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ABSTRACT

Chromosomal translocations are one of the most
common types of genetic rearrangements and are
molecular signatures for many types of cancers.
They are considered as primary causes for cancers,
especially lymphoma and leukemia. Although many
translocations have been reported in the last four
decades, the mechanism by which chromosomes
break during a translocation remains largely un-
known. In this review, we summarize recent ad-
vances made in understanding the molecular
mechanism of chromosomal translocations.

INTRODUCTION

In 1914, Theodor Boveri first hypothesized that genetic
aberrations could be the underlying cause of cancer
(1,2). However, it took almost 50 years for the first
chromosomal translocation to be discovered in any form
of cancer. Nowell and Hungerford in 1961 showed the
presence of a recurring chromosomal abnormality, named
as the Philadelphia chromosome, in chronic myelogenous
leukemia (CML) patients (3). Later it was identified as
a translocation between chromosomes 9 and 22 (4).
Following this, a translocation between chromosomes 8
and 14 was discovered in Burkitt’s lymphoma (5). It was
the first example, wherein, a chromosomal break was
reported at an oncogene, c-MYC, and was shown to trans-
locate to the immunoglobulin heavy chain (IgH) loci on
chromosome 14 (6,7). Later, several other translocations
were discovered and many of these were found to involve
chromosome 14 as one of the partner chromosomes (8).
Molecular studies of different translocations, especially
cloning of the breakpoint junctions from patients, have
further helped in the functional characterization of the
genes involved and in understanding the mechanism of
how these aberrations could cause neoplasia.

Translocations generally result from swapping of
chromosomal arms between heterologous chromosomes

and hence are reciprocal in nature (Figure 1) (8,9). DNA
double-strand breaks (DSBs) are prerequisites for such
translocations, although little is known about their gener-
ation. Chromosomal translocations ultimately result in
the deregulation of key cellular proteins, especially those
coded by proto-oncogenes and tumor suppressor genes,
which are critical functional regulators of the cell
(10–12). This can happen in two ways. In the first case,
the entire coding region of a gene can be juxtaposed to a
transcriptionally active promoter or enhancer element of
another gene on a different chromosome, thereby leading
to an abnormal expression of the translocated gene
(Figure 1A). In the second scenario, the translocation
results in the formation of a unique fusion gene, which
in turn codes for an activated form of the protein that
affects the normal cellular physiology (Figure 1B).
Alternatively, some translocations can inactivate tumor
suppressor genes. For example, gene fusions such as
TEL1-AML can repress the expression of TEL1, a
tumor suppressor gene (13–15).
Among different cancers, mostly lymphoma and

leukemia are characterized by the presence of unique
chromosomal translocations (10–12,16). The t(14;18) is
one of the most well studied chromosomal translocations
and is characteristic of follicular lymphoma (FL) (17)
(Table 1). It results in the overexpression of anti-apoptotic
protein, BCL2, which provides the cells a survival advan-
tage and a probability to acquire further deleterious mu-
tations, ultimately leading to cancer (18,19). On the other
hand, the t(9;22) translocation found in CML results in
the deregulation of ABL gene present on chromosome 9
by BCR gene promoter on chromosome 22. This results in
the formation of a unique in-frame fusion mRNA and
protein (3,4,8,20–22) (Table 1). Examples of other major
chromosomal translocations detected in patients include
BCL6 translocation involving chromosome 3 in diffuse
large B-cell lymphoma, t(11;14) in mantle cell lymphoma
and many others (7,23–30) (Table 1). In addition, intersti-
tial deletions are also frequently found in T-cell neoplasia
patients. Activation of the human NOTCH1 protein
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occurs upon truncation due to the removal of the extra-
cellular domain, during t(7;9) translocation and this is
observed in around 10% of T-cell acute lymphoblastic
leukemia cases (31). Interstitial deletion leading to the
juxtaposition of the SCL and SIL genes on chromosome
1 is another common genetic abnormality found in T-cell
leukemia patients (32,33).
Earlier it was believed that chromosomal translocations

are primarily restricted to the lymphoid cancers and a few
sarcomas, despite carcinomas accounting for approxi-
mately 80% of all cancers (Figure 2A) (34,35). Around
90% of all lymphomas and more than 50% of the leuke-
mias have been reported to possess translocations (36).
Interestingly, recent studies have shown that carcinomas
possess chromosomal translocations, making them very
useful as biomarkers (37,38) (Figure 2B). This discovery

has been mainly due to the development of novel tech-
niques, which have overcome the limitations faced earlier.
However, unlike the hematological malignancies, where
mostly the oncogenes juxtapose to the immunoglobulin
loci, these cancers predominantly possess gene fusions
(39–42) (Figures 1 and 2). This breakthrough has
sparked a new interest in the search of translocations in
various types of carcinomas.

