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In many mechanistic medical, biological, physical, and engineered spatiotemporal

dynamic models the numerical solution of partial differential equations (PDEs), especially

for diffusion, fluid flow and mechanical relaxation, can make simulations impractically

slow. Biological models of tissues and organs often require the simultaneous calculation

of the spatial variation of concentration of dozens of diffusing chemical species.

One clinical example where rapid calculation of a diffusing field is of use is the

estimation of oxygen gradients in the retina, based on imaging of the retinal vasculature,

to guide surgical interventions in diabetic retinopathy. Furthermore, the ability to

predict blood perfusion and oxygenation may one day guide clinical interventions in

diverse settings, i.e., from stent placement in treating heart disease to BOLD fMRI

interpretation in evaluating cognitive function (Xie et al., 2019; Lee et al., 2020).

Since the quasi-steady-state solutions required for fast-diffusing chemical species like

oxygen are particularly computationally costly, we consider the use of a neural network

to provide an approximate solution to the steady-state diffusion equation. Machine

learning surrogates, neural networks trained to provide approximate solutions to such

complicated numerical problems, can often provide speed-ups of several orders of

magnitude compared to direct calculation. Surrogates of PDEs could enable use of

larger and more detailed models than are possible with direct calculation and can

make including such simulations in real-time or near-real time workflows practical.

Creating a surrogate requires running the direct calculation tens of thousands of times

to generate training data and then training the neural network, both of which are

computationally expensive. Often the practical applications of such models require

thousands to millions of replica simulations, for example for parameter identification and

uncertainty quantification, each of which gains speed from surrogate use and rapidly

recovers the up-front costs of surrogate generation. We use a Convolutional Neural

Network to approximate the stationary solution to the diffusion equation in the case

of two equal-diameter, circular, constant-value sources located at random positions

in a two-dimensional square domain with absorbing boundary conditions. Such a

configuration caricatures the chemical concentration field of a fast-diffusing species like

oxygen in a tissue with two parallel blood vessels in a cross section perpendicular to the
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two blood vessels. To improve convergence during training, we apply a training approach

that uses roll-back to reject stochastic changes to the network that increase the loss

function. The trained neural network approximation is about 1000 times faster than the

direct calculation for individual replicas. Because different applications will have different

criteria for acceptable approximation accuracy, we discuss a variety of loss functions and

accuracy estimators that can help select the best network for a particular application. We

briefly discuss some of the issues we encountered with overfitting, mismapping of the

field values and the geometrical conditions that lead to large absolute and relative errors

in the approximate solution.

Keywords: diffusion surrogate, machine learning, virtual tissue, mechanistic modeling, Julia

1. INTRODUCTION

Diffusion is ubiquitous in physical, biological, and engineered
systems. In mechanistic computer simulations of the dynamics
of such systems, solving the steady state and time-varying

diffusion equations with multiple sources and sinks is often
the most computationally expensive part of the calculation,

especially in cases with multiple diffusing species with diffusion

constants differing by multiple orders of magnitude. Examples

in biology include cells secreting and responding to diffusible

chemical signals during embryonic development, blood vessels

secreting oxygen which cells in tissues absorb during normal

tissue function, tumors secreting growth factors promoting

neoangiogenesis in cancer progression, or viruses spreading

from their host cells to infect other cells in tissues. In these

situations the natural diffusion constants can range from ∼
103µm2/s for oxygen to ∼ 0.1 − 102µm2/s for a typical protein

(Phillips, 2018). Dynamic simulations of biological tissues and

organs may require the independent calculation of the time-
varying concentrations of dozens of chemical species in three

dimensions, and in the presence of a complex field of cells

and extracellular matrix. As the number of species increases,
solving these diffusion equations dominates the computational
cost of the simulation. Numerous approaches attempt to reduce
the cost of solving the diffusion equation including implicit,
particle-based, frequency-domain and finite-element methods,
multithreaded, and MPI-based parallelization and GPUs, but all
have significant limitations. HPC methods that do not require
Deep Learning (DL) can certainly accelerate solution of problems
including diffusion equations, e.g., Secomb’s Green’s function
method leverages GPUs to accelerate solution of 3D advection-
diffusion in microvessels with time-dependent sinks and sources
(Secomb, 2016). Such methods could greatly reduce the time
required to generate training sets for DL-assisted approaches.
Machine learning has also been applied to solve a growing
list of PDE problems (Farimani et al., 2017; Sharma et al.,
2018; Edalatifar et al., 2020; He and Pathak, 2020; Li A. et al.,
2020; Li Z. et al., 2020; Cai et al., 2021). See Fox and Jha
(2019) for a thorough review. Machine learning has also been
applied to the inverse problem, i.e., attempting to infer the
underlying mechanistic equations governing a complex system
from experimental data. These methods can potentially lead to

the discovery of new physics (Champion et al., 2019). Similarly,
Neural-ODEs is a highly active and exciting field where neural
networks are embedded into a differential equation. Modeling
a process via an ODE typically consists in equating the change
rate of a quantity (e.g., concentration) to an operator applied to
that same quantity plus some other quantities which are called
inhomogeneities or external fields, then solving the ODE and
comparing it with experimental data of that thing to validate the
model or fit parameters. The operator in the ODE is selected
a priori based on the symmetries of the process. Neural-ODEs
replaces the operator with a neural network. The neural network
is trained by solving the Neural-ODE and comparing it with the
experimental data (Chen et al., 2018; Rackauckas et al., 2019).
Moreover, Physics Informed Neural Networks tackle forward
and inverse problems by embedding physical information into
the neural network. Embedding physical information into
the neural network means embedding the ODE, the initial
conditions and the boundary conditions into the loss function
used to train the neural network (Raissi et al., 2019). In the
case of multiscale modeling, the complexity of the system
includes different characteristic length and time scales differing
by orders of magnitude. Multiscale modeling using standard
computational approaches, such as Monte Carlo methods and/or
molecular dynamics is time consuming. AI-based surrogates
using deep learning methods can accelerate computation by
replacing specific classical solvers, while preserving the overall
interpretability of mechanistic models. In real-world problems,
the number of sources and sinks, their shape, boundary fluxes,
and positions differ from instance to instance and may change
in time. Boundary conditions may also be complicated and
diffusion constants may be anisotropic or vary in space. The
resulting lack of symmetry means that many high-speed implicit
and frequency-domain diffusion-solver approaches do not work
effectively, requiring the use of simpler but slower forward solvers
(Schiesser, 2012). Deep learning1 surrogates to solve either the
steady-state field or the time-dependent field for a given set of
sources and sinks subject to diffusion could potentially increase
the speed of such simulations by several orders of magnitude
compared to the use of direct numerical solvers.

