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Abstract
Background: Several autoimmune features occur during coronavirus disease 2019 
(COVID- 19), with possible implications for disease course, immunity, and autoimmune 
pathology. In this study, we longitudinally screened for clinically relevant systemic 
autoantibodies to assess their prevalence, temporal trajectory, and association with 
immunity, comorbidities, and severity of COVID- 19.
Methods: We performed highly sensitive indirect immunofluorescence assays to de-
tect antinuclear antibodies (ANA) and antineutrophil cytoplasmic antibodies (ANCA), 
along with serum proteomics and virome- wide serological profiling in a multicentric 
cohort of 175 COVID- 19 patients followed up to 1 year after infection, eleven vac-
cinated individuals, and 41 unexposed controls.
Results: Compared with healthy controls, similar prevalence and patterns of ANA 
were present in patients during acute COVID- 19 and recovery. However, the paired 
analysis revealed a subgroup of patients with transient presence of certain ANA pat-
terns during acute COVID- 19. Furthermore, patients with severe COVID- 19 exhibited 
a high prevalence of ANCA during acute disease. These autoantibodies were quanti-
tatively associated with higher SARS- CoV- 2- specific antibody titers in COVID- 19 pa-
tients and in vaccinated individuals, thus linking autoantibody production to increased 
antigen- specific humoral responses. Notably, the qualitative breadth of antibodies 
cross- reactive with other coronaviruses was comparable in ANA- positive and ANA- 
negative individuals during acute COVID- 19. In autoantibody- positive patients, mul-
tiparametric characterization demonstrated an inflammatory signature during acute 
COVID- 19 and alterations of the B- cell compartment after recovery.
Conclusion: Highly sensitive indirect immunofluorescence assays revealed transient 
autoantibody production during acute SARS- CoV- 2 infection, while the presence of 
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1  |  INTRODUC TION

Acute coronavirus disease 2019 (COVID- 19) causes a large clinical 
spectrum, ranging from a mild condition in the majority of cases 
to fatal disease in 1– 2% of subjects.1– 3 Several features of acute 
COVID- 19 resemble clinical manifestations of systemic inflamma-
tory and autoimmune diseases, such as fatigue, myalgia, hyperin-
flammation, thrombosis, and skin rashes.3,4 Furthermore, COVID- 19 
may trigger the onset of autoimmune pathology, as reported for 
Guillain- Barré syndrome, antiphospholipid syndrome, vasculitis, 
and multisystem inflammatory syndrome in children.5– 9 Vice versa, 
autoimmune phenomena have been connected to the pathogenesis 
of severe COVID- 19. Pre- existing autoantibodies targeting the type 
I interferon pathway have been found in about 10% of COVID- 19 
cases with critical disease.10– 12

Other acute or chronic viral infections have been associated with 
autoimmune responses, which have been proposed to arise by mo-
lecular mimicry, epitope spreading, or bystander activation.13 Various 
autoantibodies have been described in association with COVID- 19, 
including antinuclear antibodies (ANA),14– 20 antineutrophil cytoplas-
mic antibodies (ANCA),15,16,21 antiphospholipid antibodies,5,8,14,17,19,22 
and antibodies targeting different extracellular antigens.11,16 While 

the presence of different autoantibodies has been associated with 
severe COVID- 19 and worse outcome,11,15,17– 19 it remains unclear 
to what extent autoantibodies are triggered by acute infection, even 
though transient autoreactivity and new development of autoanti-
bodies have been suggested in a subgroup of COVID- 19 patients.16,20 
Furthermore, several aspects of autoantibodies in COVID- 19, includ-
ing their interplay with virus- specific humoral responses and their du-
rability after acute infection, need further elucidation. In this study, 
we comprehensively characterized autoantibodies by using highly 
sensitive indirect immunofluorescence (IIF) assays in a multicentric 
prospective cohort of 227 individuals.

2  |  RESULTS

2.1  |  Presence of systemic autoantibodies during 
acute COVID- 19 and recovery

We performed a comprehensive immunological characterization of 
175 individuals with confirmed COVID- 19 up to 1 year after infection 
(Figure 1A and Table 1, Table S1), including autoantibody screening 
by IIF, serum proteomics, and serological profiling. 41 individuals with 

autoantibodies in COVID- 19 patients correlated with increased antiviral humoral im-
mune responses and inflammatory immune signatures.

K E Y W O R D S
antinuclear antibodies, autoantibodies, COVID- 19, SARS- CoV- 2, VirScan

G R A P H I C A L  A B S T R A C T
In a multicentric cohort of 175 COVID- 19 patients, 11 vaccinated individuals, and 41 unexposed controls, we measured ANA and ANCA, 
along with serum proteomics and virome- wide serological profiling. Paired analysis revealed the transient presence of ANA patterns and 
ANCA during acute COVID- 19. The presence of autoantibodies correlated with increased virus- specific humoral immune responses and a 
proinflammatory immune signature.
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negative history and serology for severe acute respiratory syndrome 
coronavirus 2 (SARS- CoV- 2) infection were included as controls 
(Figure 1A and Table 1). Furthermore, eleven unexposed individuals 
were sampled before and after vaccination with BNT162b2 (Table S2).

