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Abstract
Understanding network robustness against failures of network units is useful for preventing

large-scale breakdowns and damages in real-world networked systems. The tolerance of

networked systems whose functions are maintained by collective dynamical behavior of the

network units has recently been analyzed in the framework called dynamical robustness of

complex networks. The effect of network structure on the dynamical robustness has been

examined with various types of network topology, but the role of network assortativity, or de-

gree–degree correlations, is still unclear. Here we study the dynamical robustness of corre-

lated (assortative and disassortative) networks consisting of diffusively coupled oscillators.

Numerical analyses for the correlated networks with Poisson and power-law degree distri-

butions show that network assortativity enhances the dynamical robustness of the oscillator

networks but the impact of network disassortativity depends on the detailed network con-

nectivity. Furthermore, we theoretically analyze the dynamical robustness of correlated bi-

modal networks with two-peak degree distributions and show the positive impact of the

network assortativity.

Introduction
From its beginnings, network robustness has been one of the central issues in complex network
theory [1–4]. Since networked systems rely on interactions of the network units, failures of the
network units and/or their interactions can lead to a large-scale breakdown in the entire net-
work. For instance, power-line accidents in power grids can cause large-scale blackouts; cell ne-
crosis in biological networks can induce disorders in living things; corporate failures in
business networks can trigger a chain of bankruptcies. To get an insight into how to prevent
such enormous damages on a widespread scale in the real-world networked systems, theoreti-
cal frameworks for understanding network robustness and vulnerability have been developed
together with the advances in network science. The structural robustness indicates the failure
tolerance of the network’s connectivity evaluated by the giant component, i.e., the size of the

PLOSONE | DOI:10.1371/journal.pone.0123722 April 20, 2015 1 / 21

a11111

OPEN ACCESS

Citation: Sasai T, Morino K, Tanaka G, Almendral
JA, Aihara K (2015) Robustness of Oscillatory
Behavior in Correlated Networks. PLoS ONE 10(4):
e0123722. doi:10.1371/journal.pone.0123722

Academic Editor: Matjaz Perc, University of Maribor,
SLOVENIA

Received: December 8, 2014

Accepted: March 6, 2015

Published: April 20, 2015

Copyright: © 2015 Sasai et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: This research was partially supported by
JSPS KAKENHI Grant No. 24700222 (GT) and
26730127 (KM) as well as the Aihara Innovative
Mathematical Modelling Project, the Japan Society
for the Promotion of Science (JSPS) through the
“Funding Program for World-Leading Innovative R&D
on Science and Technology (FIRST Program),”
initiated by the Council for Science and Technology
Policy (CSTP) (GT, KM, and KA). The funders had no
role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0123722&domain=pdf
http://creativecommons.org/licenses/by/4.0/


largest connected component. This framework has been applied to networks consisting of static
nodes [1, 2]. On the other hand, the dynamical robustness focuses on the failure tolerance of
dynamical behavior on networks where dynamical processes play important roles in their func-
tions [5, 6]. While the structural robustness depends only on the network structure, the dynam-
ical robustness is governed by the interplay between network structure and dynamics.
Therefore, the important nodes which should be preferentially protected from failures and at-
tacks in terms of dynamical robustness can be different from those in terms of structural ro-
bustness for the networks with the same topology [6].

So far, many studies on network robustness have focused on the effect of network structure
characterized by a degree distribution, i.e., the probability distribution of the number of edges
per node over the whole network. The structural and dynamical robustness of complex net-
works has been studied in comparison between homogeneously and heterogeneously con-
nected networks with different forms of degree distributions [6, 7]. However, the degree
distribution does not uniquely specify the network topology. Namely, networks with the same
degree distribution can have different kinds of network topology. Such a difference can be mea-
sured by network assortativity with respect to node degrees (or degree-degree correlations) [8],
the clustering coefficient [9], and other network characteristics [2]. Here we focus on the net-
work assortativity. The network assortativity indicates how the degree of a node is correlated
with the degrees of its neighboring nodes. In assortative (positively correlated) networks nodes
tend to connect with nodes with similar degrees, whereas in disassortative (negatively correlat-
ed) networks high-degree nodes are more likely connected with low-degree nodes. The net-
work assortativity is measured by the assortativity coefficient r which is defined as a Pearson
correlation coefficient with respect to the degrees between the pair of nodes linked each other
[8]: r> 0 for assortative networks; r = 0 for uncorrelated networks; r< 0 for disassortative net-
works. In general, sociological networks are assortative but technological and biological net-
works are disassortative [10]. The effect of the network assortativity has been widely studied
from various aspects such as the percolation threshold [10–13], the epidemic threshold [14,
15], synchronization [16], and network observability [17], but little is known about its influ-
ence on the dynamical robustness of complex networks.

In the present study, we investigate the impact of the network assortativity on the dynamical
robustness of coupled oscillator networks against deterioration of the oscillator units. The cou-
pled oscillator networks have often been used as a simplified model of interacting units exhibit-
ing oscillatory dynamics, as found in various phenomena such as circadian rhythms [18, 19],
repetitive neuronal firings [20], oscillating gene expressions [21], chemical waves [22], Joseph-
son junction arrays [23], and power grids [24]. All these studies show that collective phenome-
na, such as synchronization in coupled oscillator networks, are affected by the interplay
between the properties of individual oscillators and the network structure [25]. The framework
for studying robustness of coupled oscillator networks has been first proposed for a globally
coupled network by Daido and Nakanishi [5] and subsequently applied to other globally cou-
pled networks [26, 27], locally coupled networks [28], multilayer networks [29], and complex
networks [6, 30, 31]. Recently, more extensive studies have been carried out on the recovery
strategy of damaged oscillator networks [32], the dynamical robustness of coupled heteroge-
neous oscillators [33, 34], and the role of time delay in the dynamical robustness of oscillator
networks [35]. Based on the framework used in these previous studies, we examine herewith
the dynamical robustness of correlated oscillator networks. In this framework, the normal
nodes are called active oscillators and the deteriorated ones are called inactive oscillators.
When all the oscillator nodes are active in the normal state, we observe global oscillatory be-
havior in the entire network. As the fraction p of the inactive oscillator nodes increases, the
global oscillatory behavior is weakened. At a critical fraction p = pc, the global oscillation
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vanishes and a non-oscillatory equilibrium state becomes stable due to a phase transition
(called aging transition [5]). The critical value pc is used as a measure for the dynamical robust-
ness: a larger value of pc implies a more robust network.