1We use the terms deep learning and machine learning interchangeably. We also

use neural network and deep neural network interchangeably.
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FIGURE 1 | Snapshot of (A) initial condition and (B) stationary state solution. (A) We placed two random value sources of radius 5 voxels in random positions fully

within a 100× 100pixel lattice and used this configuration as the input to the NN. (B) Stationary solution to the diffusion equation with absorbing boundary conditions

for the initial conditions in (A). The stationary solution (B) is the target for the NN. We fixed the diffusion constant to D = 1 voxels2/s and the decay rate to

γ = 1/400s−1, which yields a diffusion length equal to
√

D/γ voxels = 20voxels.

One challenge in developing effective deep neural network
(NN) diffusion-solver surrogates is that the dimensionality of the
problem specification is potentially very high, with an arbitrary
pattern of sources and sinks, with different boundary conditions
for each source and sink, and spatially variable or anisotropic
diffusivities. As a proof-of-principle we will start with a NN
surrogate for a simple version of the problem that we can
gradually generalize to a full surrogate in future work. In a two-
dimensional square domain represented as N ×Npixels and with
absorbing boundary conditions, we place two circular sources of
equal diameters at random positions, with the constraint that
the sources do not overlap and are fully contained within the
domain. Each source imposes a constant value on the diffusing
field within the source and at its boundary. We select the value
for one of the sources equal to 1 while the value for the other
source is randomly selected from a uniform distribution between
(0, 1] (see Figure 1A). Outside the sources the field diffuses with
a constant diffusion constant (D) and linearly decays with a
constant decay rate (γ ). This simple geometry could represent the
diffusion and uptake of oxygen in a volume of tissue between two
parallel blood vessels of different diameters. Although reflecting
or periodic boundary conditions might better represent a potion
of a larger tissue, we use the simpler absorbing boundary
conditions here. In this case, the steady-state field depends
critically on the distance between the sources, and between the
sources and the boundary, both relative to the diffusion length
(lD = (D/γ )1/2) and on the sources’ field strengths.

In practice then, the solution of the steady state diffusion
equation maps an image consisting of N × N pixels with 0
value outside the sources and constant values between 0 and 1

inside the sources to a second image of the same size, which
has the same values inside the sources but values between 0 and
1 elsewhere (see Figure 1B). We evaluate the ability of a NN
trained on the explicit numerical solutions of the steady-state
diffusion field for 20, 000 two-source examples to approximate
the steady state field for configurations of sources that it had not
previously encountered.

Notice that the diffusion kernel convolution used in the direct
solution of the time-dependent diffusion equation (e.g., finite-
element methods) is a type of convolutional neural network
(Schiesser, 2012). Therefore we chose deep convolutional NN
as the architecture. However, there are multiple types of
convolutional NN. Here we considered two of these. A deep
convolutional neural network and an autoencoder (Baur et al.,
2020). In addition, because it was possible that these two types
would do better at replicating specific aspects of the overall
solution, we also evaluated a superposition of the two. Time
series surrogates often use recurrent NN (Zhang and Xiao, 2000;
Dubois et al., 2020). Similarly, deep generative models have been
shown to be useful to sample from high dimensional space,
as in the case of molecular dynamics and chemical reaction
modeling (Chen and Ferguson, 2018; Noé et al., 2019, 2020;
Zhang et al., 2019; Gkeka et al., 2020; Kasim et al., 2020). Since
our main interest is the stationary solution, we did not consider
these approaches.

2. MODEL

Figure 2 shows the data flow through the NN. We denote by |x〉
and |ŷ〉 the input and output images, that is the initial condition
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FIGURE 2 | Network architecture: the input image |x〉 passes through NN 1 (see Figure 3A) and NN 2 (see Figure 3B), generating the two outputs ŷ1〉 and |ŷ2〉. The
final output |ŷ〉 is the sum of the outputs of the two NNs weighted by coefficients p1 and p2, i.e., |ŷ〉 = p1|ŷ1〉 + p2|ŷ2〉. pi are fixed Boolean hyperparameters for the

model and fixed for each model we trained. This means that when a given model has pi = 0 (pi = 1) then NNi is turned off (on).