There have been many attempts to decipher the reasons
for fragility of chromosomes during translocations.
However, the exact mechanism of most of the transloca-
tions is still elusive, except in very few cases. This review
largely describes the various mechanistic aspects of gener-
ation of chromosomal translocations, focusing on the
causes of DNA breaks at specific, confined regions of
the genome.
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Figure 1. Consequences of chromosomal translocations. A chromosomal translocation can broadly result in either juxtaposition of oncogenes near
promoter/enhancer elements (A) or gene fusions (B). Both results in the deregulation of the expression of genes affecting various cellular and
physiological processes like proliferation, differentiation, motility and apoptosis. Arrows at the genes depict the sites for double-strand break
formation. Normally, the reciprocal joining does not lead to any functional product.

Table 1. Most common chromosomal translocations in cancer

Translocation Genes Type of cells Name of cancer

t(14;18) BCL2 B-cells Follicular lymphoma
t(8;14) c-MYC B-cells Burkitt’s lymphoma
t(3;14) BCL6 B-cells Diffuse large B-cell lymphoma
t(9;22) BCR and ABL Myeloid cells Chronic myeloid leukemia
t(11;14) CCND1 B-cells Mantle cell lymphoma
t(10;14) HOX11 T-cells T-Acute lymphoblastic leukemia
t(2;5) NPM and ALK B-cells Anaplastic large cell lymphoma
t(21;7) TMPRSS2 and ETS Epithelial cells Prostate carcinoma
t(12;15) ETV6 and NTRK3 Epithelial cells Breast carcinoma
t(11;22) EWS and FLI-1 Mesenchymal cells Ewing’s sarcoma
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RAG-MEDIATED CHROMOSOMAL
TRANSLOCATIONS

RAG cleavage based on consensus sequences

V(D)J recombination is responsible for the immense
diversity of antibodies and T-cell receptors (TCRs) gene-
rated during the development of B and T lymphocytes
(43,44). It is a site-specific recombination leading to the
formation of variable region exon of the antigen receptor
by rearranging the variable (V), diversity (D) and joining
(J) subexons (45). The recombination activating genes,
RAG1 and RAG2 (RAG complex), recognize the recom-
bination signal sequences (RSSs) flanking the V, D and J
subexons (46) (Figure 3A). RSSs are of two types, the
12 and 23 RSSs, based on the length of the spacer
region interspersing the conserved heptamer and nonamer
sequences. After binding to the RSS, RAGs induce
nicks which are later converted to DSBs by DNAPKcs–
Artemis complex through a hairpin intermediate
(Figure 3A). Finally, the coding ends are joined by the
non-homologous end joining (NHEJ), which is one of

the major DSB repair pathways in higher eukaryotes, to
produce a functional antibody/TCR (47,48).
Interestingly, in many chromosomal translocations, the

most common partner is the IgH locus on chromosome 14
(11,26,49). Analyses of the translocation breakpoints
suggest that V(D)J recombination may play a key role in
the generation of such translocations, especially in the case
of chromosome 14 (50,51) (Figure 3B). The breaks in the
partner chromosomes are generally nonrandom. Genes
such as LMO2, TTG1, SIL and SCL have been shown
to possess cryptic RSS elements, which are misrecognized
and cleaved by RAGs within cells, resulting in transloca-
tions or interstitial deletions (between SIL and SCL)
(Figure 3B) (52–54). In addition, RAG-induced single-
strand breaks have been suggested to stimulate homolo-
gous recombination (HR) or other error-prone DNA end
joining pathways (55). The presence of mutations in
RAGs that can destabilize postcleavage complex forma-
tion may facilitate generation of translocations by pro-
moting aberrant repair (55,56). In addition, the presence
of cryptic heptamers at translocation sites in which the
critical nucleotides (4th and 5th positions) differ from
the canonical heptamer may be pathogenic due to the for-
mation of a weak postcleavage complex, thereby releasing
the DSB ends prematurely (56). These unprotected DNA
ends can then be repaired through pathways like alterna-
tive NHEJ (discussed below). Consistent with this, it has
been speculated in the past that RAG-initiated DSBs
might initiate HR between similar sequences located on
non-homologous chromosomes and subsequently result in
translocations (57,58). However, evidence for this hypoth-
esis is still lacking.