To consider the effect of the network assortativity, we fix the degree distribution of a given
network and change the assortativity coefficient r by two edge-rewiring methods [8, 36]. Notice
that the degree mixing of a network cannot be completely described by r, since it is a global
measure, thus considering the two different edge-rewiring methods lets us study different joint
degree distributions regardless they might have the same assortativity coefficient r. In numeri-
cal simulations for networks with Poisson and scale-free degree distributions, we show that in
most cases the network assortativity enhances the dynamical robustness of oscillator networks.
The results also indicate that the effect of the network disassortativity on the dynamical robust-
ness is different between the network reshuffling methods. We demonstrate that this difference
is caused by the fact that disassortative networks generated by the two edge-rewiring methods
have essentially different types of network topology even if they have the same assortativity co-
efficients. In order to theoretically approach the dynamical robustness of correlated networks,
we focus on the extreme cases with bimodal oscillator networks where the degrees of the oscil-
lator nodes are limited to two values. The critical fraction pc is analytically derived and numeri-
cally validated for the correlated bimodal networks. The results indicate the positive role of
assortativity in the dynamical robustness of oscillator networks. We conclude that the network
assortativity is beneficial for the dynamical robustness of coupled oscillator networks. This is
consistent with the conclusions from the analysis of the structural robustness of correlated net-
works [37].

Methods

Dynamical robustness of coupled oscillator networks
We examine the effect of the network assortativity on the dynamical robustness of coupled os-
cillator networks [5, 6, 34]. Each oscillator is represented by the Stuart-Landau (SL) oscillator
[22]. The SL oscillator is equivalent to the normal form of the supercritical Hopf bifurcation,
which is a typical mechanism for the onset of oscillatory behavior in dynamical systems [38].
By adjusting the control parameter responsible for the supercritical Hopf bifurcation, the single
SL oscillator can be either active or inactive. The network model consisting of N diffusively
coupled SL oscillators is described as follows [5, 6]:

_zj ¼ aj þ iO� jzjj2
� �

zj þ
K
N

XN
k¼1

ajk zk � zj
� �

for j ¼ 1; . . . ;N; ð1Þ

where i stands for the imaginary unit, zj 2 C is the complex state variable of oscillator node j, αj
2R is the control parameter of oscillator node j, O 2R is the natural frequency, K 2R is the
coupling strength, and ajk 2 {0,1} is the (j, k) entry of the adjacency matrix A = (ajk) character-
izing the network connectivity. We set ajk = 1 if the connection is present between node j and
node k, and ajk = 0 otherwise. We assume that the connections are bidirectional, i.e., ajk = akj
for any j and k, and there are no self-connections, i.e., ajj = 0 for j = 1,. . ., N. The degree of oscil-

lator node j is given by
PN

k¼1 ajk and the link density is denoted by

d � PN
j¼1

PN
k¼1 ajk=ðNðN � 1ÞÞ. When the oscillator is isolated (Eq (1) with K = 0), the active

oscillator with αj = a> 0 exhibits self-sustained limit-cycle oscillation (Fig 1(a)) and the inac-
tive oscillator with αj = −b< 0 settles into a quiescent state after damping oscillation (Fig 1(b))
[5, 6]. The parameters a and b are the positive real values. Note that the inactive oscillator is
not able to oscillate when isolated but can exhibit oscillation through coupling with the
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neighboring active oscillators in the network as shown in Fig 1(c). Throughout this paper, the
parameters are set at N = 3000, K = 30, d = 0.08, a = 1, and b = 3, unless otherwise noted.

Whether the global oscillatory behavior is observed or not depends on various factors such
as the network topology, the fraction p of the inactive oscillators, and the configuration of the
active and inactive oscillators. Fig 1(d) shows the decay of the global oscillatory behavior with
an increase in p for uncorrelated, assortative, and disassortative networks. The strength of the
global oscillatory behavior in the entire network is measured by the order parameter jZ(t)j
where ZðtÞ � PN

j¼1 zjðtÞ=N . We numerically integrate the coupled oscillator model (Eq 1)

using the fourth-order Runge-Kutta method with time step 0.05 and calculate the order param-
eter jZ(t)j at t = 50000. Notice that, in general, the order parameter fluctuates in time and its
measure requires a temporal average, but our simulations show that this time period is long
enough for the order parameter to approximately converge to a steady-state value. As p in-
creases from 0, the order parameter declines gradually and vanishes at a critical fraction pc. We
consider that the global oscillation has stopped if the order parameter decreases to 10−6 in nu-
merical simulations. The critical fraction pc is employed as a measure for the dynamical robust-
ness of oscillator networks, i.e., a larger value of pc implies that the network is more failure
tolerant. We find that the decline curves of the order parameter are different depending on the
assortativity coefficient r, yielding different values of pc. In terms of the critical value pc, the

Fig 1. Dynamical robustness of coupled SL oscillator networks. (a) Limit-cycle oscillation produced by
the single isolated active oscillator. (b) Damping oscillation produced by the single isolated inactive oscillator.
(c) The global oscillatory behavior in an uncorrelated network of active and inactive oscillators. The time
evolutions of the state variables of some active (red) and inactive (blue) oscillator nodes are plotted. The
parameters are set at N = 3000, p = 0.4, and r = 0. (d) The order parameter jZj plotted against the fraction p of
the inactive oscillators in uncorrelated (r = 0), assortative (r = 0.48), and disassortative (r = −0.7) networks
with power-law degree distributions. The correlated networks were generated by the GERmethod.

doi:10.1371/journal.pone.0123722.g001
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assortative network seems to be more robust compared with the uncorrelated and disassorta-
tive networks. We investigate how the critical value pc depends on the network assortativity in
the Results section.