layout of the source cells and the predicted stationary solution
of the diffusion equation, respectively. The input |x〉 passes to
two different neural networks (NNs) denoted NN 1 (Figure 3A)
and NN 2 (Figure 3B) which output |ŷ1〉 and |ŷ2〉, respectively.
The output |ŷ〉 is a weighted sum of the outputs of the two NNs,
|ŷ〉 = p1|ŷ1〉+p2|ŷ2〉, where p1 and p2 are fixed hyperparameters,
i.e., these hyperparameters are fixed during training. In our
code (Toledo-Marin, 2020) pi are real numbers, however, in
this paper we only consider the Boolean case where they each
take values of 0 or 1. NN 1 is a deep convolutional neural
network that maintains the height and width of the input image
through each of 6 convolutional layers. The first layer outputs a
4-channel image, the second layer outputs an 8-channel image,
the third layer outputs a 16-channel image, the fourth layer
outputs an 8-channel image, the fifth layer outputs a 4-channel
image and the sixth layer outputs a 1-channel image. NN 2 is an
autoencoder (Chen et al., 2017) where the first six layers perform
a meanpool operation that reduces height and width in half after
each layer following the sequence {1002, 502, 252, 122, 62, 32, 12}
while adding channels after each layer following the sequence
{1, 64, 128, 256, 512, 1, 024, 2, 048}. Then, the following six layers
consist on reducing the number of channels following the
sequence {1, 024, 512, 256, 128, 64, 1} while increasing the height
and width following the sequence {12, 32, 72, 132, 252, 512, 1002}.
Figure 3 sketches the architectures of the two NNs, while Table 1
provides their parameters.We will find that NN 1 will capture the
sources whereas NN 2will capture the field. InTable 1, we specify
each neural network by specifying for each layer the kind of layer,
the activation function and the output shape.

To generate representative two-source initial conditions
and paired steady-state diffusion fields, we considered a two-
dimensional lattice of size 100 × 100units2. We generated 20 k
configurations with two sources, each with a radius of 5 units.
One source has a constant source value equal to 1, while the other
source has a constant source value between 0 and 1 randomly
assigned using a uniform distribution. Everywhere else the field
value is 0. We placed the sources in randomly uniform positions
in the lattice. This image served as the input for the NN |x〉. Then
we calculated the stationary solution to the diffusion equation
with absorbing boundary conditions for each initial condition
using the Differential Equation package in Julia (Rackauckas and
Nie, 2017). The Julia-calculated stationary solution is the target
or ground truth image for the NN |y〉. In Figures 1A,B, we show
an initial condition and the stationary solution, respectively. We
have set the diffusion constant to D = 1units2/s and the decay
rate γ = 1/400s−1, which yield a diffusion length lD = √

D/γ =
20 units. Notice that this length is 4 times the radius of the
sources and 1/5 the lattice linear dimension. As γ increases and
asD decreases, this length decreases. As this length decreases, the
field gradient also decreases (Tikhonov and Samarskii, 2013). The
source code to generate the data and train the NN can be found
in Toledo-Marin (2020).

We trained the CNN setting the number of epochs to 800
using the deep learning library in Julia called Flux (Innes, 2018).
We varied the dropout values between 0.0 and 0.6 in steps of
0.1 (see Table 2). We used ADAM as the optimizer (Kingma
and Ba, 2014). Deciding on a loss function is a critical choice in
the creation of the surrogate. The loss function determines the
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FIGURE 3 | Sketch of (A) convolutional NN 1. The first layer takes as input a single-channel N× N image and applies four 3× 3 convolutions to generate four N× N

images, the second layer applies eight 3× 3 convolutions to generate eight N× N images, the third layer applies 16 3× 3 convolutions to generate sixteen N× N

images, the fourth layer applies eight 3× 3 convolutions to generate eight N× N images, the fifth layer applies four 3× 3 convolutions to generate four N× N images

and the sixth layer applies a 3× 3 convolution to generate a single N× N image. Sketch of (B) autoencoder NN 2. The first six layers perform a meanpool operation

that reduces image height and width by half after each layer, with the image dimensions following the sequence {1002, 502, 252, 122, 62, 32, 12} while adding channels

after each layer following the sequence {1, 64, 128, 256, 512, 1024, 2048}. Then, the following six layers reverse the process, reducing the number of channels

following the sequence {1024, 512, 256, 128, 64, 1} while increasing the height and width following the sequence {12, 32, 72, 132, 252, 512, 1002}. This sketch only

defines the kinds of layers used. For details about the activation functions used in each layer (see Table 1).

types of error the surrogate’s approximation will make compared
to the direct calculation and the acceptability of these errors
will depend on the specific application. The mean squared error
(MSE) error is a standard choice. However, it is more sensitive to
larger absolute errors and therefore tolerates large relative errors
at pixels with small values. A loss function calculated on the log of
the values would be equally sensitive to relative error no matter
what the absolute value. In most biological contexts we want to
have a small absolute error for small values and a small relative
error for large values. We explored the use of both functions,

MAE and MSE, as described in Table 2. We used 80 and 20%
of the dataset for training and test sets, respectively. We trained
each model once. The highest and lowest values in the input
and output images are 1 and 0, respectively. The former only
occurs in sources and their vicinity. Given the configurations
of the sources, the fraction of pixels in the image with values
near 1 is ∼ 2πR2/L2 ≈ 2%. Thus, pixels with small values
are much more common than pixels with large values, and
because the loss function is an average over the field, high field
values tend to get washed out. To account for this unbalance
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TABLE 1 | Convolutional neural network architectures.

Operation Act Output shape

Conv 3 × 3 LReLU 4 × 100 × 100

Dropout 1 (D1) – –

BatchNorm Identity –

Conv 3 × 3 LReLU 8 × 100 × 100

BatchNorm Identity –

Conv 3 × 3 LReLU 16 × 100 × 100

BatchNorm Identity –

Conv 3 × 3 LReLU 8 × 100 × 100

BatchNorm Identity –

Conv 3 × 3 LReLU 4 × 100 × 100

BatchNorm Identity –

Conv 3 × 3 ReLU 1 × 100 × 100

Dropout 2 (D2) – –

BatchNorm Identity –

Conv 3 × 3 LReLU 64 × 100 × 100

BatchNorm Identity –

Dropout 3 (D3) – –

Meanpool Identity 64 × 50 × 50

Conv 3 × 3 LReLU 128 × 50 × 50

Meanpool Identity 128 × 25 × 25

Conv 3 × 3 LReLU 256 × 25 × 25

Meanpool Identity 256 × 12 × 12

Conv 3 × 3 LReLU 512 × 12 × 12

Meanpool Identity 512 × 6 × 6

Conv 3 × 3 LReLU 1,024 × 6 × 6

Meanpool Identity 1,024 × 3 × 3

Conv 3 × 3 LReLU 2,048 × 1 × 1

ConvT 3 × 3 LReLU 1,024 × 3 × 3

ConvT 3 × 3 LReLU 512 × 7 × 7

ConvT 3 × 3 LReLU 256 × 13 × 13

ConvT 3 × 3 LReLU 128 × 25 × 25

ConvT 3 × 3 LReLU 64 × 51 × 51

Dropout 4 (D4) – –

ConvT 4 × 4 ReLU 1 × 100 × 100

BatchNorm Identity –

Left panel corresponds to the successive operations of NN 1 while the right panel

corresponds to the successive operations NN 2. Act stands for activation function. Conv,