RAG cleavage based on DNA structures

Besides being a sequence-specific nuclease, recent studies
have shown that RAGs can act as a DNA structure-
specific enzyme (59–62). Studies have demonstrated that
purified RAGs can cleave overhangs and flap structures
within the DNA, in vitro (59,60). In addition, the major
breakpoint region (MBR) at the 30 UTR in BCL2 gene on
chromosome 18, involved in t(14;18) translocation (18,19),
was shown to exist in a non-B DNA structure, which can
be cleaved by the RAG proteins. This was based on both
in vitro cleavage assays using purified RAGs on plasmid
DNA as well as ex vivo studies using extra-chromosomal
DNA substrates in pre-B cells expressing endogenous
RAGs (61). By in vitro studies, RAGs have also been
shown to cleave other non-B DNA structures such as
bubbles and heterologous loops (62,63). More recently,
it was demonstrated that RAG cleavage on such non-B
DNA structures is not only dependent on structure, but
also influenced by the sequence (64). Cytosines were pref-
erentially cleaved, when present at the single-stranded
regions of altered DNA structures (Figure 3C).
However, RAGs could not cleave heteroduplex DNA
when adenines or guanines were present. A consensus
sequence motif has also been proposed for such RAG-
induced breaks at single-/double-strand DNA transitions
(Figure 3C) (64). Thus, this new property of the RAG
complex could explain some facets of genomic

Figure 2. Frequency of chromosomal translocations in different cancers.
(A) Distribution of different classes of cancers in terms of their
incidence. Carcinoma constitutes the maximum percentage among all
types of cancer followed by sarcoma. Leukemia and lymphoma
together constitute around 8% of all cancers. (B) Percentage of occur-
rence of translocations within the different classes of cancer. Almost
all lymphomas harbor translocations, whereas only one-fourth of
all sarcomas (183) have been reported to possess the same. Gene
fusions in carcinomas have been discovered recently. Although recent
investigations suggest its presence in many carcinomas, the exact
percentage of carcinoma bearing translocations is not yet clear
(denoted by ‘?’).
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Figure 3. Mechanism of RAG mediated translocations. (A) Standard V(D)J recombination is initiated by RAG induced nicks (indicated by thin
arrows) at the 50 of the heptamer present within the standard recombination signal sequences (open triangle represents 12 RSS while closed triangle
depicts 23 RSS). This is followed by hairpin formation using a transesterification reaction. The hairpins are further resolved and DSBs are joined
using NHEJ protein machinery resulting in the formation of a coding joint. The free signal ends circularize to give the signal joint. (B) RAGs, in
addition to nicking the standard recombination signals (a), can misrecognize sequences resembling standard RSS on other genes (b) and induce nicks,
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rearrangements including chromosomal translocations
specific to lymphoid tissues, which were inexplicable
thus far.

The exact nature of the non-B DNA structure at the
BCL2 MBR has been an area of active research (65,66).
A recent study provided evidence for the formation of
a parallel G-quadruplex structure at peak I and its
upstream region, using multiple biochemical and biophys-
ical methods, including nuclear magnetic resonance
(NMR) spectroscopy (67). Since formation of the intra-
molecular G-quadruplex could result in the opposite
strand essentially remaining single stranded, it could
explain the sodium bisulfite reactivity of this region (61).
Therefore, the presence of such altered DNA structures at
translocation hotspots may explain the fragility at other
genomic loci. However, more studies are needed in this
direction.

Other types of RAG cleavage mechanisms

RAG proteins possess transposase activity, during which a
signal end generated after RAG cleavage gets inserted into
a target site, with or without the characteristic 4–5-bp
duplication (Figure 3D) (68,69). It has also been shown
that such insertions could be facilitated, if the target DNA
contained sequences that support cruciform structure for-
mation (70). There are studies suggesting that RAG-
mediated transposition and insertion events can occur in
yeast and mammalian cells (71–74). Such studies add a
new dimension to the potential of the RAG proteins in
mediating genomic instability. In fact, many independent
studies have proposed that RAG-mediated transposition
could lead to chromosomal translocations, although there
is no direct evidence yet. In this regard, a study showed the
reinsertion of excised signal joints by RAGs both ex vivo
and in vivo, by trans-V(D)J recombination at IgH or TCR
target sites (75). Although this did not appear to be a
transposition event, it was dependent on RAGs and led
to integration of signal joints in an episomal system. It is
also proposed that cryptic RSS, present near proto-
oncogenes in some T-cell leukemias, can act as hotspots
for such integration events.