Using a highly sensitive IIF screening assay, we detected titers of 
1:320 and above in 17 of 41 (41.4%) healthy individuals (Figure 1B), 
which followed an insignificant trend toward higher ANA prev-
alence in older participants (Figure S1A). The prevalence of ANA 

F I G U R E  1  Prevalence of autoantibodies in healthy controls and COVID- 19 patients during acute disease and follow- up. (A) Study 
overview. (B– I) Prevalence of ANA titers (B– E) and ANCA (F– I) in healthy controls (n = 41) and COVID- 19 patients during acute disease 
(n = 175), 6 months (n = 116) and 1 year (n = 92) after symptom onset. (J– M) Venn diagrams depicting co- occurrence of nuclear ANA, 
cytoplasmic ANA, and ANCA in healthy individuals (J; n = 17), acute COVID- 19 patients (K; n = 89), and COVID- 19 patients 6 months (L; 
n = 56) or 1 year (M; n = 42) after SARS- CoV- 2 infection that presented with at least one type of autoantibody. p- values indicate comparison 
of ANA (B– E) and ANCA (F– I) prevalence between mild and severe COVID- 19 patients using the Fisher's exact test
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positivity in healthy individuals was similar to that in COVID- 19 
patients during acute disease (48.0%, odds ratio (OR) = 1.30, 
p = .49) and 6 months (47.4%, OR = 1.27, p = .59), and 1 year after 
recovery (42.3%, OR = 1.04, p = 1) (Figure 1C– E). Most of the ob-
served ANA titers were just above the positivity threshold of 1:320. 
Interestingly, we observed a trend of higher ANA prevalence in in-
dividuals with severe COVID- 19 compared with mild disease during 
acute infection (OR 1.85, p = .061), which was significantly higher 
6 months after recovery (OR = 3.81, p = .0015) (Figure 1C,D).

Similarly, we used an IIF assay to detect ANCA. ANCA prevalence 
was similar in mild COVID- 19 patients during acute disease (3.6%) 
compared with healthy individuals (2.4%) (Figure 1F,G). Conversely, 
we observed a significantly higher ANCA prevalence in severe acute 
COVID- 19 patients (19.7%), both compared with healthy subjects 
(p = .016) and mild COVID- 19 cases (p = .00096) (Figure 1F,G), which 
returned to ranges seen in healthy individuals after 6 months (5.1%, 
p = .61) and 1 year (14.3%, p = .15) (Figure 1H,I).

In several patients, nuclear ANA, cytoplasmic ANA, or ANCA 
were detected concurrently, particularly during acute COVID- 19 

(Figure 1J– M). Moreover, ANCA showed a tendency to be more fre-
quent in ANA- positive (14.3%) compared with ANA- negative (5.5%) 
individuals during acute COVID- 19 (p = .06) (Figure 1K).

2.2  |  Characteristics of ANA and ANCA patterns in 
acute COVID- 19

To gain a qualitative appreciation, we classified ANA patterns ac-
cording to the international consensus on ANA pattern anticell (AC) 
nomenclature.23 ANA patterns were very similar in healthy controls 
and COVID- 19 patients at all three sampling time points, and in 
some participants, different patterns were detected concurrently 
(Figure 2A– D, Figure S2A– D). The most common nuclear patterns 
were fine- granular nuclear (AC- 4 or AC- 4 like) and nucleolar (AC- 8, 
AC- 9, and AC- 10), whereas the most common cytoplasmic patterns 
were speckled (AC- 19 and AC- 20) (Figure 2E– G).

Antineutrophil cytoplasmic antibodies patterns observed during 
acute COVID- 19 and follow- up were mostly cytoplasmic (Figure 2H). 

TA B L E  1  COVID- 19 study cohort characteristics

Healthy controls
COVID- 19
Acute disease

COVID- 19
6- month follow- up

Disease severity Mild Severe Mild Severe

n (%) 41 109 (62.3%) 66 (37.7%) 77 (66.3%) 39 (33.7%)

Patient characteristics

Age 32 (28– 52) 34 (28– 52) 68 (57– 78) 36 (29– 53) 64 (58– 74)

Days after symptom onset 10 (7– 16) 14 (9– 27) 194 (185– 205) 211 (194– 224)

Sex (female) 24 (58.5%) 54 (49.5%) 27 (40.9%) 40 (51.3%) 14 (35.9%)

Vaccinated 0 0 0 9 (11.7%) 3 (7.7%)

Hospitalized – 20 (18.3%) 66 (100%) 12 (15.6%) 39 (100%)

Laboratory parameters

Lymphocyte count (G/L) 1.80 (1.48– 2.33) 1.81 (1.18– 2.23) ns 0.76 (0.56– 1.10)**** 1.96 (1.67– 2.37) ns 1.77 (1.48– 2.34) ns

CRP (mg/L) 0.6 (0.4– 1.6) 1.3 (0.6– 5.3)** 59.2 (32.2– 119.0)**** 0.6 (0.6– 1.3) ns 1.7 (2.2– 5.1)**

TNF- α (ng/L) 8.1 (6.4– 10.0) 9.8 (7.6– 12)** 16.4 (13.0– 20.6)**** 9 (6.8– 10.9) ns 11.8 (9.3– 15.0)****

IL- 6 (ng/L) 0.5 (0– 1.1) 1.3 (0.1– 4.9)*** 19.5 (7.4– 57.0)**** 0.9 (0– 2.1)* 1.6 (0.3– 5.3)**

S1- specific IgA (OD ratio) 0.33 (0.25– 0.46) 1.77 (0.73– 4.81)**** 7.24 (2.52– 10.2)**** 2.52 (1.54– 4.96)**** 5.09 (3.12– 7.75)****

S1- specific IgG (OD ratio) 0.20 (0.17– 0.25) 0.61 (0.27– 2.19)**** 5.12 (0.32– 9.33)**** 2.67 (1.29– 5.69)**** 6.91 (5.18– 8.49)****

Comorbidities

Hypertension (n) 5 (12.2%) 12 (11.0%) ns 38 (57.8%)*** 6 (7.8%) ns 21 (53.8%)**

Diabetes (n) 2 (4.9%) 6 (5.5%) ns 19 (28.8%)* 4 (5.2%) ns 12 (30.7%)**

Heart disease (n) 1 (2.4%) 6 (5.5%) ns 24 (36.6%)*** 2 (2.6%) ns 15 (38.5%)***

Lung disease (n) 5 (12.2%) 10 (9.2%) ns 12 (18.8%)* 5 (6.5%) ns 11 (28.2%) ns

Malignancy (n) 1 (2.4%) 3 (2.8%) ns 8 (12.1%)** 3 (3.9%) ns 5 (12.8%) ns

Kidney disease (n) 0 (0%) 8 (7.3%) ns 17 (25.8%)*** 3 (3.9%) ns 10 (25.6%)**

Autoimmune disease (n) 3 (7.3%) 6 (5.5%) ns 7 (10.6%) ns 6 (7.8%) ns 6 (15.4%) ns