ConvT, and (L)ReLU stand for convolution, convolution transpose, and (leaky) rectified

linear unit, while Identity means the activation function is the identity function (see Innes

et al., 2018). Both NNs take as input the initial condition which has dimensions Channels

× Width × Height = 1 × 100 × 100.

between the frequency of occurrence of low and high values,
we introduced an exponential weight on the pixels in the loss
function. We modulate this exponential weight through a scalar
hyperparameter w, for the field in the ith lattice position in the
loss function as

L
(α)
iβ = exp(−(〈i|1〉 − 〈i|yβ〉)/w) ·

(

〈i|ŷβ〉 − 〈i|yβ〉
)α

, (1)

where α is 1 or 2 for MAE or MSE, respectively and β tags the
tuple in the data set (input and target). Here 〈|〉 denotes the inner

product and |i〉 is a unitary vector with the same size as |yβ〉
with all components equal to zero except the element in position
i which is equal to one. |1〉 is a vector with all components
equal to 1 and with size equal to that of |yβ〉. Then 〈i|yβ〉 is a
scalar corresponding to the pixel value at the ith position in |yβ〉,
whereas 〈i|1〉 = 1 for all i. Notice that high pixel values will then
have an exponential weight ≈ 1 while low pixel values will have
an exponential weight ≈ exp(−1/w). This implies that the error
associated to high pixels will have a larger value than that for low
pixels. The loss function L

(α) is the mean value over all pixels (i)
and a given data set (β):

L
(α) = 〈L(α)

iβ 〉 , (2)

where 〈〉 denotes average. In our initial trial training runs, we
noticed that the loss function always reached a plateau by 800
epochs, so we trained the NNs over 800 epochs for all runs
reported in this paper. Because the training is stochastic, the
loss function can increase as well as decrease between epochs
as seen in Figure 4. At the end of 800 epochs we adopted the
network configuration with the lowest loss function regardless of
the epoch at which it was achieved.

While the trendline (averaged over 5 or 10 epochs) of the loss
function value tends to decrease during training, the stochasticity
of the training means that the value of the loss function often
increases significantly between successive epochs, even by one
or two orders of magnitude (see Figure 4). In some cases, the
loss function decreases back to its trend after one or two epochs,
in other cases (which we call jumps), it stays at the higher
value, resetting the trend line to the higher value and only
gradually begins to decrease afterwards. In this case all of the
epochs after the jump have larger loss functions than the epoch
immediately before the jump, as shown for the evolution of
the loss function for a typical training run in Figure 4A. This
behavior indicates that the stochastic optimization algorithm has
pursued an unfavorable branch. To avoid this problem, we added
a roll-back algorithm to the training, as proposed in Geoffrey
(2020). We set a loss threshold value, Lthrs, such that if the
ratio of loss value from epoch n to n + 1 is larger than Lthrs,
then the training algorithm reverts (rolls back) to the NN state
corresponding to epoch n − s and tries again. The stochasticity
of training means that roll-back has an effect similar to training
an ensemble of models with the same hyperparameters and
selecting the model with the lowest loss function value, however,
the roll-back optimization takes much less computer time than
a large ensemble. We set s = 5 and set the threshold value
Lthrs to

Lthrs = C
1

m

n
∑

ep=n−m+1

L
(α)(ep) . (3)

Here we chose C = 5 and m = 20 where ep stands
for epoch, i.e., we set the threshold value to 5 times the
average loss function value over the previous m = 20
epochs. We chose these values empirically. In Figure 4B, we
have plotted a typical example of the evolution of the loss
function during training when we train using roll-back. A typical
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TABLE 2 | Trained models with their corresponding hyperparameters.

Model Weight (w) p1 p2 D1 D2 D3 D4 Loss 〈res〉 (10−3) 99-P res (10−2) Max res

1 1000 1 1 0.3 0.3 0.3 0.3 MSE 2.77 2.26 0.35

2 1 1 1 0.3 0.3 0.3 0.3 MSE 2.91 2.25 0.37

3 1 1 1 0.4 0.4 0.1 0.1 MSE 3.49 2.03 0.34

4 1 0 1 − − 0.3 0.3 MSE 2.49 1.97 0.38

5 1 0 1 − − 0.1 0.1 MSE 2.04 1.89 0.35

6 1 1 0 0.3 0.3 − − MSE 75.8 16.5 0.47

7 1 1 0 0.4 0.4 − − MSE 79.9 21.6 0.65

8 100 1 1 0.3 0.3 0.3 0.3 MAE 2.62 2.59 0.33

9 100 1 1 0.4 0.4 0.1 0.1 MAE 2.08 2.02 0.30

10 1 1 1 0.3 0.3 0.3 0.3 MAE 3.19 3.53 0.40

11 1 1 1 0.4 0.4 0.1 0.1 MAE 2.36 2.66 0.25

12 1 0 1 − − 0.1 0.1 MAE 2.12 2.17 0.34

13 10 0 1 − − 0.3 0.3 MAE 3.15 3.39 0.36

14 10 0 1 − − 0.1 0.1 MAE 2.30 2.46 0.33

Each model is numbered for reference. The weight w is defined in Equation (1). The Di for i = 1, . . . , 4 are the dropout values (see Table 1). D1 and D2 apply to NN 1 whereas D3 and

D4 apply to NN 2. p1 and p2 are Boolean variables. pi = 0 (pi = 1) implies NN i is turned off (on). If p1 = 0 then the values of D1 and D2 are irrelevant, while p2 = 0 makes the values

of D3 and D4 irrelevant. The loss column specifies the loss function, either MSE for mean squared error (α = 2) or mean absolute error MAE (α = 1), respectively (see Equation 1). The

mean res, 99-P res and max res columns show the mean, 99-percentile and maximum residual for each model computed over the test set.