A new mechanism of RAG cleavage was explained
recently based on the statistical correlation of presence
of CpGs near some of the translocation breakpoint
regions (76). The cytosines present at the CpGs, methyl-
ated or otherwise, could be a target for enzymes like
activation-induced cytidine deaminase (AID), which can
deaminate them, resulting in single-nucleotide mis-
matches. These can then be targeted by nucleases, one
of which could be RAGs, thereby introducing nicks or
DSBs at these sites (Figure 3E) (76). However, more

studies are required to understand this mechanism
within the cells.

In vivo evidence for RAG involvement in chromosomal
translocations

Direct proof for the role of RAG proteins in causing
translocations came from in vivo studies in mice lacking
proteins involved in the NHEJ pathway. Although these
mice cannot perform V(D)J recombination completely,
they do not possess translocations, probably due to the
activation of the p53-dependent checkpoint pathway. In
agreement with this, mice lacking both p53 and NHEJ
factors such as Ku80, Xrcc4 or Ligase IV developed
lymphomas (77,78). Characterization of some of these
lymphomas has shown that RAG-mediated breaks,
which are unrepaired, initiate a break-induced replication,
thereby leading to the translocations. These further are
amplified due to the breakage–fusion-bridge mechanism
(79). It was also observed that the integrity of the Rag2
gene was essential for the development of lymphomas in
such NHEJ/p53-deficient cells (58). In particular, the
RAG2 carboxy terminus was recently shown to play a
critical role in the maintenance of genomic stability (80).
The core Rag2 homozygotic mice displayed a higher inci-
dence of thymic lymphomas containing several genomic
abnormalities including translocations. This observation
was further supported by evidences that the periodic de-
struction of RAG2 during G1 to S-phase cell-cycle tran-
sition could promote aberrant recombination in mice (81).
This suggests that unresolved RAG-induced DNA DSBs
caused during V(D)J recombination can lead to transloca-
tions and hence lymphomas. Deficiency of NHEJ factors
such as Artemis or XLF (Cernunnos) proteins in murine
embryonic stem cells were also shown to result in
increased genomic instability and chromosomal transloca-
tions (82,83). Mice lacking DNA damage sensor proteins
such as ATM developed thymic lymphomas, involving
translocations of the Tcr loci (either Tcra/d (Tcra/d)
locus) (84–87). Recently, many such recurring transloca-
tions in thymic lymphomas were characterized in
ATM-deficient mice (88). Unexpectedly, these lymphomas
were found to be associated with V(D)J recombination
errors in Tcrd and not Tcra, indicating that they were
derived from T cells which have not attempted Tcra re-
arrangement. Aberrant resolution of the DSBs present in
Tcrd due to misrepair in the absence of ATM leads to gene
amplifications on chromosome 14 or the transloca-
tions involving chromosomes 12 and 14. However, the
exact nature of the repair pathway, which joins these
breaks leading to a translocation, is not yet clear,
although the alternative NHEJ pathway could possibly
be involved.

Figure 3. Continued
which can be converted to hairpins, using the standard V(D)J-like mechanism. These hairpins can then be processed and joined using the components
of the NHEJ pathway. (C) RAGs can also recognize single-stranded regions of non-B DNA structures, especially in the context of cytosines and
induce nicks or DSBs. (D) RAG-mediated transposition can also introduce genomic instability and hence translocations. RAGs can act like a
transposase and introduce signal ends into heterologous chromosomes at some other loci making them fragile. (E) CpGs are susceptible to deamin-
ation by enzymes like AID, resulting in single-nucleotide mismatches. These can in turn be recognized and cleaved by RAGs or other nucleases, to
introduce nicks or DSBs. Such CpGs have been found at or near many chromosomal translocation breakpoint regions in lymphoid cancers.
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AID-MEDIATED CHROMOSOMAL
TRANSLOCATIONS