Note: Medians and interquartile ranges (in parentheses) are specified for continuous variables, with p- values obtained by the Mann– Whitney U 
test, compared with healthy individuals. Numbers of individuals (n) and percentages of the corresponding subgroup (in parentheses) are shown for 
categorical variables, with p- values calculated by the Fisher's exact test, in comparison with healthy individuals.
Abbreviations: ns, nonsignificant; OD, optical density.
*p < .05.; **p < .01.; ***p < .001.; ****p < .0001.
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However, cytoplasmic patterns were atypical, and accordingly, none 
of the ANCA- positive patients showed positivity for either antimy-
eloperoxidase (MPO) or antiproteinase 3 (PR3) antibodies (Figure 2I), 
suggesting other antigen specificities than commonly found in ANCA- 
associated vasculitis.24,25

2.3  |  Temporal trajectory of autoantibodies in 
individual COVID- 19 patients

To appreciate changes in ANA and ANCA on an individual level, we 
performed the paired analysis of all followed- up COVID- 19 patients 

F I G U R E  2  IIF pattern of autoantibodies in acute and recovered COVID- 19. (A– D) Intersection plots showing counts of the four most 
prevalent ANA patterns (horizontal bars) and counts of pattern combinations (vertical bars) as indicated by the dot matrix, for healthy 
controls (A), and COVID- 19 patients during acute disease (B), 6 months (C), and 1 year after symptom onset (D). (E– G) Example IIF pictures 
showing the most common nuclear, including fine- granular (E) and nucleolar (F), and cytoplasmic, including speckled (G), ANA patterns 
observed in the study cohort. All images were recorded at a dilution of 1:320. y/o— years old. (H) IIF ANCA patterns observed in ANCA- 
positive COVID- 19 patients during acute disease (n = 17) and 6 months after recovery (n = 3). (I) Anti- MPO and anti- PR3 antibodies during 
acute COVID- 19 (n = 175) in ANCA- positive and ANCA- negative individuals. Dashed lines indicate diagnostic cut- off values
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(n = 129). For mild and severe COVID- 19 patients combined, we ob-
served similar proportions of patients with isolated ANA positivity 
during acute disease (14.7%) and follow- up (12.4%). However, a trend 
toward a higher proportion of new ANA development at follow- up 
visit was evident in patients with severe COVID- 19 (20.5%) com-
pared to patients with mild COVID- 19 (8.2%) (OR = 2.84, p = .054) 
(Figure 3A,B). To also account for subtle changes in IIF patterns, we 
conducted a blinded, paired analysis of IIF images to identify pat-
terns that were transiently present either during acute disease or 
follow- up. Strikingly, we found transient patterns in 11 of 62 (17.7%) 

ANA- positive COVID- 19 patients during acute disease, with speck-
led cytoplasmic (AC- 19 and 20), nucleolar (AC- 8, 9, 10), and mitotic 
being the most frequent patterns (Figure 3C,D). In stark contrast, 
only three of 59 (5.1%) ANA- positive individuals presented with a 
pattern during follow- up that was not present during acute disease, 
thus demonstrating that transient ANA patterns were significantly 
more prevalent during acute COVID- 19 (p = .045) (Figure 3C).

For ANCA, we observed that of ten patients that tested posi-
tive during acute COVID- 19, eight were negative during follow- up, 
whereas only two remained positive. Furthermore, only one 

F I G U R E  3  Paired longitudinal comparison indicates transient induction of autoantibodies in acute COVID- 19. (A– B) Temporal trajectory 
of ANA titers in mild (A, n = 85) and severe (B, n = 44) COVID- 19 patients, showing the first available follow- up sample, i.e., at 6 months 
(n = 116) or 1 year (n = 13) after symptom onset. Colors indicate development of ANA status from acute disease to follow- up. (C) Results 
from blinded, paired IIF picture analysis (n = 129). Patterns that were uniquely observed at one timepoint are colored. (D) Exemplary IIF 
pictures of three patients exhibiting transient ANA patterns during acute COVID- 19, with a transient nucleolar (left), cytoplasmic (middle) or 
mitotic (right) pattern. All pictures were recorded at a dilution of 1:320. y/o, years old. (E– F) Temporal trajectory of ANCA titers in mild (E, 
n = 85) and severe (F, n = 44) COVID- 19 patients. Colors indicate development of ANCA status from acute disease to follow- up
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patient newly exhibited positive ANCA at follow- up (Figure 3E,F). 
Collectively, we found that a subgroup of individuals shows ANA 
and atypical ANCA production during the acute phase of COVID- 19, 
which usually subsides during follow- up.

2.4  |  Virus- specific responses in autoantibody- 
positive and SARS- CoV- 2- vaccinated subjects

To elucidate the influence of autoantibody production during acute 
infection, we investigated the correlation of autoantibodies with spe-
cific humoral immune responses to SARS- CoV- 2. We longitudinally 
assessed SARS- CoV- 2 spike 1 (S1)- specific immunoglobulin A (IgA) 
and IgG titers and found that the presence of ANA was associated 
with higher concentrations of S1- specific antibodies in COVID- 19 
patients during acute disease, which extended to 6 months after 
recovery (Figure 4A). Conversely, 1 year after recovery, we did not 
observe any differences (Figure S3). The presence of ANA corre-
lated significantly with S1- specific IgG levels even after account-
ing for age, disease severity, and sampling time point in a multiple 
linear regression model, which was not the case of S1- specific IgA 
(Figure 4B, Table S3). Similarly, we found higher S1- specific IgA and 
a trend toward higher IgG titers in patients that tested positive for 
ANCA during acute disease (Figure 4C).

