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Background: Chronic exposure to inorganic arsenic results in many cancers in susceptible

persons. The metabolism of inorganic arsenic and genomic susceptibility are thought to be

associated with cancer occurrence.

Methods: This study aims to examine the interaction of genomic susceptibility markers and

urinary methylation capacity indicators involved in inorganic arsenic metabolism with all-

cancer occurrence. This study conducted a follow-up on 96 residents to determine their

urinary inorganic arsenic metabolites and genomic assay from an arseniasis area. Among

them, 24 cancer developed. Multivariable Cox proportional hazards model was used to

determine and estimate the candidate independent variables for cancer development.

Results: The residents with high inorganic arsenic exposure, high primary methylation

index (PMI; MMA/InAs) (but lower secondary methylation index (SMI)), and non-
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At a glance of commentary

Scientific background on the subject

Inorganic arsenic exposure is associate

cancer.

What this study adds to the field

The combination of homozygosity type

including GSTO1, AS3MT, andMPO can

cancer among arseniasis residents in

ganic arsenic methylation capacity w

genomic effect on cancer occurrence.
heterogeneity type of genomic markers, including GSTO1, AS3MT, and MPO, tend to

develop cancers. Subjects with higher PMI are at higher risk of developing cancers

(HR ¼ 1.66; 95% CI ¼ 1.30e2.12). Cancer occurrence was greater among the CC type of

GSTO1 (HR ¼ 3.33; 95% CI ¼ 1.11e10.00), CC type of AS3MT (HR ¼ 19.21; 95% CI ¼ 1.16

e318.80), and AA type of MPO (HR ¼ 13.40; 95% CI ¼ 1.26e142.40). After adjusting con-

founders, a mutually moderating effect was revealed between genomic markers and

methylation capacity on cancer occurrence.

Conclusions: This study found the hypermethylation responses to inorganic arsenic expo-

sure and an array of genomic markers may increase the susceptibility of a wide range of

organ cancers. The findings indicated a high-risk arsenic-exposed population to develop

cancers. The phenotype of arsenic metabolism and genomic polymorphism suggested a

potential preventive strategy for arsenic carcinogenesis.
d with the risk of

of selected genes

predict the risk of

which the inor-

ill moderate the
Exposure to inorganic arsenic has been documented as an

etiological factor of all-causemortality in humans [1]. Cancers

of the skin and other internal organ cancers, including lung,

liver, bladder, and kidney, were associated with inorganic

arsenic exposure [2,3]. Recently, studies from Bangladesh

have also demonstrated the association between inorganic

arsenic exposure and the development of various cancers [4,5]

Therefore, the WHO and the US EPA has adopted a new

standard for arsenic in drinking water of 0.01 mg/l or 10 parts

per billion (ppb), replacing the old standard of 50 ppb [6,7].

The central issue of inorganic arsenic toxicities is the role

of inorganic arsenic metabolism in humans [8]. Studies have

shown that humans exposed to environmental inorganic

arsenic, by oxidation and methylation, will metabolize it to

arsenite (Asþ3), arsenate (Asþ5), monomethylarsonic acid

(MMA), and dimethylarsinic acid (DMA) in their urine [9,10].

Previousworks have shown that residents with lower levels of

methylation were likely to develop cancers of the skin, lung,

and bladder [11e14]. Studies in the area of the northeastern

coast of Taiwan have also demonstrated that adverse health

effects were related to chronic arsenic exposure and methyl-

ation capacity. The first intermediate of the methylation ca-

pacity, monomethylarsonic acid levels in urine, was further

defined as a biologically effective dose for inorganic arsenic

exposure in humans [14,15].
During the past decades, various genomic markers were

examined andwere reported to be associatedwith both arsenic

metabolism and the occurrence of specific cancers. The arsenic

þ3 oxidation state methyltransferase (AS3MT) was proven to

involve the methylation of inorganic to MMA and MMA to

DMA in rodents [16]. Researchers reported that AS3MT was

associated with inorganic arsenic carcinogenesis through

various methylation capabilities [17,18]. Glutathione S-trans-

ferase omega 1 (GSTO1) and GSTO2 polymorphisms were

documented to be associated with various cancers, and both

of them actively participated in arsenic metabolism [19].