Apart from V(D)J recombination, processes such as
somatic hypermutation and class switch recombination,
also play a key role in generating antibody diversity
(16). AID is the major enzyme required for both these
processes (89–91). AID deaminates the cytosines present
in single-stranded regions (during transcription or forma-
tion of R-loops) into uracil, which results in a mismatch.
This can be further processed by uracil N-glycosylase/AP
endonuclease, finally leading to either a mutation or a
DSB (92–96) (Figure 4). The DSB generated is an inter-
mediate for class switching and, therefore, if unrepaired,
can be a suitable candidate for illegitimate joining
(Figure 4). This is supported by recent studies, where it
was demonstrated that the breaks at the c-MYC gene
during t(8;14) translocation, characteristic of Burkitt’s
lymphoma, are induced by AID (16,97–99). In addition,
c-MYC transgenic mice in a p53-deficient background
rapidly developed B-cell lymphoma (100). The c-MYC
region has also been suggested to form G-loop structures
on plasmid DNA, which can be bound by AID (101).
Taken together, these studies indicate that action of
AID can result in the development of translocations, es-
pecially those involving immunoglobulin switch regions
and hence lymphoma.
miR-155 has been recently shown to regulate the levels

of AID (102). miR-155-deficient mice or those containing
mutated miR-155 binding site on the mRNA exhibited
t(8;14) translocation at a much higher frequency than
that of wild type (102,103). This suggested an important

role for AID during c-MYC-IgH translocations. Besides,
deregulated expression of AID can induce tumors in mice
and may further help in the progression of c-MYC-
induced mature B-cell lymphomas (104,105).

AID has also been implicated in the occurrence of the
translocations involving the androgen receptor (AR)
target gene, TMPRSS2 with ETS family of genes in
prostate cancer. During the translocation, AR binds to
the intronic region of both the genes involved, bringing
together the loci involved in translocation. Furthermore,
AID and LINE-1 repeat-encoded ORF2 endonuclease
are recruited to the site, acting synergistically to generate
site-specific DSBs, which can then be rejoined by repair
pathways (106,107). AID, although a lymphoid specific
protein and expressed at a very low level in prostate cancer
cells, gets induced significantly upon treatment with AR
agonists, genotoxic stress or by IR-irradiation (108).
Interestingly, AID-induced DSBs have been detected in
several non-Ig loci in the genome, many of which occur
near regions of translocations, deletions and amplifica-
tions (109). This could help in explaining the role of
AID in generation of chromosomal instability.

CHROMOSOMAL TRANSLOCATIONS BY OTHER
MECHANISMS

Both RAGs and AID are expressed transiently but pre-
dominantly in lymphoid cells (110,111). RAGs are ex-
pressed only in developing B and T cells, whereas AID
is expressed in the germinal centre B cells (110,111).
Therefore, not all translocations can be accounted by
only these two proteins. Studies have shown that illegit-
imate V(D)J recombination may not be the only factor
responsible for the generation of genomic alterations.
H2AX�/–p53�/–RAG2�/– mice showed a similar genetic pre-
disposition to thymic lymphoma as did the H2AX�/–p53�/–

mice (112,113). In addition, an AID-independent pathway
has been observed for c-MYC-IgH translocation, suggest-
ing that a subset of switch region translocations can occur
without AID (114).

Human genome can incur endogenous damage through
free radicals or natural environmental radiations, which
can also culminate into translocations (115,116).
Breakage-induced replication (BIR) at a DSB has been
shown to explain some chromosomal translocation
events in yeast (117,118). Exogenously, DSBs can be
caused by agents such as etoposide, which is a known
topoisomerase II inhibitor and this can further help in
the occurrence of secondary malignancies (119–122).

Recent studies have shown that the antiapoptotic
protein, BCL2, can interact with KU proteins, resulting
in the downregulation of NHEJ (123,124). Using muta-
genesis studies, it was observed that KU70 can interact
with BH1 and BH4 domains of BCL2, thereby reducing
the efficiency of KU binding to the DNA ends (123). This
is of particular relevance in cancer cells, wherein the levels
of BCL2 are elevated. It was observed that higher levels of
BCL2 led to a reduction in the efficiency of NHEJ in
various cancer cell lines and vice versa (124). Since the
BCL2-KU interaction downregulates NHEJ, a failure of
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Figure 4. Mechanism of AID-mediated translocations. AID can deami-
nate cytosines leading to the formation of uracil, which is generally
removed by Uracil N–Glycosylase. The nicks are usually repaired by
the base excision repair mechanism. However, two unrepaired nicks in
close vicinity can act as a double-strand break and thereby a substrate
for chromosomal translocations.