To elucidate whether autoantibodies were associated with an 
increased humoral immune response only after natural SARS- CoV- 2 
infection or also after other antigen- specific immune responses, we 
measured ANA and S1- specific antibodies in 11 individuals before 
and after COVID- 19 vaccination with BNT162b2 (Figure 4D– F, Table 
S2). Although a tendency of an increased ANA prevalence following 
the first vaccine shot was apparent, no significant difference was 
observed between sampling timepoints (Figure 4D). We observed 
higher S1- specific IgA in ANA- positive individuals when combin-
ing data from 2 and 4 weeks after the first vaccine shot, whereas 
no difference was observed for IgG (Figure 4E,F). In summary, these 
findings suggest the presence of autoantibodies is associated with in-
creased S1- specific humoral responses following acute COVID- 19 up 
to 6 months after recovery and following SARS- CoV- 2 vaccination.

2.5  |  Human virome- wide serological profiling in 
acute COVID- 19

Next, we sought to investigate qualitative aspects of antibody re-
sponses during acute COVID- 19 with respect to previous antiviral 
humoral responses in ANA- positive and ANA- negative individuals. 
Based on the phage immunoprecipitation sequencing (PhIP- seq) 
technology (VirScan),26 we performed human virome- wide serolog-
ical profiling in 97 acute COVID- 19 patients and 18 healthy controls. 
We assessed the results of antibodies directed to 112 different vi-
ruses (Table S4), with data for a total of 87,890 epitopes, consist-
ing of 56- amino acid (AA)- long, overlapping peptides. The library 
comprised all six human coronaviruses (HCoV) described before the 

COVID- 19 pandemic, including HCoV- HKU1, HCoV- NL63, HCoV- 
229E, betacoronavirus 1 (BCoV1, including HCoV- OC43), severe 
acute respiratory syndrome- related coronavirus (SARS- CoV), and 
Middle East respiratory syndrome- related coronavirus (MERS- CoV).

A multivariate analysis using the summed epitope hits per viral 
species revealed distinct differences in COVID- 19 patients com-
pared with healthy controls, which were particularly pronounced 
more than 1 week after symptom onset (Figure 5A). Between- group 
comparisons of COVID- 19 patients and healthy controls revealed a 
significant difference (p < .005) in summed epitope hits for eight viral 
species (Figure 5B). Of these, four enterovirus species were more 
abundant in healthy controls. Conversely, antibodies targeting cy-
tomegalovirus (CMV) and Pegivirus A, and those directed to SARS- 
CoV and MERS- CoV were significantly more abundant in COVID- 19 
patients, whereas antibodies targeting the four common coronavi-
ruses HCoV- HKU1, HCoV- NL63, HCoV- 229E, and BCoV1 showed 
a parallel but insignificant trend (p > .005) (Figure 5B). Antibodies 
directed to all coronavirus species correlated positively with time 
from symptom onset (Figure 5C), thus indicating the production of 
cross- reactive antibodies during acute COVID- 19.

To further study antibodies targeting CoVs in acute COVID- 19, 
we evaluated serological profiles on a singular epitope level. We 
found a significantly higher (p < .05) proportion of COVID- 19 pa-
tients tested positive for a total of 18 CoV epitopes compared with 
healthy controls, of which 16 were in the spike and two in the nuc-
leoprotein (Figure 5D, Figure S4A). Since healthy individuals tested 
negative for these but positive for only one epitope (Figure 5D,E), we 
hypothesized these 18 CoV epitopes enriched in COVID- 19 patients 
were targeted by antibodies newly produced during acute COVID- 19 
and cross- reactive with shared epitopes of other CoVs. Pairwise pro-
tein alignment of these epitopes with corresponding SARS- CoV- 2 
proteins allowed identification of regions of SARS- CoV- 2 spike and 
nucleoprotein targeted by cross- reactive antibodies, comprising 
two segments (AA positions 777– 886 and 1105– 1195) of spike S2 
domain and one segment of nucleoprotein (AA 140– 252), which 
have been previously identified in COVID- 19 patients.27 Patients 
with severe COVID- 19 tested positive for significantly more cross- 
reactive antibodies than mild disease patients (Figure 5E). However, 
no significant difference was observed in ANA- positive compared 
with ANA- negative patients (Figure 5F), although the proportion of 
ANA- positive patients that tested positive was slightly higher for 
most cross- reactive epitopes (Figure 5G).

To explore potential correlations of ANA with humoral re-
sponses against other viruses, we compared seroreactivity against 
all tested viral epitopes and ANA positivity. Several epitopes were 
detected more frequently (p < .005) in ANA- positive, but not in 
ANA- negative, individuals (Figure 5H). Three of the identified 
peptides were located on Epstein- Barr virus (EBV) nuclear anti-
gen 2 (EBNA- 2), to which ANA- positive participants showed more 
epitope hits, independent of age (Figure S4B). When combining 
data of all available epitopes, we found significantly more hits in 
ANA- positive compared with ANA- negative participants, which 
was most pronounced at a younger age (Figure 5I). Thus, human 
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F I G U R E  4  Presence of autoantibodies is associated with an increased virus- specific humoral response after SARS- CoV- 2 infection 
and vaccination. (A– B) S1- specific IgA and IgG in ANA- positive and ANA- negative COVID- 19 patients during acute disease (n = 175) and 
6 months after recovery (n = 104). (B) p- values indicate significance of the correlation of ANA positivity as an independent parameter in a 
multiple linear regression model accounting for age, disease severity and sampling time point (Table S3). (C) S1- specific IgA and IgG in ANCA- 
positive and ANCA- negative COVID- 19 patients during acute disease (n = 175). (D) ANA prevalence and titers in previously unexposed 
individuals (n = 11) before and after vaccination with BNT162b2 at indicated time points. The p- value was calculated using the chi- squared 
test of independence. (E) S1- specific IgA and IgG before and after COVID- 19 vaccination (n = 11). Red vertical lines indicate the time points 
of first and second vaccination with BNT162b2. (F) S1- specific IgA and IgG in ANA- positive and ANA- negative participants following 
COVID- 19 vaccination with BNT162b2, combining data from 10– 13 days after the first (n = 11) and 1– 3 days after the second (n = 10) 
vaccination
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virome- wide serological profiling in acute COVID- 19 revealed 
antibodies cross- reactive to other coronaviruses, whereas ANA- 
positive participants produced antibodies to more viral epitopes on 
a virome- wide level.

