Navigation

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


4.4 Communication Test Bench
Libraries that only work with Python 3.6 or higher were used in
the camera calibration, mapping, and path planning modules, so
the programming codes could not be executed locally, as the
NAO is only programmable with some sub-version of Python 2.7.
This would cause a delay in the development, because modules
would have to be reprogrammed with some sub-version of
Python 2.7, and even some libraries would not work due to
incompatibility, for example, OpenCV. The solution to this
paradigm was to run two Python scripts, one compiling with
Python 2.7.17 and the other with Python 3.7.7. We opted to work
using a master-slave architecture, where the computer is the
master and the NAO robot (called Curie) is the slave.

Curie receives a script in Python 2.7.17 attending two tasks: 1)
acquisition and storage of an image from the robot’s upper
camera, and 2) its control i.e. moving or lifting the arms. In
parallel, a Python 3.7.7 script was executed in another terminal on
the same computer, which retrieved the stored images, processing
them with one of the computational vision algorithms i.e. Canny.
This approach solved the Python library compatibility issue.

4.5 Integration
Once all previous algorithms were selected and optimized, the
integration of the four modules into a single system took place.
Prior to this, it was decided to merge the mapping and path
planning modules and validate them in the simulation
environment. To do so, we had to consider as priority to
draw the map lines completely straight (as in Figure 5B, in
contrast to Figure 5A); always respecting the calculated
distances discussed above. It was found that, by
implementing this small change, the resulting algorithm was
able to make more accurate decisions.

Figure 6 shows an example of these modules working
together. It can be observed that, when using an image of a
clear hallway as the one depicted in Figure 6A, the robot detects
no obstacle andmoves forward. Figure 6B illustrates the sketch of

the stretch seen by the robot and the output obtained on the
console, confirming that the system is working correctly.

Figure 7 presents another scenario where it can be seen that
the robot is recognizing a corner as an obstacle, while at same
time identifying that there is no wall to the left. As a result, the
robot decides that the next action should be to turn left.

Once the integration of the path planning and mapping
modules was achieved, the camera calibration was embedded
into the NAO robot. This was evaluated with 24 photographs
captured by Curie, where the center of the image is: (160px,
120px).

In general, it was observed that the photograph had
deformations, both on the ROI (i.e. the chessboard) and the
corners. The effects of these image deformations in the
performance of the system will be detailed in Section 5.

A third integration took place during this phase, again with the
path planning and mapping modules. This time, an adjustment had
to be made to these modules to change the path from where it was
retrieving the images. This means that images from the simulation
were no longer in use, in favor of those taken by Curie. As all the
modules were already integrated, a small labyrinth hall was built with
foamy blocks and a yoga mat was placed as a floor, so that there was
a greater contrast between the walls and the floor.

5 ANALYSIS OF RESULTS AND
DISCUSSION

5.1 Camera Calibration Analysis
As mentioned before, the calibration module was evaluated with 24
photographs captured by Curie, where the center of the image is:
(160px, 120px) and the results obtained are shown in Table 2. It was
observed that with 21 photographs, the lowest percentage of error
was obtained when the center of the image was located with errors of
3.67% for the x axis and 5.6% for the y axis. As the number of
photographs increased, so did the error, as evidenced by the results of

FIGURE 4 | Comparison of line and corner algorithms. (A) Line detection algorithm performance. (B) Corner detection algorithm performance.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8340218

Magallán-Ramírez et al. NAO Robot Maze Navigation

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


using 24 photographs, where the errors obtained were 12.38 and
22.91% for the x and y coordinates respectively. The photographs
presented considerable distortions, which affected the performance
of the mapping and path planning modules considerably, given that
the edges of the hall could not be correctly detected. This led to a
higher contrast with the wall, even when using the yoga mat as the
floor surface. We experimented removing the calibration module so
that the mapping and path planningmodules would directly process
the photograph captured by Curie. Interestingly, this benefited the
performance of the entire system, obtaining more acceptable
performance. We suspect that this is due to the fact that the
NAO robot already contains a calibration module embedded, and
thus, this step is not required in this architecture. Nonetheless, it is

important to realize that in other applications such as autonomous
vehicles Cortés Gallardo Medina et al. (2021), this module must be
considered.

5.2 Mapping Analysis
As mentioned in previous sections, three fundamental solutions had
to be implemented in order to improve mapping. First, we had to
stop mapping while orientation changes occurred to prevent the
disruption of the sketch. Second, wall detection flags were required
with two main purposes: 1) to avoid the computing of distances
when a wall was not being detected, and; 2) to re enable the sketching
after a turn took place. Finally, also in orientation changes, the center
had to be adjusted to avoid overlapping the corner walls.