One carbon metabolism-related enzymes were reported to be

associatedwith DNA synthesis, repair, andmethylation aswell

as carcinogenesis. Among them, 5-methylenetetrahydrofolate

reductase (MTHFR), 10-MTHFR, and 5-methyltetrahydrofolate-

homocysteine methyltransferase reductase (MTRR) were fre-

quently reported as key players in the methylation of arsenic,

which affects one's susceptibility to arsenic toxicity [20]. In

addition to these methylation-associated genes, oxidative

stress has been proposed as one of the important mechanisms

affecting inorganic arsenic metabolism and carcinogenesis.

The literature has shown that manganese containing super-

oxide dismutase (MnSOD), endothelial nitric oxide synthase

(eNOS), and myeloperoxidase (MPO) were associated with

arsenic carcinogenesis in both mammal and epidemiological

studies [21,22]. The tumor suppressor protein p53 mutation

results in loss of control of cell growth and genomic instability.

The p53 mutation is frequently documented as a factor related

to arsenic carcinogenesis [23].

However, the evidence of association between inorganic

arsenic metabolism patterns and cancers was limited to

some specific cancer sites, such as the skin and bladder. In

addition, mixed results were found regarding the pattern

of inorganic arsenic metabolism (as PMI and SMI calcu-

lated by taking ratios of MMA to inorganic arsenic and

DMA to MMA, respectively) and different manifestations of

arsenic toxicities [10,15,24,25]. Hitherto, few studies were

found to explore the association of genomic markers and

methylation capacity with a wide range of cancers [26],

which are important for depicting the progression of

arsenic carcinogenesis. Therefore, this long-term follow-up

study aims to examine the role of inorganic arsenic

metabolic patterns and the associated genomic markers on
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Table 1 The distribution of sociodemographic variables and lifestyle variables and their effects on cancer occurrence.

Person-
years

Cancer
cases

Incidence
density (year�1)

Univariate
analysisHR (95% CI of HR)

Sociodemographic variables

Age

�59.47 years 688.01 14 0.020 1.83 (0.81,4.15)

<59.47 years 804.98 10 0.012 1.00

Sex

Male 895.42 19 0.021 2.64 (0.99,7.09)

Female 597.58 5 0.008 1.00

Education

Low 475.64 4 0.008 0.46 (0.10,2.05)

Medium 851.79 17 0.020 1.13 (0.33,3.86)

High 165.57 3 0.018 1.00

Occupation

Soldiers/government

employees

24.01 2 0.083 11.37 (2.08,62.24)

Farmers 834.49 15 0.018 2.36 (0.78,7.12)

Laborers and trading 126.46 3 0.024 3.19 (0.71,14.25)

Housekeeping and others 508.03 4 0.008 1.00

Marital status

Married 1434.70 22 0.015 1.00

Not married 58.29 2 0.034 2.56 (0.60,10.95)

Lifestyle Variables

Cigarette smoking

Yes 740.93 18 0.024 3.18 (1.26,8.02)

No 752.06 6 0.008 1.00

Alcohol drinking

Yes 338.91 9 0.027 2.22 (0.97,5.11)

No 1154.09 15 0.013 1.00
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the occurrence of various cancers among residents in an

arseniasis area.
Materials and methods

Study subjects

This study was approved by the Institutional Review Board of

Chang Gung Memorial Hospital (IRB #102-0710C). A total of 96

residents were eligible for both genomic markers assay and

urinary inorganic arsenic speciation analysis. These subjects

were, at that time, exposed to arsenic-contaminated water

(early years of 1990s) and therefore recruited from an arsen-

iasis area located in northeastern Taiwan for the study [9,14].

The length of this subset of cohort spanned September 1992 to

December 2013 (a total of 21.3 years), while the average follow-

up period of the cohort study was 15.55 years, after ques-

tionnaire administration and specimen collection. After the

data collection, the local government implemented a tap-

water supply program, which reached 100% tap-water acces-

sibility in the study area after August 1995. According to the

initial questionnaire and laboratory data, the residents had

exposure to arsenic-contaminated drinking water for an

average of 37 years with amean arsenic concentration as high

as 65.8 ppb, ranging from 0 ppb to 1547.9 ppb.