2.6  |  Association of autoantibodies with 
inflammatory signature during acute COVID- 19

Several studies have associated autoantibodies with severe COVID- 
19.11,15,17– 19 Thus, we sought to further characterize ANA- positive 
and ANA- negative COVID- 19 patients during acute disease by 
proteomics comprising 86 inflammatory markers, cytokine meas-
urements, flow cytometry, clinical history, and routine diagnostic 
analyses. The proportion of participants with a known autoimmune 
disease was low in our cohort and indifferent in individuals without 
or with ANA or ANCA (Table 2), and none of the study participants 
developed a symptomatic autoimmune disease following SARS- 
CoV- 2 infection. We found a higher prevalence of comorbidities in 
autoantibody- positive patients, including hypertension and heart 
disease, but no significant sex difference (Table 2).

A multivariate analysis with 130 variables, including demo-
graphic parameters, routine diagnostic measurements, and inflam-
mation markers obtained by proteomics (Table S5), allowed for 
a nearly complete separation of severe COVID- 19 patients from 
healthy individuals, with mild COVID- 19 patients exhibiting inter-
mediate characteristics (Figure 6A). Several markers contributing to 
severe COVID- 19 were significantly higher (p < .05) in ANA- positive 
than ANA- negative COVID- 19 patients, revealing an inflammatory 
signature associated with severe disease in ANA- positive individu-
als (Figure 6B). Importantly, ANA- positive COVID- 19 patients were 
older and experienced longer hospitalization (Figure 6C), and many 
inflammation markers, including C- reactive protein (CRP) and inter-
leukin (IL)- 6, were elevated compared with ANA- negative patients 
(Figure 6D). Furthermore, ANA positivity was associated with T- cell 
activation as suggested by higher soluble IL- 2 receptor alpha (sIL- 
2Rα) serum concentrations and increased proportions of activated 
CD38+ HLA- DR+ CD4+ and CD8+ T cells (Figure 6E). Similar trends 
toward an inflammatory signature were also observed in ANCA- 
positive individuals during acute COVID- 19, although these results 
were limited due to the lower prevalence of ANCA (Figure S5A,B).

Finally, we assessed the characteristics of ANA- positive and ANA- 
negative COVID- 19 patients 6 months after acute disease to identify 
alterations in the absence of acute inflammation. A multivariate analy-
sis of 43 parameters, including patient characteristics and routine diag-
nostic measurements, revealed differences comparing ANA- positive 
and ANA- negative individuals, with several inflammation markers, in-
cluding IL- 6, tumor necrosis factor– alpha (TNF- α), and sIL- 2Rα, being 
significantly higher in ANA- positive participants (Figure 6F,G, Table 
S6). Interestingly, we also observed differences in Ig subclasses, with 
significantly higher IgG1 and significantly lower IgM in ANA- positive 
individuals (Figure 6H). Furthermore, marked changes in B- cell subsets 
were apparent, with higher frequencies of IgD+ CD27–  naïve B cells 

and lower frequencies of IgD+ CD27+ nonswitched and IgD–  CD27+ 
switched memory B cells in ANA- positive individuals (Figure 6I). 
Altogether, in autoantibody- positive COVID- 19 patients, we found an 
inflammatory signature during acute disease resembling alterations 
found in severe disease and changes in inflammation markers, Ig sub-
classes, and B cells 6 months after recovery.

3  |  DISCUSSION

Although autoantibodies targeting nuclear, cytoplasmic, and soluble 
autoantigens following viral infections have been well described,28,29 
their significance has remained ill- defined. In this study, we used 
highly sensitive assays to detect ANA and ANCA, representing sys-
temic autoantibodies, in patients up to 1 year after infection with 
SARS- CoV- 2. Firstly, we found transient ANA and ANCA in a sub-
group of participants during acute COVID- 19, highlighting the im-
portance of careful interpretation of diagnostic autoantibody assays 
during acute viral infections and of re- testing autoantibody- positive 
individuals several months after recovery from acute viral infections. 
Autoantibody production could result from the activation of autore-
active B and T cells recognizing viral epitopes by means of molecular 
mimicry.30,31 Alternatively, antigen- independent ‘bystander’ activa-
tion of autoreactive B and T cells by cytokines and other inflamma-
tory mediators could drive autoantibody production.32,33 Particularly 
in severe COVID- 19, which is associated with early neutrophilia and 
pronounced neutrophil extracellular trap (NET) formation,34,35 NETs 
expose shielded intracellular self- antigens,25,36,37 thus causing the 
production of ANCA and ANA. Interestingly, a high prevalence of 
IgA ANCA has been reported in acute COVID- 19 patients show-
ing chilblain- like lesions.21 In our study, all ANCA- positive subjects 
tested negative for anti- MPO and anti- PR3 antibodies and showed 
no indication of ANCA- associated vasculitis. Thus, it remains elusive 
whether these ANCA have pathogenic potential.