FIGURE 5 | Sketch adjustment. (A) Map before adjustment. (B) Adjusted map.

FIGURE 6 | Mapping and path planning integration. First demo. (A) What the robot sees. (B) Algorithms output.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8340219

Magallán-Ramírez et al. NAO Robot Maze Navigation

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


5.3 Path Planning Analysis
We discarded the Dijkstra algorithm because even if it is able
to find the best path, there is still a need to traverse the whole
maze, which is not a scalable solution, despite being an
algorithm that does not need to know the endpoint and
always finds an option for each position. Furthermore, It
would be counterproductive to implement this solution in a
robot, because it would force it to return to the beginning
every time that the optimal distance has to be calculated.
Therefore, the Trémaux algorithm, which demonstrated to be
the fastest and most efficient method, was embedded into the
model. Figure 8 shows that, even when the robot get into a
dead end (as some situations depicted with gray pixels), it is
also able to keep looking for the optimal path to the exit
(white line).

5.4 Communication Analysis
In this module, we encountered no problems regarding loss
of connection between Curie and the computer, or high
latency in transmitting the flag generated by the mapping
and path planning modules to Curie. The possible values of
the flag based on the analysis carried out by the path
planning and mapping modules (1–4), and the latency in

transmitting this value to Curie was on average 333.12 ms.
The path planning and mapping modules take
approximately 10 s to perform all the processing of the
photograph captured by Curie to throw the previously
mentioned flag. Efforts were put to optimize the
programming codes for both modules, unfortunately the
time could not reduced.

5.5 Evaluation of the Module Integration
We ran the three following tests for our integrated system: 1)
with a straight path as shown in Figure 9; 2) with a turn to the
left as in Figure 10 and; 3) with a turn to the right as in
Figure 11. All of these images show the robot traversing the
path and how the maze is being sketch. In all three cases, the
robot detected the walls and corners of the maze, which
allowed it to follow the correct instruction. Also with our
experimental results, we calculated that the time response
between each robot action was about 10 s. Notice that the
figures show that for these experiments, we used daylight
lighting and we set up a maze using high-contrast surfaces

FIGURE 7 | Mapping and path planning integration. Second demo. (A) What the robot sees. (B) Algorithms output.

TABLE 2 |Comparative table between the centers of the real image retrieved from
Curie and those of the matrix (best values highlighted in green).

Images X % Error X Y % Error Y

3 75.725 0.52671875 5.43 0.95475
6 92.115 0.42428125 14.55 0.87875
9 102.7 0.358125 24.59 0.795083333
12 117.375 0.26640625 39.815 0.668208333
15 128.21 0.1986875 62.8 0.476666667
18 148.915 0.06928125 82.9 0.309166667
21 154.125 0.03671875 113.18 0.056833333
24 179.81 0.1238125 147.5 0.229166667

FIGURE 8 | Trémaux algorithm: Path to the endpoint.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 83402110

Magallán-Ramírez et al. NAO Robot Maze Navigation

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


and colors. Namely, the walls of the maze were gray and the
floor is composed of red yoga mats. Moreover, there is no
background noise or occlusions.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented our latest findings towards
implementing a NAO robot maze navigation solution based
on different algorithms, which range from computer vision,
camera calibration, path planning, mapping, and

communication protocols. With this, we aim at deploying a
robot that is not only capable of solving a maze, but to share that
knowledge with a second robot which will be also able to solve
the maze considering its own mechanical characteristics. Several
algorithms were tested and validated for each stage, showing the
viability of this project.

The calibration module needs a second check, because at the
moment, it is actually affecting the performance of the path
planning and mapping instead of improve it. Nevertheless, base
on the results of the test, we can infer that the NAO cameras are
already sufficiently calibrated for the purpose of this task.

FIGURE 9 | Test: straight path.

FIGURE 10 | Test: left turn.

FIGURE 11 | Test: right turn.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 83402111

Magallán-Ramírez et al. NAO Robot Maze Navigation

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Conversely, path planning, mapping and communication work
really well together, but could be enhance by improving the
response time of the robot to make it more continuous.
Finally, we realized that uploading and retrieving information
from Ubidots was what was causing the biggest delay on the
performance. Once fixed, the NAO robot was capable of follow
instructions based on its environment.