FIGURE 4 | Training loss function vs. epochs for model 9 (the hyperparameters are specified in Table 2 and the NN details are described in the main text) without

roll-back (A) and with roll-back (B) using the same seed. We have circled in green where a jump occurred during this training run (see main text for discussion).

number of roll-backs is 40, i.e., this number is the number of
epochs where the jump was higher than the threshold during
the training.

3. RESULTS

Quite commonly, themean residual is the estimator used to judge
the goodness of a given model. However, there are cases where
the worst predictions are highly informative and can be used
to make basic decisions about which features of the NN do not
add value. In Figures 5A–C we show 20 different inputs, targets
and predictions, respectively. The predictions in Figure 5C were

obtained usingmodel 12 (seeTable 2) and qualitatively show very
good results. For each model we computed the residual, i.e., the
absolute value of the difference between the ground truth and
the NN prediction pixel-by-pixel, as shown in Figure 6B. We
also analyzed the relative residual, i.e., the residual divided by
the ground truth pixel-by-pixel, as shown in Figure 6C. Models
6 and 7, which only use NN 1 (p1 = 1 and p2 = 0), yield mean
residuals an order of magnitude larger than models that use both
or only NN 2. Therefore, we reject the NN 1-only models and do
not analyze them further.

Table 2 summarizes the hyperparameter values for each
model we trained. The choice of these parameters was empirically
driven. Since we had the field values bounded between 0 and 1
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FIGURE 5 | Results for 20 randomly selected test data sets’. (A) input, (B) ground truth (target output), and (C) NN surrogate prediction of steady-state diffusion field

output for the input.

similar to black and white images, we tested different L-norms,
namely, mean absolute value (MAE), mean squared value (MSE),
and mean to the fourth power, often used in neural networks
applied to images. In this paper we show the results for MAE
andMSE.We also tested different hyperparameters values for the
dropout. We found that low dropout values for NN 2 yield the
best results.

In Figure 6D, we have plotted the mean residual value, the
99-Percentile residual value and the maximum residual value
computed over the test set. Notice that the 99-Percentile residual
value is ten times the mean residual value and the maximum
residual value is 10 times the 99-Percentile residual value. This
suggests that the residual distribution contains outliers, i.e., there
is a 1% residual that deviate from mean residual 10 to 100 times.
Furthermore, these outliers correspond to regions between the
source and the border, near the source, where the source is
close to the border as suggested by Figure 6B. While the largest
values in absolute residual come from pixels near the source as
shown in Figure 6B, the relative error near the source is small
whereas the relative error near boundaries is large, as shown in
Figure 6C. In Figure 6A we show the stationary solution for the
same batch shown in Figures 6B,D. Since we are considering
absorbing boundary conditions, the field at the boundary is
always equal to zero, thus strictly speaking the relative residual

value has a singularity at the boundary. Thus, at the boundaries
there is a larger relative error due to the boundary conditions.
Since our method has a small absolute error independent of the
mean value, the relative error is a poor measure of accuracy for
small mean values, since it diverges as the mean approaches zero.
Since we have zero-value boundary conditions, at the boundaries
there is a larger relative error due to the boundary conditions
and therefore the relative error is not a functionally meaningful
measure of error unless the system being modeled is highly
sensitive to small values of the field. Oxygen levels in normal
tissues fluctuate significantly in space and time. For instance,
in the retina, oxygen concentration fluctuates dramatically in
space, time and depending on illumination. Short-term temporal
fluctuations range from 5 to 50% depending on depth in cat
retina (Linsenmeier and Zhang, 2017). This intrinsic oxygenation
fluctuation in tissues suggests that biologically, 5% relative error
at low concentrations is an acceptable accuracy for oxygen
concentration estimation.

Models 5, 11, and 12 have low mean residuals with model
5 being the smallest. Focusing instead on the mean residual
and the 99-Percentile, we notice that models 3, 4, 5, 11, and 12
yield the best results. Finally, considering the maximum residual
together with the previous estimators, we notice that model 9
has low mean residual, low 99-percentile residual and the lowest
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FIGURE 6 | (A) The stationary solution for the same batch in the test set. (B) Residual (absolute error, i.e., ||yβ 〉 − |ŷβ 〉|) for 20 sample source images in the test set

trained using model 12 in Table 2. (C) Residual/true value (relative error) for the corresponding images. (D) Mean, 99-Percentile, and maximum residual for all of the

models in Table 2. Left scale for mean value, right scale for 99-Percentile residual value and right scale in parentheses for max residual value.

max residual. Depending on the user’s needs, one estimator
will be more relevant than others. In this sense, defining a best
model is relative. Nevertheless, having more metrics (e.g., relative
error for large values and absolute error for small values) helps
to characterize each model’s performance. In future work we’ll
consider more adaptable metrics, as well as mixed error functions
that incorporate multiple estimators.

Figure 8 plots the prediction vs. the target for each pixel
in each image in the training and test sets for models
9 and 11. Notice that for the test sets the results are
qualitatively similar between models, for the training set the
dispersion is larger in model 11 than in model 9. This
suggests model 11 is overfitting the training data. Models 9
and 11 have the same hyperparameters except for the weight
w. In the former w = 100 while in the latter w =
1. This suggests that the exponential weight helps reduce
overfitting.