Network assortativity
The assortativity coefficient r is an index to measure the network assortativity, or the degree-
degree correlations [8], which is defined as the Pearson correlation coefficient of the degrees
between pairs of connected nodes. To define the assortativity coefficient, we denote the degree
distribution of a network by P(k), which is the probability that a randomly chosen node has de-
gree k. Let us consider the probability that a node in the end of a randomly chosen edge has k
edges except for the chosen one. Such a number of edges, which is one less than the total de-
gree, is called the remaining degree[8]. A node with remaining degree k has degree k + 1 totally
and the probability that an edge leaving such a node is chosen is proportional to k + 1. There-
fore, the probability distribution of the remaining degree is proportional to (k + 1)P(k + 1).
The normalized distribution of the remaining degree of the node at the end of a randomly cho-
sen edge is given by

QðkÞ ¼ ðkþ 1ÞPðkþ 1ÞP
j jPðjÞ

: ð2Þ

Now we consider the joint probability distribution E(j, k) of the remaining degrees of the
two nodes (one with degree j and the other with degree k) at either end of a randomly chosen
edge [39]. This quantity satisfies E(j, k) = E(k, j), ∑j∑k E(j, k) = 1, and ∑j E(j, k) = Q(k). The level
of assortativity is quantified by the correlation function with respect to node degrees as hjki
−hjihki = ∑j∑k jk(E(j, k)−Q(j)Q(k)), where the brackets indicate an average over edges. For un-
correlated networks, the remaining degrees are independent, i.e., E(j, k) = Q(j)Q(k), and there-
fore, the assortativity level is 0. By normalizing the correlation function with its maximal value
achieved when E(j, k) = Q(k)δjk, the assortativity coefficient r is defined as follows:

r � 1

s2
q

X
j

X
k

jkðEðj; kÞ � QðjÞQðkÞÞ; ð3Þ

where the normalizing factor is the variance of the distribution Q(k), i.e.,

s2
q �

P
kk

2QðkÞ � ðPkkQðkÞÞ2. The range of r is −1� r� 1: r> 0 for assortative networks,

r = 0 for uncorrelated networks, and r< 0 for disassortative networks. The assortativity coeffi-
cient r in Eq (3) can be rewritten as follows:

r ¼ 4M
P

mjmkm � ½Pmðjm þ kmÞ�2
2M

P
mð j2m þ k2mÞ � ½Pmð jm þ kmÞ�2

; ð4Þ

whereM is the total number of edges,m 2 {1,. . .,M} is the index of edges, and jm and km repre-
sent the degrees of the two nodes connected by edgem [8].

In our numerical simulations, we change the assortativity coefficient r using two edge-rewir-
ing methods: one is proposed by Xulvi-Brunet and Sokolov [36] and the other by Newman [8].
We call the former method the greedy edge rewiring (GER) and the latter method the stochas-
tic edge rewiring (SER). We start with an uncorrelated network with r� 0 and reshuffle the
network edges without allowing self-loops and overlaps. We choose two edges randomly from
the network, represented by the connected node pairs, (v1, w1) and (v2, w2). The remaining de-
grees of these node pairs are correspondingly denoted by (j1, k1) and (j2, k2). We rewire the
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edges to control the network assortativity. The rewiring process does not alter the number of
edges for each node, and hence, the degree distribution is kept unchanged.

In the GER method, the edge rewiring is conducted based on the degrees of the connected
node pairs. We sort the remaining degrees j1, j2, k1, and k2 in descending order and relabel
them to l1, l2, l3 and l4 so that l1 � l2 � l3 � l4. Fig 2(a) illustrates the three possibilities for sepa-
rating the four nodes into two pairs of connected nodes. When increasing the assortativity co-
efficient, Case I is chosen to set the edges between the nodes with more similar degrees if the
current state is Case II or III. When decreasing the assortativity coefficient, Case III is chosen
to set an edge between the nodes with the largest and smallest degrees if the current state is
Case I or II. We increase or decrease the assortativity coefficient by repeating the edge rewiring

Fig 2. Network reshufflingmethods for changing the network assortativity. (a) The greedy edge-rewiring (GER) method [36]. The remaining degrees of
the two connected node pairs, (j1, k1) and (j2, k2), are sorted in the descending order and relabeled as l1, l2, l3, and l4 so that l1� l2 � l3� l4. The size of the
node corresponds to its remaining degree. When making the network assortative, Case I is chosen if the current state is Case II or III. Whenmaking the
network disassortative, Case III is chosen if the current state is Case I or II. (b) The stochastic edge-rewiring (SER) method [8]. The acceptance probability for

edge rewiring is given bymin 1; Eðj1 ;j2ÞEðk1 ;k2ÞEðj1 ;k1ÞEðj2 ;k2Þg
n

where E(j, k) is the joint probability distribution for the remaining degrees of the two nodes in the end of a

randomly chosen edge.

doi:10.1371/journal.pone.0123722.g002
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in a greedy way and continue until the assortativity coefficient is no longer changed. The assor-
tativity coefficient rmonotonically increases or decreases with this method.

In the SER method, we repeat the edge rewiring stochastically to change the network assor-
tativity, inspired by the Metropolis dynamics introduced by Newman [8]. Newman used a nu-
merical method to generate a network satisfying a given joint probability distribution E(j, k) of
the remaining degrees, because it is not trivial to find such a network due to topological con-
straints. In this method, the chosen node pairs, (v1, w1) and (v2, w2), are replaced by the new

ones, (v1, v2) and (w1, w2), with acceptance probability min 1; Eðj1 ;j2ÞEðk1 ;k2Þ
Eðj1 ;k1ÞEðj2 ;k2Þ

n o
as illustrated in

Fig 2(b). In our study, we employ the following symmetric binomial form [8]:

Eðj; kÞ ¼ N e�ðjþkÞ=kðCðjþ k; jÞf jgk þ Cðjþ k; kÞf kgjÞ; ð5Þ

where C(m, n)�m!/(n!(m − n)!), f + g = 1, κ> 0, andN (1 − e−1/κ)/2 is a normalization factor.
Note that our aim of edge rewiring is not to achieve the above E(j, k) but to change the network
assortativity. The probability f is the control parameter for the assortativity coefficient. In nu-
merical simulations, we set f = 0.5 when increasing the assortativity and f = 0.05 when decreas-
ing the assortativity [8]. The value of κ is set at κ = 100.