5818 Nucleic Acids Research, 2011, Vol. 39, No. 14



the latter could result in the generation of secondary
chromosomal rearrangements including translocations in
cancer cells.

Rearrangements have also been shown to occur in Alu
repeats, which make up the largest family of repetitive
elements, in several somatic and germline cells (125,126).
These can join either with other Alu elements or with
non-Alu sequences. Alu–Alu intrachromosomal recom-
bination was seen in mixed lineage leukemia (MLL)
gene, involved in acute myeloid leukemia (127). In the
Philadelphia chromosome, BCR and ABL1 genes contain
certain Alu elements near their breakpoint regions, which
may possibly lead to the occurrence of Alu-mediated
DNA recombination, although this is yet to be proven
(128). More recently, an intron-based system was used
specifically to study induction of translocations at Alu
elements (129). Induction of DSBs adjacent to identical
Alu elements resulted in a higher frequency of transloca-
tions, predominantly via single strand annealing (SSA)
pathway, whereas those near more divergent Alu
elements utilized NHEJ.

A variety of genomic rearrangements can also arise
due to palindrome-mediated genomic instability (130)
(Figure 5C). A well-studied example is the recurrent
t(11;22)(q23;q11) chromosomal translocation which
harbors palindromic AT-rich repeat (PATRR) sequences
on both the breakpoint regions (131). A few other trans-
locations which have been reported to be mediated by
palindromic sequences are t(1;22)(p21;q11), t(4;22)
(q35;q11), t(17;22)(q11;q11) and t(X;22). PATRR11 on
11q23 can form a cruciform DNA structure in vitro
(132) (Figure 5C). This gives rise to the possibility that a

cruciform structure may be the site of breakage due to
action of nucleases or processes such as replication
(133,134). Can such structures form within the cells?
Some recent studies provide evidence for formation of
such structures in bacteria and yeast. Plasmid DNA con-
taining cruciform-forming sequences near promoter
regions in bacteria were chemically probed for modifica-
tion and were found to form cruciform structures (135). In
an interesting study, evidences were provided for cruci-
form formation and its resolution within yeast (136). It
was seen that plasmids bearing palindromic sequences,
when transfected into Saccharomyces cerevisiae, were
site-specifically cleaved by Mus81, which is considered as
a DNA structure-specific endonuclease. Hence, the
presence of non-B DNA structures at breakpoint regions
suggests that they can make certain loci on the genome
fragile, resulting in DSBs and further translocations by
NHEJ or by altered NHEJ pathways (Figure 5). This is
further confirmed in some cases of Burkitt’s lymphoma,
where breakpoints in the c-MYC gene are clustered
around the H-DNA forming sequences in its promoter
region (137) (Figure 5A). Many other forms of non-B
DNA structures including Z-DNA, H-DNA, R-loop,
G-quadruplex and triplex are now believed to be asso-
ciated with various human diseases, as they are implicated
in promoting genomic instability (17,138,139) (Figure 5).
Even though several attempts are being made to prove the
existence of such non-B DNA structures within the cells,
more studies are required at the genomic level to show
their presence and role in generating chromosomal trans-
locations particularly within humans.

Figure 5. Non-B DNA structures involved in generation of chromosomal translocations. Recent studies have shown the importance of altered or
non-B DNA structures in the generation of chromosomal translocations. Triplex DNA (A), G-quadruplexes (B), cruciform DNA (C), RNA-DNA
hybrid (D) and B/A intermediate (E) DNA structures have been reported to be present at several ommon translocation breakpoint sites.
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ROLE OF ALTERNATIVE NHEJ IN CHROMOSOMAL
TRANSLOCATIONS