Data collection

Basic demographic variables and exposure data, including

age, gender, marital status, education, occupation, cigarette
smoking, alcohol drinking, and duration of well water expo-

sure, were assessed using a questionnaire collected during

1990s when the participants were recruited. The diagnoses of

cancers were based on the national cancer registration data-

base and further confirmed with insurance claim data by

linking the previously collected information with the national

health insurance database thereafter. The ICD-9-CM codes

140e208 were used to define the cancers, while other cancers

outside this range of codes were not included in this study. A

total of 24 incident cases of cancerswere found and counted: 2

(8.3%) cases of cancer of the oral and esophagus (ICD-9:

140e150), 2 (8.3%) of the stomach (ICD-9: 151), 1 (4.2%) of the

colon/rectum (ICD-9: 153e154), 4 (16.7%) of the liver (ICD-9:

155), 5 (20.8%) of the lung (ICD-9: 162), 2 (8.3%) of skin cancer

(ICD-9: 173), 3 (12.5%) of the cervix (ICD-9: 180), 3 (12.5%) of the

prostate (ICD-9: 185), and 2 (8.3%) of the bladder (ICD-9: 188).
Arsenic speciation and metabolism pattern classification

The underground water and urine were collected and stored

at �20 �C. The determination of water arsenic concentration

was done immediately upon collection. Urinary arsenic

speciation was performed with high-performance liquid

chromatography (HPLC) for separation of arsenic species and

coupled with Inductively Coupled Plasma Mass Spectropho-

tometry (ICP-MS) for determination of the individual concen-

tration of arsenic species. The detection limits of urinary

inorganic arsenic metabolites included arsenite, arsenate,

monomethylarsonic acid, and dimethylarsinic acid were

0.4 ppb, 1.4 ppb, 1.4 ppb, and 1.0 ppb, respectively. Spiking

analysis measured an average recovery rate ranging from

https://doi.org/10.1016/j.bj.2020.10.005
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Table 2 Themetrics of arsenic exposure and urinary inorganic arsenic metabolites between cancer and noncancer groups.

Cancer Noncancer p Univariate analysis

Median (Q1, Q3) Median (Q1, Q3) HR (95% CI of HR)

Arsenic Exposure

Concentration in well water (ppb) 27.10 (8.33,49.88) 19.45 (2.58,51.89) 0.42 1.00 (1.00,1.00)

Years of exposure 34.50 (29.50,43.50) 36.00 (28.50,48.50) 0.57 1.00 (0.97,1.02)

Cumulative arsenic exposure (ppm-years) 0.73 (0.30,1.86) 0.79 (0.21,2.62) 0.66 1.03 (1.00,1.07)

Urinary Inorganic Arsenic Metabolites

Total (ppb) 57.28 (47.33,107.67) 68.60 (38.44,105.14) 0.82 1.00 (1.00,1.01)

Inorganic arsenic (ppb) 6.30 (4.17,12.15) 8.05 (3.67,13.16) 0.77 0.99 (0.95,1.04)

MMA (ppb) 9.16 (5.09,21.84) 7.55 (3.88,13.50) 0.32 1.01 (0.98,1.03)

DMA (ppb) 46.47 (26.65,82.57) 49.39 (27.42,82.86) 0.95 1.00 (0.99,1.01)

Asi% 9.47 (4.82,20.98) 11.81 (6.41,18.73) 0.61 0.99 (0.94,1.05)

MMA% 14.89 (9.09,22.44) 11.77 (8.49,16.05) 0.11 1.06 (1.00,1.11)

DMA% 70.29 (60.42,83.35) 76.26 (63.81,84.58) 0.38 0.98 (0.95,1.02)

PMI 1.55 (0.79,2.95) 1.02 (0.61,1.47) 0.03 1.24 (1.11,1.39)

SMI 4.89 (2.72,8.75) 5.56 (3.93,10.39) 0.17 0.96 (0.89,1.04)
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95.18% to 100.03%. The Standard Reference Material, SRM

2670a, was used to perform the validity check and the values

were calculated within the suggested range. According to the

literature, the pattern of inorganic arsenic metabolism was

further indicated as the primary arsenic methylation index

(PMI: MMA/[Asþ3þ Asþ5]) and secondary arsenic methylation

index (SMI: DMA/MMA) [10,12,13,24].