Results

Dynamical robustness of correlated complex networks
Correlated networks with Poisson degree distributions. First, we examine the dynamical

robustness of oscillator networks with Poisson degree distributions. The uncorrelated network
is initially given as an Erdős-Rényi random graph [40], where the degrees are concentrated
around the mean degree. Then the network is changed to be assortative or disassortative using
the edge-rewiring techniques introduced in the Methods section. Since each rewiring method
modifies the assortativity coefficient r operating differently on the joint degree distribution, the
reachable ranges of r are not the same. The SER method is a random process and, consequent-
ly, extreme values of r are unlikely to be reached. On the contrary, the GER method is a greedy
target-oriented method that is able to find those specific networks, even though they are a rath-
er small subset of all possible networks having the same degree distribution. Next, for each net-
work generated by the edge-rewiring methods, we increase the fraction p of inactive oscillators
from 0 until we find the critical value pc at which the order parameter vanishes. The critical
value pc depends on the order in which the oscillators are inactivated with an increase in p. We
consider two ways of oscillator inactivation [6]: random inactivation where the inactive oscilla-
tors are randomly chosen; targeted inactivation where the oscillator nodes are inactivated in
the order (or the inverse order) of the degree.

Figs 3(a) and 3(b) show the critical value pc for the networks generated by the GER and SER
methods, respectively. For uncorrelated networks with r� 0, the value of pc is the same for the
three types of inactivation, because the way of oscillator inactivation is not significant in the ho-
mogeneously connected random network [6]. For the random inactivation in both panels, the
value of pc is almost constant, independently of the r value. This is because the number of inac-
tive oscillators in the neighborhood of each oscillator node is not affected by r. In fact, the oscil-
lation amplitudes of the individual oscillators have similar distributions for disassortative,
uncorrelated, and assortative networks (S1 and S2 Fig).

For the targeted inactivation of high-degree oscillator nodes and that of low-degree oscilla-
tor nodes, the value of pc monotonically increases with r as shown in Figs 3(a) and 3(b). This
result is attributed to the property that the amplitudes of the active oscillators, dominantly con-
tributing to the order parameter, are larger for more assortative networks (S1 and S2 Fig). We
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can conclude that the network assortativity has a positive effect on the dynamical robustness of
oscillator networks against targeted inactivation.

Correlated networks with power-law degree distributions. Second, we performed similar
numerical experiments using correlated scale-free networks with power-law degree distribu-
tions. The initial uncorrelated network is given by a Barabási-Albert (BA) scale-free network
[41], which consists of a small number of highly connected nodes (hubs) and a large number of
loosely connected nodes.

Figs 3(c) and 3(d) show the critical fraction pc plotted against r for the GER and SER meth-
ods, respectively. For uncorrelated networks with r� 0, the value of pc for targeted inactivation
of low-degree nodes is smaller than the values for the other two inactivation types. This is

Fig 3. The critical value pc for correlated networks. In each panel, the numerically obtained values of the critical fraction pc are plotted against the
assortativity coefficient r for random and targeted inactivation. The system size is N = 3000. The uncorrelated network with r� 0 is given by the Erdős-Rényi
random graph [40] in (a) and (b) and by the BA scale-free network [41] in (c) and (d). (a) Networks with Poisson degree distributions, generated by the GER
method. (b) Networks with Poisson degree distributions, generated by the SERmethod. (c) Networks with power-law degree distributions, generated by the
GERmethod. (d) Networks with power-law degree distributions, generated by the SERmethod.

doi:10.1371/journal.pone.0123722.g003
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consistent with the previous study showing the crucial role of low-degree nodes for the dynam-
ical robustness [6]. However, when r is varied, the curves of the pc values make intersections as
shown in Figs 3(c) and 3(d), indicating that the important nodes for the dynamical robustness
can change depending on the network assortativity. For all the inactivation types, the value of
pc monotonically increases as r is increased from 0 as shown in Figs 3(c) and 3(d). It is shown
that the oscillation amplitudes of the active oscillators are smaller for the higher-degree nodes
in the random inactivation case (S3 and S4 Fig). This means that the higher-degree nodes de-
crease their oscillation levels more to recover the oscillations of the larger number of neighbor-
ing inactive oscillator nodes.

In assortative networks, the connections tend to be made between high-degree nodes and
between low-degree nodes. Therefore, for the targeted inactivation of high-degree nodes, the
low-degree active oscillators connected to few inactive oscillators can maintain the large oscilla-
tion amplitudes (S3 and S4 Fig). Similarly, for the targeted inactivation of low-degree nodes,
the high-degree active oscillators connected to few inactive oscillators can keep the large oscil-
lation amplitudes (S3 and S4 Fig). These nodes maintaining the large oscillation amplitudes are
responsible for the large value of pc, i.e., the highly robust oscillatory behavior. Thus, we con-
firm the positive role of assortativity in the dynamical robustness.

On the other hand, the effect of disassortativity is different between the edge-rewiring meth-
ods as shown in Figs 3(c) and 3(d). As r is decreased from 0, the critical value pc increases after
a slight downward trend for the GER method as shown in Fig 3(c), but it almost monotonically
decreases until r� −0.5 for the SER method as shown in Fig 3(d). We notice the qualitative dif-
ference in the distributions of the oscillation amplitudes, particularly for the high-degree nodes
(S3 and S4 Fig). This suggests that the networks with the same negative assortativity coefficient
can have essentially different types of topology. We next examine the detailed connectivity of
the correlated scale-free networks to clarify the difference between the edge-rewiring methods.

Connectivity matrices of correlated networks. The similarity and difference between the
correlated scale-free networks generated by the two edge-rewiring methods are clarified in Fig
4. Fig 4(a) shows the adjacency matrix of the BA scale-free network with r� 0 [41]. The dots
are dense in the upper-right corner due to the hubs which have a large number of edges.

Figs 4(b) and 4(c) show the adjacency matrices of assortative scale-free networks with the
same positive assortativity coefficient r obtained by the GER and SER methods, respectively.
The dots are densely plotted along the diagonal line in both figures and this tendency is
strengthened as r increases. Therefore, the monotonic increase in pc with r is common to the
networks generated by the two edge-rewiring methods. However, the variance from the diago-
nal line seems to be smaller for the network obtained by the GER method than that obtained
by the SER method. This detailed topological difference results in the different values of pc as
shown in Figs 3(c) and 3(d).