Secondly, we found distinct features in autoantibody- 
positive COVID- 19 patients during acute disease and recovery. 
Autoantibodies were associated with prolonged hospitalization 
and inflammation markers during acute disease, supporting re-
cent findings.11,15,17– 19,38,39 Whereas autoantibodies targeting type 
I interferons have been linked to severe COVID- 19,10– 12,16 severe 
COVID- 19 could decrease self- tolerance by tissue damage and in-
flammation, altogether leading to the generation of autoantibodies. 
However, confounding factors should be considered, such as age 
and comorbidities, affecting the prevalence of autoantibodies40 
and the risk of severe COVID- 19.1 Following these considerations, 
we found changes in ANA- positive individuals even 6 months 
after acute COVID- 19, indicating ongoing low- grade inflammation. 
Furthermore, we observed alterations of the B- cell compartment, 
including increased naïve and decreased memory B cells, previously 
associated with presymptomatic and early- stage autoimmune dis-
eases.41– 43 Differences in total Ig concentrations have been found 
in autoimmune diseases44 and patients suffering from postacute 
COVID- 19 syndrome (PACS).45 Thus, we have previously identified 
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an Ig signature in PACS, including low total IgM, and found clinical 
risk factors, including increased age and severe disease course.45 
Although a direct link to autoantibody development in PACS has not 
been reported, a misdirected immune response may underly both 
manifestations. Notably, none of the participants newly developed 
a symptomatic autoimmune disease during the study period, but 
larger studies of longer duration are needed to confirm these data.

Thirdly, we observed higher S1- specific antibody titers in 
autoantibody- positive COVID- 19 patients, indicating a more ro-
bust, functional humoral immune response, since S1- specific anti-
bodies have been associated with virus- neutralizing capacity.46– 48 
Similar to our results, recent reports found increased antiviral hu-
moral responses in autoantibody- positive individuals during acute 
COVID- 19, although the interrelation remained unclear.16,19,22 
Interestingly, following COVID- 19 mRNA vaccination in systemic 
lupus erythematosus (SLE) patients, higher concentrations of 
SARS- CoV- 2- specific IgG positively correlated with anti- dsDNA 
antibodies,39 which is in line with our data of increased S1- specific 
IgA production in ANA- positive individuals following vaccination. 
These findings indicate an inherent capacity of ANA- positive in-
dividuals to mount more robust antibody responses upon antigen 
challenge. Further investigations are needed to elucidate the dif-
ferences in antigen- specific IgA and IgG production after mRNA 
vaccination. Human virome- wide serological profiling revealed the 
production of cross- reactive antibodies to other coronaviruses 
during acute COVID- 19, particularly in severe disease, consistent 
with broader humoral immune responses in severe COVID- 19.27 
Whereas antibodies targeted similar cross- reactive coronavirus 
epitopes in ANA- positive and ANA- negative COVID- 19 patients, 
more antibodies targeted EBV antigen EBNA- 2 in ANA- positive 
individuals. Higher humoral responses against EBV have been de-
scribed in ANA- positive individuals, irrespective of autoimmune 
disease.49,50 Also, EBV has been associated with the develop-
ment of ANA and SLE.51 Furthermore, severe acute COVID- 19 is 
characterized by extrafollicular B- cell activation,20,38,52 which is 
found in autoimmune disease and associated with activation of 
autoreactive B cells. This increased response could allow for rapid 
formation of virus- specific antibody- secreting cells,20 potentially 

explaining why individuals with autoantibodies exhibit higher hu-
moral responses during acute COVID- 19. Whether autoantibody- 
positive subjects also show increased SARS- CoV- 2- specific 
long- lived T- cell responses53 remains to be investigated.

Limitations of this study include the use of highly sensitive IIF 
assays that yielded a high prevalence of positive results in healthy 
subjects and COVID- 19 patients. Most of the measured ANA titers 
were at or just above the threshold level, which usually would be 
considered of irrelevant clinical significance. Moreover, we did not 
assess the specificity of autoantibodies, but recent studies have 
shown reactivity to a wide spectrum of autoantigens.11,16

Altogether, our study shows autoantibodies in COVID- 19 appear 
to be transient and correlate with increased antiviral humoral im-
mune responses and a distinct immune signature. As questions arise 
regarding long- term consequences of COVID- 19, including the risk 
of immune dysregulation and autoimmune disease, understanding 
the mechanisms involved in balancing self- tolerance, and protective 
immune responses become crucial to recognize and manage patients 
at risk for developing autoimmune diseases.

4  |  METHODS

4.1  |  Human subjects and patient characteristics

Following written informed consent, adult individuals were re-
cruited for medical history and blood sampling between April 2020 
and May 2021. The study was approved by the Cantonal Ethics 
Committee of Zurich (BASEC #2016- 01440). The cohort comprised 
mild and severe COVID- 19 patients, healthy controls, and vacci-
nated individuals.

COVID- 19 patients (Table 1, Table S1): 175 patients with re-
verse transcriptase quantitative polymerase chain reaction (RT- 
qPCR)- confirmed SARS- CoV- 2 infection were included during acute 
COVID- 19 at four hospitals in the Canton of Zurich, Switzerland. 
COVID- 19 was classified for maximum disease severity according 
to the World Health Organization (WHO) classification criteria into 
mild disease –  including asymptomatic (n = 4), mild illness (n = 93), 

F I G U R E  5  Comprehensive serological profiling (VirScan) in ANA- positive and ANA- negative individuals during acute COVID- 19. (A) 
Principal component analysis (PCA) of 112 viral species, including data of 18 healthy individuals and 96 acute COVID- 19 patients, grouped 
by time point of sample collection after symptom onset. Each dot represents an individual participant. (B) Loadings of PCA depicted 
in (A), with each viral species shown as individual dots (Table S4). Colors indicate participant groups with higher mean epitope hits per 
species. Viral species with significant difference (p < .005) between COVID- 19 patients and healthy controls are shown as large colored 
dots. Black crosses indicate insignificant differences of coronaviruses (p > .005). (C) Temporal association of summed epitope hits of six 
coronaviruses after symptom onset, shown for acute COVID- 19 patients (n = 97) and healthy controls (n = 18). Horizontal green bars 
represent means of healthy controls. (D) Percentage of healthy controls and COVID- 19 patients with positive results for epitopes of six 
coronavirus species. Significantly enriched epitopes (p < .05) of spike and nucleocapsid are indicated accordingly. (E– F) Summed hits for 
cross- reactive epitopes, comparing healthy controls and patients with mild and severe COVID- 19 (E) or COVID- 19 patients with or without 
ANA (F). (G) Percentage of ANA- positive and ANA- negative COVID- 19 patients with positive results for cross- reactive and non- cross- 
reactive epitopes of six coronavirus species. Dashed lines mark significance threshold at p < .05. (H) Percentage of ANA- positive and 
ANA- negative study participants (n = 115) with positive results, shown for all available epitopes. Significantly enriched epitopes (p < .005) 
are colored. EBV— Epstein– Barr virus; HSV- 2— herpes simplex virus 2; VZV— varizella- zoster virus; other— other viruses comprising Aichivirus 
A and Mamastrovirus 1. (I) Summed epitope hits per individual including all available epitopes, comparing ANA- negative and ANA- positive 
participants (top; n = 115) and as a function of age (bottom)
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TA B L E  2  Characteristics of ANA-  or ANCA- positive and ANCA- negative COVID- 19 patients at acute disease or 6 months after infection