In future work, other path planning algorithms will be
tested to further improve the time to solve the maze. We
also need to do more tests with different maze structures and
surfaces to see how the performance can be enhanced. Finally,
at the communication stage, we will implement the aspect of
sharing the generated knowledge with another robot, to take
advantage of first robot’s experience. Moreover, we want to
include the use of more features of the NAO robots which
could improve the performance, in a similar way as presented
in other work such as Almetwally and Mallem (2013). In this
paper, author proposed the use of kinetic depth cameras and
imitation learning. These algorithms require more work and
computational resources, nonetheless, by learning from
human motion and activity, it is highly likely that the NAO
robots are able to better navigate throughout the maze.

Furthermore, we also want to explore the application of these
technologies for educational purposes. As the COVID-19 global
pandemic has shown us, social distancing and remote learning
will be the reality of many people of us for the foreseeable future.
Therefore, having robot-assisted systems which can show certain
activities remotely to train personnel (avoiding human contact) is

of utmost important in settings such as the industry or care
homes for the vulnerable.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

DM-R developed the camera calibration, AR-T devised the path
planning solution, DM-R, and AR-T integrated the two modules
for mapping. JDM-A. implemented the communication
protocols. DM-R, AR-T and JDM-A participated in the
integration and experimental validation of the final system
deployed the NAO robot. DB, EOL-C and CFM-G supervised
the work, provided feedback and corrections. CFM-G proofread
and validated the manuscript after submission.

FUNDING

The authors would like to acknowledge the financial and
technical support of Writing Lab, TecLabs, Tecnologico de
Monterrey, Mexico, for the support of this work.

REFERENCES

Ably, T., Pang, H., Williams, C., Klim, J., and Ross, E. (2016). Dijkstra’s Shortest
Path Algorithm. Brilliant.org Retrieved from.

Almetwally, I., and Mallem, M. (2013). “Real-time Tele-Operation and Tele-
Walking of Humanoid Robot Nao Using Kinect Depth Camera,” in 2013
10th IEEE International Conference on Networking, Sensing and Control
(ICNSC), 463–466. doi:10.1109/ICNSC.2013.6548783

Bechon, P., and Slotine, J.-J. (2013). Synchronization and Quorum Sensing in a
Swarm of Humanoid Robots. arXiv.

Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Trans.
Pattern Anal. Mach. Intell. PAMI-8, 679–698. doi:10.1109/tpami.1986.
4767851

Cortés Gallardo Medina, E., Velazquez Espitia, V., Chípuli Silva, D.,
Fernández Ruiz de las Cuevas, S., Palacios Hirata, M., Zhu Chen, A.,
et al. (2021). Object Detection, Distributed Cloud Computing and
Parallelization Techniques for Autonomous Driving Systems. Appl. Sci.
11, 2925.

Cortés, X., Serratosa, F., and Moreno-García, C. F. (2016). “Semi-automatic Pose
Estimation of a Fleet of Robots with Embedded Stereoscopic Cameras,” in
Emerging Technologies and Factory Automation (ETFA).

Delfin, J., Becerra, H. M., and Arechavaleta, G. (2016). “Humanoid Localization
and Navigation Using a Visual Memory,” in 2016 IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids), 725–731. doi:10.1109/
humanoids.2016.7803354

Gul, F., Rahiman, W., and Alhady, S. S. N. (2019). A Comprehensive Study for
Robot Navigation Techniques. Cogent Eng. 6, 1632046. doi:10.1080/23311916.
2019.1632046

Horn, B. K. P. (1986). Robot Vision. MIT Electrical Engineering and Computer
Science Series. Cambridge, MA, USA: MIT Press.

[Dataset] Hough, P. V. C. (1962). Method and Means for Recognizing Complex
Patterns.

Kashyap, A. K., Parhi, D. R., Muni, M. K., and Pandey, K. K. (2020). A Hybrid
Technique for Path Planning of Humanoid Robot Nao in Static and
Dynamic Terrains. Appl. Soft Comput. 96, 106581. doi:10.1016/j.asoc.
2020.106581

Kastne, T., Rofer, T., and Laue, T. (2014). Automatic Robot Calibration for the Nao.
RoboCup LNAI 8892, 233–244.

Kumar, A., Kumar, P. B., and Parhi, D. R. (2018). Intelligent Navigation of
Humanoids in Cluttered Environments Using Regression Analysis and
Genetic Algorithm. Arab J. Sci. Eng. 43, 7655–7678. doi:10.1007/s13369-
018-3157-7

Li, L. K., and Annaz, F. (2014). “Implementation of the Trémaux Maze
Solving Algorithm to an Omnidirectional mobile Robot,” in 13th
International Conference on Electronics, Information, and
Communication (ICEIC).