Figs 4(d) and 4(e) show the adjacency matrices of disassortative scale-free networks ob-
tained by the GER and SER methods, respectively. There are many dots in the off-diagonal
parts, corresponding to the connections between high-degree and low-degree nodes, in Fig 4
(d), but not conspicuously in Fig 4(e). To quantify the difference in the adjacency matrices be-
tween the two disassortative networks, we investigate how the high-degree nodes with indices
800, 900, and 1000 are connected to the neighboring nodes. Figs 5(a) and 5(b) show the histo-
grams of the number of neighboring nodes with respect to each range of index values, [100m
+ 1,100(m + 1) + 1) (m = 0,. . .,9), for the GER and SER methods, respectively. In Fig 5(a), the
nodes with indices 800 and 900 are connected to the nodes with similar degrees but the node
with index 1000 is mainly connected to the low-degree nodes. These two properties emerge as
the diagonal plots and the off-diagonal plots in the adjacency matrix in Fig 4(d), respectively.
Although the former property contributes to increasing the assortativity coefficient, the

Robustness of Oscillatory Behavior in Correlated Networks

PLOS ONE | DOI:10.1371/journal.pone.0123722 April 20, 2015 9 / 21



Fig 4. Adjacencymatrices of scale-free networks. The dots located at (i, j) indicate the presence of the edges between node i and node j. (a) An
uncorrelated network with r� 0. (b) An assortative network with r = 0.4, generated by the GERmethod. (c) The same as (b), but generated by the SER
method. (d) A disassortative network with r = −0.48, generated by the GERmethod. (e) The same as (d), but generated by the SERmethod.

doi:10.1371/journal.pone.0123722.g004
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assortativity coefficient is negative because of the greater impact of the latter property decreas-
ing the coefficient. On the other hand, in Fig 5(b), the three high-degree nodes with indices
800, 900, and 1000 tend to be connected to the nodes with intermediate degrees. The connec-
tions to the nodes with similar degrees are very few. Therefore, the assortativity coefficient be-
comes negative. These two examples of disassortative networks demonstrate that the
dynamical robustness of oscillator networks depends on the detailed network structure which
is not uniquely determined by the assortativity coefficient r.

Verification of the role of the network assortativity. Fig 3, which shows the dependency
of the critical value pc on the assortativity coefficient r, is computed assuming that the system
size is N = 3000, the coupling strength is K = 30, and the parameters for individual oscillators
are fixed at (a, b) = (1,3). Hence, it is important to determine if the features found in Fig 3 are
sensitive to other parameter settings. The results for system size N = 1500 (S5 Fig) are almost
the same as those in Fig 3, suggesting that the critical value pc is almost independent of the sys-
tem size. The results for coupling strength K = 40 (S6 Fig) are qualitatively similar to those in
Fig 3, but the increase in the coupling strength reduces pc as in the uncorrelated networks [6].
The results for b = 5 (S7 Fig) are also qualitatively similar to those in Fig 3. Consequently, we
confirm that the network assortativity has a positive role in the dynamical robustness of oscilla-
tor networks for the different parameter settings.

Furthermore, we tested the case with heterogeneous oscillators [34, 42]. The parameter αj in
Eq (1) is randomly chosen from a uniform distribution with the range of [μ−δ/2, μ + δ/2]
where μ is the average of αj and δ is the distribution width corresponding to the degree of het-
erogeneity. As μ is decreased from a sufficiently large value, the global oscillation vanishes at a
critical point μc. Instead of pc, as in the case with homogeneous oscillators, now μc is used as a
measure of dynamical robustness in the coupled heterogeneous oscillators [34]. The smaller
the value of μc is, the more robust the oscillator network is. The results for δ = 2 (S8 Fig) show
that the value of μc is almost unchanged for the variation of r in the networks with Poisson de-
gree distributions, but in the networks with power-law degree distributions it decreases as r in-
creases in the positive range. The latter result means that the network assortativity enhances
the dynamical robustness of heterogeneously coupled networks of heterogeneous oscillators.

Fig 5. The histogram of the degrees of the neighboring nodes in the disassortative networks. The network is given by scale-free network with size
N = 1000 and assortativity coefficient r = −0.48. The number of neighboring nodes with indices in the range [100m + 1,100(m + 1) + 1) (m = 1,. . .,9) is plotted
for the nodes with index 800, 900, and 1000. (a) The network obtained by the GERmethod. (b) The network obtained by the SERmethod.

doi:10.1371/journal.pone.0123722.g005
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Dynamical robustness of correlated bimodal networks
To theoretically approach the impact of network assortativity on the dynamical robustness of
coupled oscillator networks, we consider an extreme case using bimodal networks [43] (or
two-peak random networks [44]) where the degrees are limited to two values. We analytically
derive the critical fraction pc for the coupled oscillator model (Eq 1) with correlated bimodal
networks. Note that the topology of the bimodal network is uniquely determined for a given
value of r.

Random inactivation. First we analyze the critical fraction for the random inactivation.
We employ the heterogeneous mean field approximation to derive the critical fraction pc [6].
We denote the two degrees by k1 and k2 for the bimodal networks. We assume that the oscilla-
tor node with degree km (m = 1, 2) has Nkm kn neighboring oscillator nodes with degree kn
(n = 1, 2) on average. Then, the interaction of an oscillator node with degree km with the neigh-
boring nodes is divided into four types depending on whether the neighboring node is active or
inactive and whether the degree of the neighboring node is k1 or k2. Namely, the state variables
are reduced to four representative variables: Akm for active oscillators with degree km and Ikm for
inactive oscillators with degree km (m = 1, 2). Now we assume based on numerical observations
that the oscillator nodes with the same activity type and the same degree behave identically. Let
the degree of oscillator j is km (m = 1, 2) in Eq (1). Then the inflow term is approximated as fol-
lows:

XN
k¼1

ajkzk � qðNkmk1
Ak1

þ Nkmk2
Ak2

Þ þ pðNkmk1
Ik1 þ Nkmk2

Ik2Þ; ð6Þ

where q� 1 − p. Here we define the mean fields for the active and inactive oscillators with de-
gree km (m = 1, 2), respectively, as follows:

HA
km

�
X2

n¼1

Nkmkn

km
Akn

�
X2

n¼1

Eðkm; knÞ
QðkmÞ

Akn
; ð7Þ

HI
km

�
X2

n¼1

Nkmkn

km
Ikn �

X2

n¼1

Eðkm; knÞ
QðkmÞ

Ikn ; ð8Þ

where the above approximations come from Eq (2). Using these expressions, the model equa-
tions in Eq (1) can be reduced form = 1, 2 as follows:

_Akm
¼ aþ iO� jAkm

j2
� �

Akm
þ Kkm

N
qHA

km
þ pHI

km
� Akm

� �
; ð9Þ

_I km ¼ �bþ iO� jIkm j
2

� �
Ikm þ Kkm

N
qHA

km
þ pHI

km
� Ikm

� �
: ð10Þ

Based on numerical simulations showing that all the oscillators in the entire network exhibit
phase synchronization after a transient period, we set

Akm
ðtÞ ¼ rAkmðtÞ exp ðiðOt þ yÞÞ; ð11Þ

IkmðtÞ ¼ rIkmðtÞ exp ðiðOt þ yÞÞ; ð12Þ

where rAkm and rIkm represent the oscillation amplitudes of the active and inactive oscillators with

degree km, respectively, O is the oscillation frequency, and θ is the phase delay. Substituting Eqs
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(11)–(12) into Eqs (7)–(8), the mean fields for the state variables are represented as follows:

HA
km
ðtÞ ¼ RA

km
ðtÞ exp ðiðOt þ yÞÞ; ð13Þ

HI
km
ðtÞ ¼ RI

km
ðtÞ exp ðiðOt þ yÞÞ; ð14Þ

where the mean fields for the oscillation amplitudes are written as

RA
km
ðtÞ �

X2

n¼1

Eðkm; knÞ
qkm

rAknðtÞ; ð15Þ

RI
km
ðtÞ �

X2

n¼1

Eðkm; knÞ
qkm

rIknðtÞ: ð16Þ

Substituting Eqs (11)–(12) into Eqs (9)–(10), we obtain the equations with respect to the os-
cillation amplitudes as follows:

_rAkm ¼ a� Kkm
N

� ðrAkmÞ
2

� �
rAkm þ Kkm

N
qRA

km
þ pRI

km

� �
; ð17Þ

_rIkm ¼ �b� Kkm
N

� ðrIkmÞ
2

� �
rIkm þ Kkm

N
qRA

km
þ pRI

km

� �
: ð18Þ

Now let us assume that RA
km
and RI

km
are given form = 1, 2. The oscillation amplitudes for the

steady-state oscillations are calculated as the positive real roots of the following cubic equa-
tions:

ðrAkmÞ
3 � a� Kkm

N

� �
rAkm � Kkm

N
qRA

km
þ pRI

km

� �
¼ 0; ð19Þ

ðrIkmÞ
3 � �b� Kkm

N

� �
rIkm � Kkm

N
qRA

km
þ pRI

km

� �
¼ 0: ð20Þ

For these equations to have real roots, we assume kmin > aN/K where kmin �min(k1, k2) [6,
34]. By solving the cubic equations, the oscillation amplitudes are represented as rA�kmðRA

km
;RI

km
Þ

and rI�kmðRA
km
;RI

km
Þ, respectively (see Refs. [6, 34] for the detailed form of the solutions). The

mean fields of the oscillation amplitudes should be reconstructed from Eqs (15)–(16) using
these steady-state solutions. Hence, the self-consistent condition is represented as follows:

RA
km

¼ GA
km
ðRA

k1
;RA

k2
;RI

k1
;RI

k2
Þ; ð21Þ

RI
km

¼ GI
km
ðRA

k1
;RA

k2
;RI

k1
;RI

k2
Þ; ð22Þ

form = 1, 2, where

GA
km
ðRA

k1
;RA

k2
;RI

k1
;RI

k2
Þ ¼

X2

n¼1

Eðkm; knÞ
QðkmÞ

rA�kn RA
kn
;RI

kn

� �
; ð23Þ

GI
km
ðRA

k1
;RA

k2
;RI

k1
;RI

k2
Þ ¼

X2

n¼1

Eðkm; knÞ
QðkmÞ

rI�kn RA
kn
;RI

kn

� �
: ð24Þ
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The linearized matrix evaluated at the steady-state equilibrium is given by

J0 ¼

@GA
k1

@RA
k1

@GA
k1

@RA
k2

@GA
k1

@RI
k1

@GA
k1

@RI
k2

@GA
k2

@RA
k1

@GA
k2

@RA
k2

@GA
k2

@RI
k1

@GA
k2

@RI
k2

@GI
k1

@RA
k1

@GI
k1

@RA
k2

@GI
k1

@RI
k1

@GI
k1

@RI
k2

@GI
k2

@RA
k1

@GI
k2

@RA
k2

@GI
k2

@RI
k1

@GI
k2

@RI
k2

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

�����������������������
ðRA

k1
;RA

k2
;RI

k1
;RI

k2
Þ¼ð0;0;0;0Þ:

: ð25Þ

By calculating the matrix components using Eqs (23)–(24), the linearized matrix J0 in Eq (25)
is written as follows:

J0 ¼

qx11L
A
k1

qx12L
A
k2

px11L
A
k1

px12L
A
k2

qx21L
A
k1

qx22L
A
k2

px21L
A
k1

px22L
A
k2

qx11L
I
k1

qx12L
I
k2

px11L
I
k1

px12L
I
k2

qx21L
I
k1

qx22L
I
k2

px21L
I
k1

px22L
I
k2

0
BBBBBBB@

1
CCCCCCCA
; ð26Þ

where

xmn ¼
Eðkm; knÞ
QðkmÞ

for m; n ¼ 1; 2; ð27Þ

LA
km

¼ Kkm
N

	 1
Kkm
N

� a
; LI

km
¼ Kkm

N
	 1

Kkm
N

þ b
for m ¼ 1; 2: ð28Þ

The eigenvalues λj (j = 1, 2, 3, 4) of J0 are obtained as follows:

l1 ¼ l2 ¼ 0; l3 ¼
�c1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 � 4c0

p
2

; l4 ¼
�c1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 � 4c0

p
2

; ð29Þ

where

c0 ¼ ðx11x22 � x12x21ÞðqLA
k1
þ pLI

k1
ÞðqLA

k2
þ pLI

k2
Þ; ð30Þ

c1 ¼ �x11ðqLA
k1
þ pLI

k1
Þ � x22ðqLA

k2
þ pLI

k2
Þ: ð31Þ

The non-oscillatory equilibrium is stable if all the eigenvalues have absolute values less than
unity. Otherwise the global oscillatory behavior is observed. We consider the condition for the
phase transition between these two states. From c1 � 0, the eigenvalue with the largest absolute
value is λ3. The condition that jλ3j< 1 yields

