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ABSTRACT Altererythrobacter sp. strain B11 is an aromatic monomer-degrading bac-
terium newly isolated from sediment under the seabed off Kashima, Japan, at a
depth of 2,100 m. Here, we report the complete nucleotide sequence of the genome
of strain B11.

Altererythrobacter is one of the genera within Alphaproteobacteria proposed by
Kwon et al. (1). Various species belonging to this genus have been frequently

isolated from marine environments, including sediments, seawater, and tidal flats (2).
Several physiological studies have reported that Altererythrobacter strains possess
degrading activity against recalcitrant organic hydrocarbons, such as alkanes (3) and
polyaromatic hydrocarbons (4, 5), derived from petroleum. In addition, the potential
genes responsible for alkane and benzo[a]pyrene degradation have also been found
bioinformatically (3, 5). However, there is little information about the other aromatic
compounds that naturally occur in ubiquitous plant biomasses (6). In this study, we
successfully isolated a new type of Altererythrobacter strain from the marine sediment
recovered from about 9 m under the seabed off Kashima, Japan (36.07° N, 141.79° E), at
a depth of 2,100 m. The strain B11 can degrade aromatic monomers, such as
p-coumaric acid, ferulic acid, and 4-hydroxybenzoic acid, which are components of
various plant cell walls (7). Because the 16S rRNA gene sequence of strain B11 showed
98.1% identity with that of Altererythrobacter atlanticus 26DY36T (8, 9), we designated
it Altererythrobacter sp. strain B11.

Total genomic DNA of strain B11 was extracted using a NucleoSpin Plant II midikit
(TaKaRa Bio) according to the manufacturer’s protocol. Whole-genome sequencing of
strain B11 was performed by means of both Pacific Biosciences RS II (10) and Illumina
HiSeq 2500 sequencers. A total of 126,732 PacBio reads (1,111,616,349 bases) were
obtained using SMRT Analysis (v 2.3.0) and assembled into a contig (redundancy of
227-fold) with the Hierarchical Genome Assembly Process v 3 (HGAP3) assembler (11).
Paired-end Illumina reads (2 � 101 bp, 24,220,470 reads) were used to correct the
contig derived from the PacBio sequence (redundancy of 625-fold) to complete ge-
nome sequencing using the read-mapping program in CLC Genomics Workbench v 9
(CLC bio, Aarhus, Denmark).

The genome of strain B11 is composed of a single circular chromosome (3,842,046
bases), with a mean G�C content of 65.4%. We identified 3,645 protein-coding
sequences (CDSs), 51 tRNAs, and 6 rRNAs by means of the MetaGeneAnnotator (12),
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tRNAscan-SE 1.23 (13), and RNAmmer 1.2 (14) servers, respectively. We manually
annotated the predicted CDSs through an NCBI BLAST search and orthologous analysis
using Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology and NCBI Clusters
of Orthologous Groups of proteins (COGs) as the protein databases.

We predicted overall metabolic and physiological functions of strain B11 using the
metabolic and physiological potential evaluator (MAPLE) with bidirectional best-hit
matches (15, 16). In addition, we successfully identified the genes encoding key
enzymes responsible for the degradation of various aromatic compounds (17), such as
multiple protocatechuate 3,4-dioxygenases and a 4-hydroxybenzoate 3-monooxygenase,
in the genome. The genomic information of the newly isolated strain B11 will facilitate
a better understanding of the metabolism for degrading recalcitrant aromatic com-
pounds by the Altererythrobacter species in marine environments.

Accession number(s). This whole-genome shotgun project has been deposited in
DDBJ/ENA/GenBank under the accession no. AP018498.
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