Genomic markers assay

The extraction of DNA from urine followed the protocols of

the QIAamp Blood Midi Kit (QIAGEN, Cat. No. C01-12143). A

total of 4 ml urine was centrifuged 5 min at 20,000 g. The

suspension fluid was discarded, and the remaining cells were

mixed with 140 ml buffer AVL and carrier RNA. Nucleotides

were extracted, and 50 ml were added to double distilled water

for the subsequent analysis of PCR-RFLP. This study utilized

The National Center for Biotechnology Information SNP

database for the genomic target selection and primer design.

Further confirmation of the appropriateness of primers used

the SNP blast function. As a result, the following genomic

markers were used in this study: MTRR (rs1532268), AS3MT

(rs1046778), GSTO1 (rs4925), GSTO2 (rs156697), NOS3

(rs1799983), SOD2 (rs1799725), MPO (rs7208693), and TP53

(rs17882155). For DNA amplicons up to 500 bp, 25 ml reaction

volumes (adding 2x distilled water) were used as follows:

0.125 mL Taq polymerase (1.25 U, Gibco); 2.5 uL 10 x PCR buffer

minus Mg (1x); 0.75 uL 50 mM MgCl2 (1.5 mM); 1 mL template

DNA: 0.5 uL 10 mM dNTP mix (0.2 mM); and 1.25 mL 10 uM

primer mix (0.5 mM). If DNA amplicons were >500 bp, the re-

actions were scaled up to a total volume of 100 mL. A program

thermocycler was used to perform PCRs.

Statistical analyses

Numerical variables were displayed as the means ± standard

deviations and categorical variables as frequencies and per-

centages. Two independent sample t-tests and chi-square

tests were used to compare the differences between groups

with respect to continuous variables and categorical variables,

respectively. A Cox proportional hazards model was used to

determine the strength of the association between the study
variables and the occurrence of cancers while examining (and

adjusting) the effects from other selected variables. The re-

sults were expressed as multivariate-adjusted hazard ratios

and the corresponding 95% confidence intervals. The pattern

of inorganic arsenic metabolism was further categorized into

four groups, including low-PMI/low SMI, low-PMI/high-SMI,

high-PMI/low-SMI, and high-PMI/high-SMI, according to me-

dians of the PMI and SMI.
Results

The median age of the 96 study subjects upon data collection

was 57.3 years, with a range from 41.5 to 76.2 years [Table 1]

The likelihood of developing cancers was greater in higher age

groups (HR ¼ 1.83; 95% CI ¼ 0.81e4.15) compared with lower

age groups but was not statistically significant. The occur-

rence of cancers was higher among male subjects (HR ¼ 2.64;

95% CI ¼ 0.99e7.09) compared with female subjects. The as-

sociation between marital status or education level and the

occurrence of cancers was not statistically significant. A

higher likelihood of developing cancers was found in soldiers/

government employees (HR ¼ 11.37; 95% CI ¼ 2.08e62.24).

Cigarette smoking was positively associated with the occur-

rence of cancers (HR ¼ 3.18; 95% CI ¼ 1.26e8.02) [Table 1].

Among parameters of water arsenic exposure and urinary

arsenic metabolites, cumulative arsenic exposure (HR ¼ 1.03;

95% CI ¼ 1.00e1.07), MMA% (HR ¼ 1.06; 95% CI ¼ 1.00e1.11),

and PMI (HR ¼ 1.24; 95% CI ¼ 1.11e1.39) were significantly

positively associated with the occurrence of cancers [Table 2].

In univariate analysis, the TT type of AS3MT was found to be

significantly associated with the occurrence of cancers

(HR ¼ 2.80; 95% CI ¼ 1.04e7.54) compared with the CT type of

AS3MT. Other genomic markers did not exhibit statistically

significant associations with the occurrence of cancers.

However, a higher risk of cancer occurrence was observed

among the CC type of GSTO1 (HR ¼ 1.47; 95% CI ¼ 0.65e3.32),

CT type of GSTO2 (HR ¼ 1.25; 95% CI ¼ 0.55e2.84), TT type of

SOD2 (HR ¼ 2.58; 95% CI ¼ 0.88e7.54), GG type of NOS3

(HR ¼ 1.48; 95% CI ¼ 0.55e3.98), AA (HR ¼ 4.06; 95%

CI ¼ 0.57e28.85) and CC (HR ¼ 2.64; 95% CI ¼ 0.62e11.32) types

of MPO, AG (HR¼ 2.54; 95% CI¼ 0.56e11.60) and GG (HR¼ 1.82;

https://doi.org/10.1016/j.bj.2020.10.005
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Table 3 The distribution of genomic markers and their association with cancer occurrence.