In Figure 7, we show the prediction from NN 1 (Figure 7A)
and NN 2 (Figure 7B). Notice that NN 1 is able to detect
the sources whereas NN 2 is able to predict the field. Using
both neural networks improves the results as can be seen in
Figure 6D. As previously mentioned, pixels with low (near 0)
field values are much more common than pixels with high (near

1) field values. While the exponential factor in the loss function
compensates for this bias, the residual in Figure 6D does not.
To address this issue we compute the mean residual over small
field intervals. This will tell us how well the model predicts for
each range of absolute values. Furthermore, this method can
be used to emphasize accuracy or relative accuracy in different
value ranges. The way we do this is as follows. In Figure 8,
we take 10 slices of size 0.1 in the direction y = x. We then
compute the mean residual and standard deviation per slice. In
Supplementary Material (section 1), we have plotted the PDF
(probability density function) per slice (blue bins) and a Gaussian
distribution (red curve) with mean and standard deviation set to
the mean residual and standard deviation per slice, respectively.
We did this for all models in Table 2. In Figure 9, we plotted
the mean residual vs. for each model for each slice for the
test and training sets. The error envelop shows the residual
standard deviation per slice. Notice thatmodels trainedwithMSE
have a smaller residual standard deviation than models trained
with MAE in the case of the training set, which suggest that
MSE contributes to overfitting more that MAE. Recall that the
difference between the MSE gradient and the MAE gradient is
that the former is linear with the residual value whereas the latter
is a constant. Therefore, training with MAE generalizes better

Frontiers in Physiology | www.frontiersin.org 9 June 2021 | Volume 12 | Article 667828

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Toledo-Marín et al. Diffusion Solver Surrogate

FIGURE 7 | Results for 20 randomly selected test data sets’. (A) Prediction using model 7, which only uses NN 1. (B) Prediction using model 5, which only uses NN 2

(see Table 2). Note the different scale on the color bars.

than MSE. Additionally, notice the dispersion increases with the
slice number.

In Figure 10, we plotted the average and maximum over the
residual mean value per slice (see Figure 10A) and the residual
standard deviation per slice (see Figure 10B) for each model’s
test and training sets. Notice that in this approach, by slicing the
residual values and computing the average residual over the set of
slices, we are giving equal weight to each mean residual per slice
and, therefore, compensating for the imbalance in frequency of
low and high value pixels. An interesting feature from using MSE
or MAE comes from the PDF of the field values. Training using
MAE makes the PDF prediction quite accurate as the prediction
completely overlaps with the ground truth (see Figure 11). In
comparison, when training withMSE, the PDF is not as good and
the overlap between ground truth and prediction is not complete.
There is a mismatch for low field values in the sense that the NN
does not predict low non-zero field values correctly. Thus, we
recommend using MAE to avoid this issue.

4. DISCUSSION

In large-scale mechanistic simulations of biological tissues,
calculations of the diffusion of molecular species can be a
significant fraction of the total computational cost. Because
biological responses to concentrations often have a stochastic
overlay, high precision may not be essential in these calculations
Because NN surrogate estimates are significantly faster than the
explicit calculation of the steady-state diffusion field for a given
configuration of sources and sinks, an effective NN surrogate
could greatly increase the practical size of simulated tissues, e.g.,
in cardiac simulations (Kerckhoffs et al., 2007; Sundnes et al.,
2014), cancer simulations (Bruno et al., 2020), and orthopedic
simulations (Erdemir et al., 2007). In our case, using a NVIDIA
Quadro RTX 6000, each diffusion solution is about 1,000 times
faster using the trained NN solver compared to the Julia code.

In order to decide if this acceleration is useful, we have to
consider how long it takes to run the direct simulation, how long
the NN takes to train and how long it takes to execute the NN

once it has been trained (Fox and Jha, 2019). If each diffusion
calculation takes δ seconds to run, conducting N calculations
directly takes tdirect = Nδ. If each neural network surrogate takes
ǫ seconds to run, and the number of replicas in the training set
is M and the training time is E, the total time for the neural
network simulation is the time to generate the training set, the
training time plus the simulation time, tneuro = Mδ+E+Nǫ. To
estimate these times, we ran 20, 000 explicit simulations in Julia,
which took ∼6 h and 30 min, yielding roughly 1.16s each. The
NN training time was 12 h on average. While the speedup for an
individual simulation is δ/ǫ ≈ 1, 000, the ratio τneuro/τdirect must
be smaller than 1 in order to have a useful acceleration. Equating
this ratio to 1 and solving for N yields

Nmin = M + E/δ

1− ǫ/δ
≈ M + E

δ
. (4)

Nmin gives the number of replicas necessary for the total time
using the NN to be the same as the direct calculation. Of course,
the exact times will depend on the specific hardware used for
the direct and NN calculations. In our case, from Equation
(4) we obtain that Nmin ≈ 57, 300, we would need to use
the neural network more than 57, 300 times for the total time
using the NN to be faster than the direct calculation. Thus
the NN acceleration is primarily useful in simulations that will
be run many, many times for the specific situation for which
the NN is appropriate. Consider for example if one wishes
to include a variable number of sources, different lattice sizes,
different dimensionalities (e.g., 3D) and boundary conditions.
The more general the NN the more training data it will require,
the longer training will take, and the slower the individual NN
calculations will be. Currently virtual-tissue simulation studies
often run thousands to tens of thousands of replicas and each
replica often takes tens of minutes to tens of hours to run.
This computational cost makes detailed parameter identification
and uncertainty quantification impractical, since simulations
often have dozens of parameters to explore. If using a NN-
based diffusion solver accelerated these simulations by 100× it
would permit practical studies with hundreds of thousands to
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FIGURE 8 | Ground truth vs. prediction for (A) test set and (B) training set in the case of model 9; (C) test set and (D) training set in the case of model 11 (see

Table 2). The number of points plotted in each panel is 3.75 · 107.

millions of replicas, greatly expanding the feasible exploration
of parameter space for parameter identification and uncertainty
quantification. It is worthwhile mentioning that there are other
numerical methods for diffusion in 2D and 3D models that
can also exploit the GPU parallelization such as the one in
Secomb (2016) based on a discretization of Green’s function.
Our focus is on the ability of neural-network surrogates to solve
the time-independent diffusion equation, however it would be
interesting to extensively optimize the mechanistic methods we
used to generate our training data sets. Generating training data
is so time consuming, applications of deep neural networks will

benefit greatly from using faster mechanistic methods to generate
training data.