ANA

COVID- 19
Acute disease

COVID- 19
6- month follow- up

ANA- negative ANA- positive p- value ANA- negative ANA- positive p- value

Patient characteristics

n (%) 91 (52.0%) 84 (48.0%) – 61 (52.6%) 55 (47.4%) – 

Age 38 (30– 58) 60.5 (38– 73) *** 33(29– 47) 61 (45– 69) ****

Days after symptom onset 11 (7– 16) 12 (7– 19) ns 195 (186– 206) 204 (183– 218) ns

Sex (female) 43 (47.3%) 38 (45.2%) OR 0.92, ns 29 (47.5%) 25 (45.5%) OR 0.95, ns

Comorbidities

Hypertension 18 (19.7%) 32 (38.1%) OR 2.48, * 8 (12.1%) 19 (34.5%) OR 3.39, **

Diabetes mellitus 12 (13.2%) 13 (15.5%) OR 1.20, ns 6 (9.8%) 10 (18.2%) OR 1.99, ns

Heart disease 9 (9.9%) 21 (25.0%) OR 3.02, ** 1 (1.6%) 16 (29.1%) OR 23.68, ***

Lung disease 15 (16.5%) 7 (8.3%) OR 0.46, ns 9 (14.8%) 7 (12.7%) OR 0.87, ns

Kidney disease 11 (12.1%) 14 (16.7%) OR 1.45, ns 2 (3.3%) 11 (20.0%) OR 7.14, **

Malignancy 4 (4.4%) 8 (9.5%) OR 2.28, ns 4 (6.6%) 5 (9.1%) OR 1.40, ns

Autoimmune disease 8 (8.7%) 5 (5.9%) OR 0.66, ns 5 (8.2%) 7 (12.7%) OR 1.62, ns

ANCA ANCA- negative ANCA- positive p- value ANCA- negative ANCA- positive p- value

Patient characteristics

n (%) 158 (90.3%) 17 (9.7%) – 113 (97.4%) 3 (2.6%) – 

Age 44 (32– 65) 71 (57– 80) *** 43 (31– 64) 69 (64– 70) – 

Days after symptom onset 11 (7– 16) 11 (9– 19) ns 199 (187– 216) 182 (164– 212) – 

Sex (female) 74 (46.8%) 7 (41.2%) OR 0.79, ns 52 (46.0%) 1 (33.3%) – 

Comorbidities

Hypertension 41 (25.9%) 9 (52.4%) OR 3.19* 27 (23.9%) 0 (0%) – 

Diabetes mellitus 21 (13.2%) 4 (23.5%) OR 2.00, ns 15 (13.3%) 1 (33.3%) – 

Heart disease 24 (15.2%) 6 (35.2%) OR 3.02, ns 16 (14.2%) 1 (33.3%) – 

Lung disease 21 (13.3%) 1 (5.9%) OR 0.41, ns 15 (13.3%) 1 (33.3%) – 

Kidney disease 22 (13.9%) 3 (17.6%) OR 1.32, ns 12 (10.6%) 1 (33.3%) – 

Malignancy 10 (5.9%) 2 (11.8%) OR 1.96, ns 8 (7.1%) 1 (33.3%) – 

Autoimmune disease 12 (7.6%) 1 (5.9%) OR 0.76, ns 12 (10.6%) 1 (33.3%) – 

Note: For continuous variables, medians and interquartile ranges (in parentheses) are specified, with p- values obtained by the Mann– Whitney U test 
comparing individuals with and without autoantibodies. For categorical variables, numbers of individuals (n) and percentages of the corresponding 
subgroup (in parentheses) and odds ratios (OR) with p- values indicating significance in the Fisher's exact test are shown.
Abbreviation: ns, nonsignificant.
*p < .05.; **p < .01.; ***p < .001.; ****p < .0001.

F I G U R E  6  ANA- positive COVID- 19 patients exhibit a proinflammatory signature. (A) PCA accounting for 130 parameters (Table S5) 
including data of healthy controls (n = 28) and acute COVID- 19 patients (n = 146). Participants with missing values were excluded from 
this analysis. 95% confidence ellipses (t- distributed) are shown for healthy controls and severe COVID- 19 patients. (B) Loadings (variable 
coordinates) of the PCA depicted in (A), with each parameter shown as an individual dot. Colors indicate the group of COVID- 19 patients 
with higher mean for each parameter, and parameters with significant differences (p < .05) are represented as large dots, and selected 
parameters are annotated (Table S5). (C– E) Comparison of ANA- negative and ANA- positive individuals among healthy controls or acute 
COVID- 19 patients. (C) Patient characteristics, including duration of hospitalization (n = 174) and age (n = 216). (D) Inflammation markers, 
including CRP (n = 209) and IL- 6 (n = 215). (E) T- cell activation, including sIL- 2Rα (n = 215), and CD38+HLA- DR+ CD4+ (n = 210) and CD8+ 
(n = 209) T cells. (F– G) PCA (F) and loadings (G) accounting for 43 parameters (Table S6) including data of COVID- 19 patients 6 months after 
recovery (n = 107). Participants with missing values were excluded from this analysis. (H– I) Comparison of ANA- negative and ANA- positive 
COVID- 19 patients 6 months after recovery. (H) Concentration of total Ig subclasses in serum (n = 116). (I) Frequency of B- cell subsets, 
including IgD+CD27− naïve, IgD+CD27+ nonswitched memory and IgD−CD27+ switched memory B cells (n = 114)
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and mild pneumonia (n = 12)— and severe disease— including se-
vere pneumonia (n = 30) and acute respiratory distress syndrome 
(n = 36).54 Follow- up visits for medical history and blood collection 