Genomic Markers Cancer Noncancer p Univariate analysis

n (%) n (%) HR (95% CI)

GSTO1 (glutathione S-transferase omega 1; rs4925)

AA 1 (4.17%) 5 (6.94%) 0.61 0.72 (0.09,5.58)

AC 11 (45.83%) 39 (54.17%) 1.00

CC 12 (50%) 28 (38.89%) 1.47 (0.65,3.32)

GSTO2 (glutathione S-transferase omega 2; rs156697)

CC 1 (4.17%) 4 (5.56%) 0.75 0.87 (0.11,6.64)

CT 10 (41.67%) 24 (33.33%) 1.25 (0.55,2.84)

TT 13 (54.17%) 44 (61.11%) 1.00

SOD2 (superoxide dismutase 2; rs1799725)

CC 0 (0%) 4 (5.56%) 0.09 e

CT 4 (16.67%) 25 (34.72%) 1.00

TT 20 (83.33%) 43 (59.72%) 2.58 (0.88,7.54)

NOS3 (nitric oxide synthase 3; rs1799983)

GG 18 (75%) 49 (68.06%) 0.14 1.48 (0.55,3.98)

GT 5 (20.83%) 23 (31.94%) 1.00

TT 1 (4.17%) 0 (0%) e

MPO (myeloperoxidase; rs7208693)

AA 2 (8.33%) 4 (5.56%) 0.36 4.06 (0.57,28.85)

AC 2 (8.33%) 15 (20.83%) 1.00

CC 20 (83.33%) 53 (73.61%) 2.64 (0.62,11.32)

MTRR (5-methyltetrahydrofolate-homocysteine methyltransferase reductase; rs1532268)

AA 2 (8.33%) 13 (18.06%) 0.32 1.00

AG 10 (41.67%) 20 (27.78%) 2.54 (0.56,11.60)

GG 12 (50%) 39 (54.17%) 1.82 (0.41,8.12)

AS3MT (arsenic þ3 oxidation state methyltransferase; rs1046778)

CC 1 (4.17%) 2 (2.78%) 0.07 2.33 (0.27,19.99)

CT 5 (20.83%) 34 (47.22%) 1.00

TT 18 (75%) 36 (50%) 2.80 (1.04,7.54)

TP53 (tumor protein p53; rs17882155)

CC 0 (0%) 5 (6.94%) 0.41 e

CG 14 (58.33%) 38 (52.78%) 1.04 (0.46,2.34)

GG 10 (41.67%) 29 (40.28%) 1.00
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95% CI ¼ 0.41e8.12) types of MTRR, and CG type of TP53

(HR ¼ 1.04; 95% CI ¼ 0.46e2.34) [Table 3].

In Cox regression analyses, cumulative arsenic exposure

was positively associated with the occurrence of cancers with

hazard ratios ranging from 1.02 to 1.03 in different models. A

significantly positive association was found between PMI

(HR ¼ 1.66; 95% CI ¼ 1.30e2.12) and the occurrence of cancers

while adjusting for age, gender, education level, occupation

category, cigarette smoking, alcohol drinking, and cumulative

arsenic exposure. A multivariate-adjusted hazard ratio of

3.37e3.64 in developing cancers was observed among subjects

with above median value of PMI but below median value of

SMI. In addition, a significantly monotonic trend of cancer

development by multivariable Cox regression was found

among subjects with inorganic arsenic metabolism pattern

appearing in the following order: low-PMI/high SMI, low-PMI/

low-SMI, high-PMI/high-SMI, and high-PMI/low-SMI. Howev-

er, only three genomic markers (GSTO1, AS3MT, and MPO)

were statistically associated with the occurrence of cancers in

the multivariable regression analyses. The CC type of GSTO1

(HR ¼ 3.33; 95% CI ¼ 1.11e10.00), CC (HR ¼ 19.21; 95%

CI¼ 1.16e318.80) and TT (HR¼ 5.96; 95%CI¼ 1.47e24.12) types

of AS3MT, and AA type of MPO (HR ¼ 13.40; 95%

CI ¼ 1.26e142.40) were at higher risk of developing cancers as

opposed to their respective homozygosity type in the multi-

variable regression analyses [Table 4].
Discussion
This subset analysis of residents in an arseniasis-endemic