While there isn’t a protocol for setting up a diffusion-solver
surrogate, there are several things that must be considered. First
one needs to frame the problem similar to how one would do
when performing mechanistic modeling. One needs to settle
on the dimensionality, e.g., 1D, 2D, 3D,. . . or n-dimensions;
the system size which in our case we settled on 100 × 100;
the type of sources to consider, e.g., sinks, sources, or both;
the boundary conditions e.g., absorbing, reflective, periodic,
or mixed; the distribution of sources in space; and it is also
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FIGURE 9 | Mean (data points) ± standard deviation (envelop) per slice vs. models (see Table 1) for test set (blue) and training set (red). Slice i corresponds to field

values in the interval [0.1 · (i − 1), 0.1 · i] where i = 1, . . . , 10.
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FIGURE 10 | (A) For each model, we show the average and maximum over the residual mean value per slice. (B) For each model, we show the average and

maximum over the residual standard deviation per slice (see Figure 9). This was done for the test and training set.

FIGURE 11 | PDF of field obtained via NN (blue) and ground truth (red) in the case of training using MSE, for (A) model 2 and (B) model 3 and for training using MAE,

for (C) model 11 and (D) model 12. When using MSE (A,B) the NN predicts zero field values instead of low non-zero field values as the predicted PDF has a larger

peak in zero than the ground truth PDF, and a smaller PDF for small non-zero field values compared with the ground truth PDF. When training using MAE (C,D) the

prediction and ground truth PDFs overlap completely.

important to think about the accuracy required from the neural
network. There isn’t a rigorous way to determine the size of
the required training dataset, although the size will depend on
the problem one is addressing and the decisions made in the
previous step. We recommend to start with a training dataset

size of the order ∼ 104. Then one needs to decide on the
network architecture. For the network architecture the number
of options is large. For instance, the depth of the neural network,
e.g., deep or shallow; the type of layers, e.g., convolutional layers,
fully-connected layers, recurrent layers, or mixed layers; the
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activation functions, e.g., ReLU, sigmoid, tanh, etc. Evidence
suggests that using deep neural networks as opposed to shallow
neural networks will increase the non-linearity of the neural
network, which ultimately broadens the learning capabilities
of the neural network (Bianchini and Scarselli, 2014). But as
depth increases the gradient of the loss function can grow
or diminish significantly leading to instabilities or a regime
of zero learning where the gradient becomes zero but the
loss function value is large. Very deep neural networks can
also lead to an overflow or underflow situation. Therefore, the
neural network depth is a feature that should be set in way
that meets a middle ground. The right choice of activation
functions, regularizer layers (i.e., DropOut, BatchNorm, etc.)
and weight initializers can hinder the unwanted features of
instabilities or zero learning. Choosing the right optimizer for
training is also something to consider. However, unless there
are some very specific needs, the standard rule is to use the
ADAM optimizer (Kingma and Ba, 2014). Choosing the loss
function is crucial as this is the metric the neural network
will use to measure how good the outcome is. Typically for
these type of problems MSE, MAE and other similar norms are
used. Additionally, there are a number of (hyper)parameters to
be chosen. For instance, some activation functions, regularizer
layer and optimizers have hyperparameters. Also the number
of epochs and size of minibatch are hyperparameters. To set
the hyperparameters’ values, one can start by using the values
reported in the literature but the scope should be to explore
the space of hyperparameters by training an ensemble of neural
networks with different hyperparameters and then choosing the
model that performed best on the validation set.

In a real tissue, the oxygen tension on the surface of the blood
vessel and in the tissue as a whole involves complex feedback
among many factors, including spatial and temporal variation in
the supply and consumption of oxygen; supply at a given location
could depend on the degree of local blood-vessel dilation, the rate
of blood flow, and levels of oxygen in the blood to name a few
examples. A realistic model of oxygenation in tissue would need
to include spatial and temporal models of all of these processes
individually and of their coupling. Clearly such a model is much
more complex than our simple example of calculating the steady-
state oxygen field given a fixed set of circular sources with fixed
oxygen tensions and a fixed uniform consumption rate in the
tissue implemented as linear decay.

While developing NN surrogates to solve the entire complex
problem of oxygenation would be worthwhile, we believe that
deep neural network surrogates will (at least initially) not replace
the entire simulation, but to replace the most computationally
costly components of the simulation. In this case, looking for
surrogates for specific commonly-used calculations, which can
be used in many different applications and which can provide
a substantial speed-up is appropriate. Many biophysical and
engineering problems require solving the diffusion equation
for fixed sources. Despite the improvements to direct solution
mentioned in Secomb (2016), solving the diffusion equation still
often contributes much of the computational cost of the full
problem solution. In these cases, the faster the “diffusion step”
is computed, the faster the solution of the multiscale model as a

whole. To train an optimal diffusion surrogate for a particular
problem one has to choose a set of appropriate loss functions and
combine them to minimize the errors of the metrics one defines
as most relevant to the specific problem being addressed. How to
choose loss functions and their weighting to achieve macroscopic
desired outcomes is not well understood as a general problem.
Even in our very simple example, we had to explore a wide
variety of loss functions to achieve reasonable convergence of
our NN during training and reasonable final absolute and relative
accuracy of our surrogate.