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 � 4c0

p
< c1 þ 2: ð32Þ
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The above inequality requires (i) c1 + 2> 0 and (ii) −c0 < c1 + 1. The condition (i) gives

p >
x11L

A
k1
þ x22L

A
k2
� 2

x11ðLA
k1
� LI

k1
Þ þ x22ðLA

k2
� LI

k2
Þ : ð33Þ

The condition (ii) gives

hðpÞ � g2p
2 þ g1pþ g0 > 0; ð34Þ

where

g0 ¼ ðx11x22 � x12x21ÞLA
k1
LA
k2
� x11L

A
k1
� x22L

A
k2
þ 1;

g1 ¼ ðx11x22 � x12x21ÞfLA
k1
ðLI

k2
� LA

k2
Þ þ LA

k2
ðLI

k1
� LA

k1
Þg þ x11ðLA

k1
� LI

k1
Þ þ x22ðLA

k2
� LI

k2
Þ;

g2 ¼ ðx11x22 � x12x21ÞðLA
k1
� LI

k1
ÞðLA

k2
� LI

k2
Þ:

Note that the sign of γ2 is the same as the sign of the assortative coefficient r, and therefore, γ2
6¼ 0 for correlated networks. Detailed calculations show that the sign of h(p) changes from neg-
ative to positive only once as p is varied from 0 to 1. Solving h(p) = 0, we obtain the critical frac-
tion pc for the phase transition as follows:

pbimc ¼ �g1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 � 4g0g2

p
2g2

: ð35Þ

We can confirm that pbimc satisfies the inequality condition (Eq 33). For uncorrelated networks
with r = 0, γ2 = 0 and the critical fraction is reduced to

pbimc ¼ x11L
A
k1
þ x22L

A
k2
� 1

x11ðLA
k1
� LI

k1
Þ þ x22ðLA

k2
� LI

k2
Þ ; ð36Þ

which is equivalent to that derived in the previous study [6].
Targeted inactivation. Next we consider the targeted inactivation. Without loss of gener-

ality, we can assume that the oscillator nodes with degree k1 are inactivated prior to those with
degree k2. We separately treat the case where the phase transition occurs when the nodes with
degree k1 are inactivated (Case 1) and the case where it occurs when the nodes with degree k2
are inactivated (Case 2).

Case 1: The phase transition occurs during the inactivation of the nodes with degree k1. All
the oscillator nodes with degree k2 are active. Therefore, the Jacobian matrix corresponding to
Eq (26) is reduced to

J0 ¼

x11q1L
A
k1

x12L
A
k1

x11p1L
A
k1

x21q1L
A
k2

x22L
A
k2

x21p1L
A
k2

x11q1L
I
k1

x12L
I
k1

x11p1L
I
k1

0
BBB@

1
CCCA; ð37Þ

where p1 is the proportion of the inactive oscillators to the total number of nodes with degree
k1. The condition that all the eigenvalues have absolute values smaller than unity is given by

p1 > pðk1Þc � �ðx11x22 � x12x21ÞLA
k1
LA
k2
þ x11L

A
k1
þ x22L

A
k2
� 1

ðLA
k1
� LI

k1
Þf�ðx11x22 � x12x21ÞLA

k2
þ x11g

: ð38Þ
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By denoting the number of nodes with degree k1 by Nk1 and scaling the above fraction, we ob-
tain the critical fraction as follows:

pbimc ¼ Nk1

N
pðk1Þc : ð39Þ

Case 2: The phase transition occurs during inactivation of the nodes with degree k2 after all
the nodes with degree k1 are inactivated. All the nodes with degree k1 are inactive. The propor-
tion of the inactive oscillators with degree k2 to the total number of nodes with degree k2 is de-
noted by p2. A similar analysis to that in Case 1 gives the condition that all the eigenvalues have
absolute values less than unity when

p2 > pðk2Þc � �ðx11x22 � x12x21ÞLI
k1
LA
k2
þ x11L

I
k1
þ x22L

A
k2
� 1

ðLA
k2
� LI

k2
Þf�ðx11x22 � x12x21ÞLI

k1
þ x22g

: ð40Þ

By denoting the number of nodes with degree k2 by Nk2 and scaling the above fraction, we get
the critical fraction as follows:

pbimc ¼ Nk1

N
þ Nk2

N
pðk2Þc : ð41Þ

Numerical validation. The theoretical results for the critical fraction pbimc in the bimodal
networks are numerically validated. Fig 6 compares the critical fractions obtained by the theo-
retical analysis and those obtained by the numerical simulations. Figs 6(a)–6(c) show the re-
sults of the random inactivation, the targeted inactivation of high-degree nodes, the targeted
inactivation of the low-degree nodes, respectively, for the network with N = 3000, k1 = 600, k2
= 150, Nk1 = 600, and Nk2 = 2400. The theoretical results are in good agreement with the numer-
ical results in all the panels. The critical fraction monotonically increases with an increase in
the assortativity coefficient r for all the inactivation types. The results show the positive role of
assortativity in the dynamical robustness of bimodal networks. The discontinuity point found
in Fig 6(c) corresponds to the boundary between Case 1 and Case 2, at which all the nodes with
k1 have just become inactive. Figs 6(d)–6(f) show the results for another set of bimodal net-
works where N = 3000, k1 = 450, k2 = 150, Nk1 = 900, and Nk2 = 2100. The validity of our theo-
retical results are confirmed also in these networks.

Discussion
We have studied the dynamical robustness of correlated networks consisting of diffusively cou-
pled oscillators. The analyses of the dynamical robustness have been performed based on the
critical point at which the global oscillatory dynamics is lost as the fraction of the inactive oscil-
lators increases. To see the effect of the network assortativity, we have fixed the degree distribu-
tion of the network and changed the correlations of the degrees between the connected nodes
using the two edge-rewiring methods. As a result, we have shown that the network assortativity
enhances the dynamical robustness and the network disassortativity can have a positive or neg-
ative impact on the dynamical robustness depending on the edge-rewiring methods. We have
investigated the similarity and difference between the networks generated by the edge-rewiring
methods through the analyses of the oscillation amplitudes and the adjacency matrices repre-
senting the detailed network topology. We have found that the disassortative networks with
the same assortativity coefficient can have qualitatively different types of topology, leading to
the difference in the dynamical robustness. In the analyses of the correlated bimodal networks,
we have theoretically derived the critical point as a measure of the dynamical robustness and
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confirmed the positive role of the network assortativity in the dynamical robustness. The previ-
ous studies have pointed out that the network assortativity is beneficial for the structural ro-
bustness of complex networks through the analyses of the percolation thresholds [12, 37, 45].
Therefore, we can conclude that the network assortativity improves the failure tolerance of
complex networks from the viewpoints of both structural and dynamical robustness.