area shows that inorganic arsenic metabolic pattern, as

demonstrated by the primary methylation index (PMI) and

secondary methylation index (SMI), is associated with an

increased risk of various cancers in adults. Our findings

extend the results of previous reports on the association be-

tween the pattern of inorganic arsenic metabolism and skin,

lung, or bladder cancer [11e14]. They provide evidence that

the high inorganic arsenic methylation response at the pri-

mary stage (but low response to the secondary arsenic

methylation stage) may promote the onset of various cancers

in a doseeresponse manner. In addition, the study found that

residents in arseniasis-endemic regions with homozygosity of

three genomic markers (GSTO1, AS3MT, and MPO) have a

higher risk of developing various cancers.

Researchers have proposed that high activity in the pri-

mary arsenic methylation process may increase the accu-

mulation of methyl methacrylate (MMA) and trigger

carcinogenesis [8]. Although this is consistent with our major

findings, a high methylation capacity is also believed to be a

protective mechanism from carcinogenesis in other studies

[8,14]. The contradiction can also be explained by the diverse

data sources and variations in biological systems as reflected

https://doi.org/10.1016/j.bj.2020.10.005
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Table 4 Multivariable Cox regression models for arsenic exposure, arsenic methylation capacity, and genomic markers.

Model I Model II Model III Model IV

HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

Arsenic Exposure

Cumulative Arsenic Exposure (ppm-years) 1.03 (1.00,1.06) 1.03 (1.00,1.06) 1.03 (1.00,1.06) 1.02 (0.99,1.05)

Arsenic Methylation Capacity

PMI 1.66 (1.30,2.12)

SMI 0.97 (0.89,1.06)

PMI SMI (median low/high)

Low High 1.00* 1.00*

Low Low 1.15

(0.22,6.18)

1.03

(0.15,6.95)

High High 2.74

(0.64,11.78)

2.85

(0.57,14.30)

High Low 3.37

(0.85,13.35)

3.64

(0.77,17.34)

Genomic Markers

GSTO1

AA 4.26 (0.33,54.89)

AC 1.00

CC 3.33 (1.11,10.00)

AS3MT

CC 19.21 (1.16,318.80)

CT 1.00

TT 5.96 (1.47,24.12)

MPO

AA 13.40 (1.26,142.40)

AC 1.00

CC 4.77 (0.68,33.72)

All models were adjusted for age, sex, education, occupation, smoking, and alcohol drinking.

*p < 0.05, test for monotonic trend by multivariable Cox regression model.
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in human data, in vitro experiments, and in vivo studies

[10,27,28]. Our data also show that subjects with a higher PMI

and a lower SMI are likely to develop cancers, which is partly

consistent with the notion that MMAIII accumulation is a

biomarker of health indices [8]. Additionally, a few studies

have suggested the negative association between SMI and

cancers of the skin and bladder [12,13].

In the present study, urinary arsenic metabolites were

found to be 9.47e11.81%, 11.77e14.89%, and 70.29e76.26%,

respectively, for InAs, MMA, and DMA, which is within the

previously reported range [20]. Although our subjects had a

history of long-term exposure to high concentrations of

arsenic, this suggests that their methylation profile is

consistent with values reported by other studies. Neverthe-

less, the question of why the range of inter-individual vari-

ability of inorganic arsenic methylation causes diverse

carcinogenic effects needs to be elucidated. Some studies

have shown that MMA is more cytotoxic and genotoxic than

AsIII and AsV, suggesting that the oxidation state of methyl-

ated arsenicals is important for the manifestation of their

toxic and/or genotoxic effects. A recent study showed that

MMA% might be a potential marker of cancer-associated

mortality [29]. In the present study, however, we found that

a high PMI and a low SMI seemed to be associated with a high

risk of developing cancers. It is possible that arsenic aids the

carcinogenesis by mechanisms linked to methyl donor and

glutathione (GSH) depletion [28] as well as their subsequent

genotoxic effects such as induction of oxidative stress, inter-

ference with signal transduction, or gene expression [30].
Many studies have explored alternative models. For

instance, whether the trivalent methylated arsenic species

per se are more toxic compared to the premethylated inor-

ganic compounds. Based on these models, MMA (III) and DMA

(III) may cause cellular toxicity, genotoxicity, and clastogenic

inhibition on cysteine-containing enzymes [31]. Studies have

shown that the DNA damage may directly or indirectly be

induced by methylated trivalent arsenicals [32]. In animal

models, MMA (III) or DMA(V) exposure led to carcinogenesis in

the bladder, lungs, and skin [28,33,34]. These findings shed

some insights on our results about the high cancer risk among

participants with a high PMI but a low SMI.