were conducted approximately 6 months and 1 year after symptom 
onset. Unreachable individuals or those declining further participa-
tion were lost to follow- up.
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Healthy controls (Table 1): 41 participants with negative history of 
SARS- CoV- 2 infection and serology were recruited. Five individuals 
developed COVID- 19 after inclusion and were subsequently allo-
cated to the patient cohort.

Vaccinated individuals (Table S2): 11 individuals with negative 
history and serology for SARS- CoV- 2 infection were sampled once 
before vaccination, once after the first, and twice after the second 
mRNA vaccination with BNT162b2 (BioNTech- Pfizer).

4.2  |  Autoantibody detection

Antinuclear antibodies was measured by IIF on HEp- 2 cells 
(Euroimmun) with a cut- off dilution of 1:320. ANCA was 
measured by IIF on neutrophils fixed by ethanol and forma-
lin (Euroimmun) with a cut- off dilution of 1:40. IIF imaging was 
performed using a diagnostic, computer- aided microscopy sys-
tem (Euroimmun). ANA patterns were classified according to the 
international consensus on ANA patterns anticell (AC) nomen-
clature23 by blinded trained personnel. For paired analyses of 
ANA patterns, 129 pairs of IIF pictures at 1:320 dilution were 
blinded for patient characteristics and sampling time point and 
examined pairwise by the same observer. Antibodies against my-
eloperoxidase and proteinase 3 were measured on Phadia™ 250 
(ThermoFisher Scientific) or on Bioflash® (Werfen) according to 
the manufacturer's instructions.

4.3  |  Immunoassays

Immunoassays for Ig subsets, anti- SARS- CoV- 2 spike S1- specific 
IgA and IgG, interleukin (IL)- 1β, IL- 2, IL- 5, IL- 6, IL- 10, IL- 12, 
interferon- γ (IFN- γ), sIL- 2Rα, and tumor necrosis factor α (TNF- α), 
were performed in accredited laboratories at University Hospital 
Zurich. Serum Ig subsets were quantified on an Optilite® turbi-
dimeter (The Binding Site Group). S1- specific IgA and IgG were 
measured by enzyme- linked immunosorbent assays (ELISA) 
(Euroimmun), as established.46 IL- 1β, IL- 2, IL- 6, IFN- γ, and sIL- 2Rα 
were determined by ELISA (R&D Systems) on Opsys Reader™ 
(Dynex). IL- 5, IL- 10, and IL- 12 were measured by cytometric bead 
assays (BD Biosciences) on a Navios cytometer (Beckman Coulter). 
TNF- α was determined with a kit (R&D Systems) using MagPix® 
(ThermoFisher Scientific).

4.4  |  Flow cytometry

As established,55 blood samples were processed and analyzed in ac-
credited laboratories at University Hospital Zurich. Blood samples 
were lysed with VersaLyse, fixed with IOTest3 solution, and stained 
with antibodies (Beckman Coulter; Table S7). Absolute cell counts 
were determined using Flow Set Pro Fluorospheres calibration 
beads on Navios (Beckman Coulter).

4.5  |  Serum proteomics

Serum samples were analyzed by a proximity extension assay- 
based technology 92- plex inflammation panel (Olink®), as estab-
lished.33,55,56 Six parameters were excluded because less than 50% 
of samples showed results above the detection limit.

4.6  |  Human virome- wide serological profiling

As established,7,57 serum samples were inactivated, normalized for 
total IgG concentration, and incubated as duplicates with a bacte-
riophage library displaying linear, 56- amino acid long viral epitopes. 
IgG- phage complexes were captured with magnetic beads, lysed, 
and quantified by next- generation sequencing. Blank beads samples 
were used as negative controls. Reads were mapped to the epitope 
library with Bowtie2, and counts were obtained using SAMtools. A 
previously described binning strategy was used to identify positiv-
ity for epitopes,58 with a minimum z- score of 3.5 for both sample 
replicates compared with negative controls. Results for a total of 
112 different human viruses were included in the further analysis 
(Table S4), whereas eukaryotes, prokaryotes, non- human viruses, 
and human viruses with no variance or a maximal summed epitope 
hit count below three were excluded.

4.7  |  Statistics

Statistical analyses were performed using R (version 4.1.0). Unless 
otherwise specified, the between- group comparison was performed 
using two- tailed, nonparametric, unpaired testing (Mann– Whitney 
U) for numeric variables and odds ratios with the Fisher's exact test 
for categorical variables, with p- values of <.05 defined as significant. 
Missing values were omitted. Principal component analyses (PCA) 
were performed using stats (4.2.0) and factoextra (1.0.7) with scaled, 
centered variables, and loadings are shown as variable coordinates. 
Spearman's rank correlation was used for associations of numeric 
variables. Pairwise protein alignment for 56- amino acid (AA) long 
peptides with SARS- CoV- 2 spike (Uniprot Entry P0DTC2) and nu-
cleoprotein (P0DTC9) was generated using Biostrings (2.60.2), with 
BLOSUM62 substitution matrix and gap opening and extension pen-
alty of −11 and −1, respectively. Data visualization was performed 
using ggplot2 (version 3.3.5), ggfortify (0.4.12), ggVennDiagram 
(1.1.4), UpSetR (1.4.0), and corrplot (0.90). Horizontal lines in violin 
plots represent medians. Regression lines represent simple linear re-
gression models.
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