The numerical and theoretical analyses of the transition points in this study are expected to
be applied to various real-world problems where dynamics is important, including how to ef-
fectively prevent epidemic spreading on transportation networks [46], how to stabilize electric
power supply on power networks [47], and how to robustly keep neuronal firing activity on
complex biological networks [48]. These real-world networks typically have degree correlations
[8], and therefore, we need to take into consideration not only degree distributions but also de-
gree correlations for characterizing the network structure. A future work is to understand the
role of the network assortativity in the above phenomena through appropriate modeling of the
node dynamics and detailed analyses of the actual network architectures.

Supporting Information
S1 Fig. Oscillation amplitudes in the networks with Poisson degree distributions, generated
by the GER method. The model parameters are set at N = 1000 and p = 0.4. The node index is
sorted in ascending order of the node degree. The top ((a)-(c)), middle ((d)-(f)), and bottom
((g)-(i)) panels correspond to random inactivation, targeted inactivation of high-degree oscilla-
tor nodes, and targeted inactivation of low-degree oscillator nodes, respectively. The left ((a),
(d), (g)), center ((b), (e), (h)), and right ((c), (f), (i)) panels correspond to disassortative (r =

Fig 6. The critical value of pc in correlated bimodal networks of coupled oscillators. The system size is N = 3000. (a)-(c) The results for networks where
k1 = 600, k2 = 150,Nk1 = 600, andNk2 = 2400: (a) random inactivation; (b) targeted inactivation of high-degree nodes; (c) targeted inactivation of low-degree
nodes. (d)-(f) The results similar to (a)-(c), but for another set of networks where k1 = 450, k2 = 150,Nk1 = 900, and Nk2 = 2100.

doi:10.1371/journal.pone.0123722.g006
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−0.36), uncorrelated (r� 0), and assortative (r = 0.36) networks, respectively.
(EPS)

S2 Fig. Oscillation amplitudes in the networks with Poisson degree distributions, generated
by the SER method. The model parameters are set at N = 1000 and p = 0.4. The node index is
sorted in ascending order of the node degree. The top ((a)-(c)), middle ((d)-(f)), and bottom
((g)-(i)) panels correspond to random inactivation, targeted inactivation of high-degree oscilla-
tor nodes, and targeted inactivation of low-degree oscillator nodes, respectively. The left ((a),
(d), (g)), center ((b), (e), (h)), and right ((c), (f), (i)) panels correspond to disassortative (r =
−0.36), uncorrelated (r� 0), and assortative (r = 0.36) networks, respectively.
(EPS)

S3 Fig. Oscillation amplitudes in the networks with power-law degree distributions, gener-
ated by the GER method. The model parameters are set at N = 1000 and p = 0.5. The node
index is sorted in ascending order of the node degree. The top ((a)-(c)), middle ((d)-(f)), and
bottom ((g)-(i)) panels correspond to random inactivation, targeted inactivation of high-de-
gree nodes, and targeted inactivation of low-degree nodes, respectively. The left ((a), (d), (g)),
center ((b), (e), (h)), and right ((c), (f), (i)) panels correspond to disassortative (r = −0.48), un-
correlated (r� 0), and assortative (r = 0.48) networks, respectively.
(EPS)

S4 Fig. Oscillation amplitudes in the networks with power-law degree distributions, gener-
ated by the SER method. The model parameters are set at N = 1000 and p = 0.5. The node
index is sorted in ascending order of the node degree. The top ((a)-(c)), middle ((d)-(f)), and
bottom ((g)-(i)) panels correspond to random inactivation, targeted inactivation of high-de-
gree nodes, and targeted inactivation of low-degree nodes, respectively. The left ((a), (d), (g)),
center ((b), (e), (h)), and right ((c), (f), (i)) panels correspond to disassortative (r = −0.48), un-
correlated (r� 0), and assortative (r = 0.48) networks, respectively.
(EPS)

S5 Fig. The critical value pc for correlated networks with system size N = 1500. In each
panel, the numerically obtained values of the critical fraction pc are plotted against the assorta-
tivity coefficient r for random and targeted inactivation. (a) Networks with Poisson degree dis-
tributions, generated by the GER method. (b) Networks with Poisson degree distributions,
generated by the SER method. (c) Networks with power-law degree distributions, generated by
the GER method. (d) Networks with power-law degree distributions, generated by the
SER method.
(EPS)

S6 Fig. The critical value pc for correlated networks with coupling strength K = 40. In each
panel, the numerically obtained values of the critical fraction pc are plotted against the assorta-
tivity coefficient r for random and targeted inactivation. (a) Networks with Poisson degree dis-
tributions, generated by the GER method. (b) Networks with Poisson degree distributions,
generated by the SER method. (c) Networks with power-law degree distributions, generated by
the GER method. (d) Networks with power-law degree distributions, generated by the
SER method.
(EPS)

S7 Fig. The critical value pc for correlated networks with parameter b = 5. In each panel, the
numerically obtained values of the critical fraction pc are plotted against the assortativity coeffi-
cient r for random and targeted inactivation. (a) Networks with Poisson degree distributions,
generated by the GER method. (b) Networks with Poisson degree distributions, generated by
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the SER method. (c) Networks with power-law degree distributions, generated by the GER
method. (d) Networks with power-law degree distributions, generated by the SER method.
(EPS)

S8 Fig. The critical value μc for correlated networks of coupled heterogeneous oscillators
with δ = 2. In each panel, the numerically obtained values of the critical point μc are plotted
against the assortativity coefficient r. The parameter αi (i = 1,. . ., N) is randomly chosen from a
uniform distribution with the range of [μ − δ/2, μ + δ/2] where μ is the average of αi and δ is
the distribution width corresponding to the degree of heterogeneity. (a) Networks with Poisson
degree distributions, generated by the GER method. (b) Networks with Poisson degree distri-
butions, generated by the SER method. (c) Networks with power-law degree distributions, gen-
erated by the GER method. (d) Networks with power-law degree distributions, generated by
the SER method.
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