We also found an independent and slightly moderating

effect between selected genomic markers and the pattern of

inorganic arsenic metabolism on the risk of cancers. The an-

alyses showed that the association between inorganic arsenic

methylation patterns and the occurrence of cancers was

stronger when three significant genomic markers (GSTO1,

AS3MT, and MPO) are considered. This phenomenon implies

that the three genomic markers are important in modulating

the carcinogenic effects of inorganic arsenic through the

methylation process. An early preventive strategy can be

deduced from this observation, especially among high risk

populations with certain methylation patterns to inorganic

arsenic exposure.

The present study shows that subjects with the AA geno-

type of GSTO1 have a higher cancer risk (HR ¼ 4.26) but this

association was not statistically significant. The frequency of

the AA genotype of GSTO1was 6.1% in the present community

https://doi.org/10.1016/j.bj.2020.10.005
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cohort subset, which is right in-between that of 2.7% in a

Taiwanese study and 9.8% in a US hospital-based study

[35,36]. A significantly increased risk for various cancers was

observed among subjects with the CC genotype of GSTO1

(HR ¼ 3.33), which is coherent with studies that reported that

the CC genotype of GSTO1 may result in defective protection

against cellular oxidative stress [37]. The polymorphisms of

AS3MT are involved in the methylation of inorganic arsenic

[38]. The TT genotype of AS3MT was shown to be significantly

associated with the development of cancers (HR ¼ 2.80). The

frequency of the TT genotype of AS3MTwas found to be 56.3%,

which is similar to that of 50.9% in a Swedish study [39]. The

literature has indicated that polymorphisms in AS3MT

significantly predicted arsenic metabolism and its related

health effects across different populations. The poly-

morphism variation of myeloperoxidase (MPO) is generally

recognized as a factor associated with oxidative state trans-

formation. MPO is involved in the formation of a variety of

ROS and activating carcinogens [40]. Although researchers

have proposed that the oxidative stress related to arsenic

exposure is associated with arsenic adverse effects, limited

evidence was found in epidemiological studies demonstrating

the effect of theMPO genotype on arsenic carcinogenesis. This

study found that the less frequent haplotype AA of MPO was

significantly associated with cancers. All the three genomic

markers suggest that arsenic carcinogenesis, with regard to its

metabolism, may be comprehensively related to oxidation,

phase I conjugation, and methylation. As reported in the

extant literature, the three enzymatic components are

generally regarded as key steps for arsenicmetabolism and, in

turn, the variations affect an individual's risk of cancer [8]. To

the best of our knowledge, this study is the first to compre-

hensively investigate genomic biomarker effects on arsenic

carcinogenesis, focusing on various cancers in an epidemio-

logical cohort follow-up. The findings are important for future

arsenic carcinogenesis research.

Although these findings are innovative and significant in

the field of cancer research and arsenic carcinogenesis, this

study has some limitations. First, a prospective design that

uses repeated measurements of the subjects’ urinary inor-

ganic arsenic metabolites would be required to confirm the

reliability of such a dosimeter. Second, the samples were

primarily from Chinese/Taiwanese individuals. Although the

results can be generalized, applying the results to people of

other ethnicities should be done cautiously and with in-depth

studies for confirmation. Third, the pattern of inorganic

arsenic methylation seems to be an indicator for the early

detection of a high-risk group, though further confirmation

with biomarkers in the related biological pathways is sug-

gested. Fourth, this subset of study samples was randomly

selected from the community cohort. However, a larger

sample size to confirm the findings is suggested in the future.
Conclusions

This study found the hypermethylation responses to inor-

ganic arsenic exposure and an array of genomic markers may

increase the susceptibility of a wide range of organ cancers.

Residents in arseniasis-endemic regions with homozygosity
of three genomic markers (GSTO1, AS3MT, and MPO) have a

higher risk of developing various cancers. The phenotype of

arsenic metabolism and genomic polymorphism suggested a

potential preventive strategy for arsenic carcinogenesis.
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