Matas, J., Galambos, C., and Kittler, J. (1998). Progressive Probabilistic Hough
Transform.

Muni, M. K., Parhi, D. R., Kumar, P. B., Sahu, C., Dhal, P. R., and Kumar, S. (2021).
“Global Path Optimization of Humanoid NAO in Static Environment Using
Prim’s Algorithm,” in Intelligent Systems. Editors S. K. Udgata, S. Sethi, and
S. N. Srirama (Singapore: Springer Singapore), 25–34. doi:10.1007/978-981-33-
6081-5_3

Rodriguez-Tirado, A., Magallán-Ramírez, D., Martínez-Aguilar, J. D., Moreno-
García, C. F., Balderas, D., and López-Caudana, E. O. (2020). “A Pipeline
Framework for Robot Maze Navigation Using Computer Vision, Path Planning
and Communication Protocols,” in 13th International Conference on
Developments in eSystems Engineering (DeSE). doi:10.1109/dese51703.2020.
9450731

Simoens, P., Dragone, M., and Saffiotti, A. (2018). The Internet of Robotic Things.
Int. J. Adv. Robotic Syst. 15, 172988141875942. doi:10.1177/1729881418759424

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 83402112

Magallán-Ramírez et al. NAO Robot Maze Navigation

https://doi.org/10.1109/ICNSC.2013.6548783
https://doi.org/10.1109/tpami.1986.4767851
https://doi.org/10.1109/tpami.1986.4767851
https://doi.org/10.1109/humanoids.2016.7803354
https://doi.org/10.1109/humanoids.2016.7803354
https://doi.org/10.1080/23311916.2019.1632046
https://doi.org/10.1080/23311916.2019.1632046
https://doi.org/10.1016/j.asoc.2020.106581
https://doi.org/10.1016/j.asoc.2020.106581
https://doi.org/10.1007/s13369-018-3157-7
https://doi.org/10.1007/s13369-018-3157-7
https://doi.org/10.1007/978-981-33-6081-5_3
https://doi.org/10.1007/978-981-33-6081-5_3
https://doi.org/10.1109/dese51703.2020.9450731
https://doi.org/10.1109/dese51703.2020.9450731
https://doi.org/10.1177/1729881418759424
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Singh, A. K., and Nandi, G. C. (2016). NAO Humanoid Robot: Analysis of
Calibration Techniques for Robot Sketch Drawing. Robotics Autonomous
Syst. 79, 108–121. doi:10.1016/j.robot.2016.01.009

Wikström, R., and Sjögren, M. (2016). Amazeobot: The Construction of a Maze
Mapping Robot. Bachelor Thesis (Grundniva: Inom Examensarbete Teknik).

Wilkins, J. S., and Nelson, G. J. (2008). Trémaux on Species: a Theory of Allopatric
Speciation (And Punctuated Equilibrium) before Wagner. Hist. Philos. Life Sci.
30, 179–205.

Zhang, Z. (2000). A Flexible New Technique for Camera Calibration. IEEE Trans.
Pattern Anal. Machine Intell. 22, 1330–1334. doi:10.1109/34.888718

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Magallán-Ramírez, Martínez-Aguilar, Rodríguez-Tirado,
Balderas, López-Caudana and Moreno-García. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 83402113

Magallán-Ramírez et al. NAO Robot Maze Navigation

https://doi.org/10.1016/j.robot.2016.01.009
https://doi.org/10.1109/34.888718
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Implementation of NAO Robot Maze Navigation Based on Computer Vision and Collaborative Learning
	1 Introduction
	2 Related Work
	2.1 Related Work on Camera Calibration
	2.2 Related Work on Path Planning
	2.3 Related Work on Communication Protocols
	2.4 Other Systems

	3 Methodology
	3.1 Camera Calibration Methodology
	3.2 Mapping Methodology
	3.3 Path Planning Methodology
	3.4 Communication Methodology
	3.4.1 Ubidots
	3.4.2 Firebase
	3.4.3 Google Drive API


	4 Test Bench
	4.1 Camera Calibration Test Bench
	4.2 Mapping Test Bench
	4.3 Path Planning Test Bench
	4.4 Communication Test Bench
	4.5 Integration

	5 Analysis of Results and Discussion
	5.1 Camera Calibration Analysis
	5.2 Mapping Analysis
	5.3 Path Planning Analysis
	5.4 Communication Analysis
	5.5 Evaluation of the Module Integration

	6 Conclusion and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	References