5. CONCLUSIONS

Neural networks provide many possible approaches to
generating surrogate diffusion solvers. Given the type of
problem setting, we were interested in a neural network
that could predict the stationary field. We considered a deep
convolutional neural network, an autoencoder and their
combination. We considered two loss functions, viz. mean
squared error and mean absolute error. We considered different
hyperparameters for dropout and an exponential weight to
compensate the under-sampling of high field values. The
exponential weight also helped reduce overfitting as shown in
Figure 8.

The range of scientific and engineering applications for
diffusion solvers is very broad. Depending on the specific
application, the predictions by the neural network will have
to meet a specific set of criteria quantified in the form of
statistical estimators (e.g., mean error, max error, percentiles,
mean relative error, etc.). In this paper we studied several
reasonable error metrics, namely, mean residual, maximum
residual, 99-Percentile residual, mean relative residual, mean
weighted residual and the weighted standard deviation residual.
The last two metrics compensate for the low frequency of high
field values, ones that usually occur in small regions around
sources. The autoencoders are commonly used in generative
models which is applicable, as we have shown here, to the case
of a diffusion surrogate. The field predictions are accurate on
all the metrics we considered. This is appears to be due to
collapsing the input into a one-dimensional vector and then
decoding back to the initial size, which forces the network to
learn the relevant features (Kingma and Welling, 2019). While
some models had high errors across all metrics, no single model
had the smallest error for all error metrics. Different networks
and hyperparameters were optimal for different metrics, e.g.,
model 5 had the lowest mean residual, whereas model 9 yielded
relatively good results on all metrics. Model 9 uses both neural
networks with the dropout values for the deep convolutional
network were set to D1,2 = 0.4, and for the autoencoder to
D3,4 = 0.1. The weight hyperparameter was set to 100. Recall
that large weight hyperparameter values make the loss function
weight high field values over low field values. This is important
since the largest absolute error happens close to sources and close
to boundaries because of the under-representation of these kinds
of configurations. We also noticed that this choice reduced the
overfitting as was shown in Figure 8.
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Additionally, we tested several loss function. Here we reported
the results using mean squared error and mean absolute error.
We noticed two key differences.WithMSE the weighted standard
deviation (see Figure 9) is smaller than for MAE for the training
set. However, for the test set, the results for both loss functions
are comparable. This difference between training and test sets
suggests that MSE is more prone to overfitting the data than
MAE. The other key difference is that for the MAE, the predicted
field probability function consistently overlapped the ground
truth completely, whereas for MSE there is a mismatch in that
the NN does not predict low non-zero field values correctly (see
Figure 11). Therefore, we recommend using MAE as the loss
function for surrogate calculations where the field values are well
bounded, as we have shown it produces better predictions than
MSE. The autoencoder (NN 2) is capable of approximating the
diffusion field on its own, the convolutional network (NN 1) is
not. However, if we use the two networks together we find that
the prediction is more accurate than NN 2 alone.

These encouraging results suggest that we should pursue NN
surrogates for acceleration of simulations in which the solution
to the diffusion equation contributes a considerable fraction of
the total computational cost. An effective NN diffusion solver
surrogate would need to be able to solve diffusion fields for
arbitrary sources and sinks in two or three dimensions with
variable diffusivity, a much higher dimensional set of conditions
than the two circular sources in a uniform two-dimensional
square domain that we investigated in this paper. A key question
will be the degree to which NNs are able to generalize, e.g., from n
sources to n+1 sources or from circular sources to more complex
shapes. In addition, here we only considered absorbing boundary
conditions, ultimately mixed boundary conditions are desirable.
It is unclear if the best approach would be a single NN capable
of doing multiple boundary conditions, or better to develop
unique NNs for each boundary condition scenario. While in this
paper we have only considered zero-field boundary conditions
mainly due to feasibility purposes for the neural network, we will
consider different boundary conditions in future work.

Increasing the number and size of vessels is a combinatorial
problem in the dimensionality of the training set, but it ultimately
doesn’t change the nature of the diffusion equation. Thus, we
expect that a straightforward approach consisting using a bigger
training set including a greater variety of source and sink sizes,
shapes, and number, should still work, though it will take more
computing time to generate the training data and train the
network. The ability of greens-function methods to solve the
diffusion equation for arbitrary numbers of sources and sinks
suggests (though it does not prove) that such generalization
should work also for neural network solvers.

To solve 3D diffusion problems, the most straightforward
extension of ourmethod would be to use 3D convolutional neural
networks. However, there may be some difficulties with a naive
extension of our convolutional methods to 3D. If we have a
linear dimension of L then the output layer of the NN has L2

elements in 2D and L3 in 3D. Thus, for a given value of L, the
network size is much larger in 3D. Besides the size of the network,
the training set will also be larger. For N sources, the number
of possible configurations grows roughly as L2N in 2D, while
the number of configurations in 3D is L3N . In addition, if we

wish to represent realistic sources in 3D, like blood vessels, we
need to sample over appropriately spatially-correlated patterns
of sources rather than the randomly located spherical sources
we used in our 2D example. Naively these very high dimensions
of possible source configurations suggest that the 3D problem
would require impossibly large training datasets. However, one
of the outstanding features of deep neural networks is their
capacity to extrapolate from apparently severely undersampled
training sets, so increasing the number of possible configurations
exponentially does not necessarily imply the need to increase the
training set exponentially. Another approach to develop diffusion
solver surrogates in 3D is to build physically informed neural
networks (PINNs) (Raissi et al., 2019) where the ODE describing
the process, the initial conditions and the boundary conditions
are embedded in the loss function. Other efforts attempt to tackle
the curse of dimensionality by physical intuition embedded in
the neural network architecture (Roberts, 2021). We will explore
these issues in future work.
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