DNA DSBs, which are incurred by mammalian cells, are
normally repaired using either the non-homologous DNA
end joining or homologous recombination. However, in
the absence of these canonical pathways, an ‘alternative
NHEJ’ pathway has been described in mammalian cells
(140–143). Although its exact molecular components are
not very well understood, this pathway has been impli-
cated in the generation of chromosomal translocations
(140,141). It has been observed that alternative NHEJ
operates mostly in the absence of classical NHEJ
pathway as shown in Ku, Xrcc4 or Ligase IV-deficient
mice (141,144). It appears that alternative NHEJ may
not be a single multi-component pathway, but could be
further categorized into multiple subsets. The most pre-
dominant mechanism among them is the microhomology-
mediated end joining (MMEJ). This pathway utilizes a
short region of homology for joining the junctions, has
extensive deletions and can be seen in cells lacking
NHEJ proteins such as XRCC4 and Ligase IV
(145–147). Although even classical NHEJ sometimes
utilizes microhomology for the end joining, the exact
length of the homology required for classical and alterna-
tive NHEJ is not very clear. Other mechanisms of alter-
native NHEJ are primarily Ku or DNA–PKcs
independent joining, which do not require microhomology
and SSA (148–151). Truncation of murine core RAG2
proteins also resulted in a robust alternative NHEJ
activity in Xrcc4-deficient cells (140). However, it was
seen that such deletions in RAG2 could support alterna-
tive NHEJ even in wild-type cells. Here, they can lead to
aberrant joining of the DSBs, generated during either
V(D)J recombination or class switch recombination, ul-
timately resulting in chromosomal translocations
(140,141). Previous studies on core RAG transgenic mice
showed that some junctions contained regions of micro-
homology and extensive deletions, like the alterative
NHEJ junctions (152). This and other observations
confirm that alternative NHEJ can occur even in normal
cells in the presence of classical NHEJ. However, its effi-
ciency might be low and may depend on other factors. It
is becoming increasingly clear now that alternative NHEJ
could be the primary mediator in the formation of trans-
locations in mammalian cells, since the classical NHEJ
suppresses generation of such rearrangements (153–155).
The role of NBS1 in preventing alternative NHEJ and
thereby genomic instability has also been suggested
(142). Further, PARP1 and PARP2 proteins, which
usually act as DNA damage sensors, were shown to
have contrasting roles in mediating alternative NHEJ
(156). This seems to be consistent with studies on mice
with mutated MRE11 complex, where increased transloca-
tions involving the TCRa loci were observed (157,158).
Can alternative NHEJ be detected in human neoplasia?

Urothelial carcinoma extracts have been shown to utilize
MMEJ as the predominant pathway of DSB repair, as
opposed to classical NHEJ. The repair was independent
on Ku70, DNA–PKcs and XRCC4 proteins, which would
explain the extent of genomic instability present in such

cancers (159). Interestingly, the error-prone alterative
NHEJ pathway correlated with the invasiveness of the
cancer. In particular, end-joining fidelity was shown to
be compromised with both the increase in the grade of
cancer and the reduced activity of the Ku proteins (160).
In another study, fidelity of NHEJ products was found to
shift from classical to alternative pathways in B-cell
leukemic cells that were resistant to DNA-damage-
induced apoptosis (161). These studies suggest that devi-
ations in the delicate balance between classical and alter-
native NHEJ could push the cell toward the latter; thus
contributing to genomic instability and development of
cancer.

Recently, we attempted to understand whether the effi-
ciency of the NHEJ pathway plays any role in the gener-
ation of tissue-specific genomic instability. Upon studying
the mechanism of NHEJ in cell free extracts of various rat
tissues, we observed that apart from testis, lungs showed
the maximum NHEJ efficiency, whereas terminally
differentiated organs, such as heart, liver and kidney,
showed the least (162,163). This finding is of interest as
it correlates with the higher incidence of cancers in lungs,
which could arise due to mutations in the genes involved
in the NHEJ pathway. However, more studies are required
to understand the role of NHEJ and alternative NHEJ in
tissue-related chromosomal abnormalities in cancer.

CHROMOSOMAL TRANSLOCATIONS IN HEALTHY
INDIVIDUALS

Previously, it was believed that chromosomal transloca-
tions were associated only with cancer. However, many
studies have shown the incidence of translocations in the
peripheral blood of healthy individuals in the past decade.
So far, the translocations, which have been detected
among the healthy individuals, include BCL2-IgH,
BCR-ABL, NPM-ALK, BCL6-IgH and BCL1-IgH trans-
locations (164–170).

Among different chromosomal translocations, the
t(14;18) is the most commonly reported translocation in
healthy individuals. It has been detected with a prevalence
of around 30–60% based on data obtained from Europe
and America (171–177). Our studies in healthy Indian in-
dividuals showed that around 34% of the volunteers
analyzed were positive for t(14;18) (178). The sequences
of the breakpoint junctions from both healthy individuals
and patients are similar, suggesting that the translocations
arising in healthy individuals may not be mechanistically
different from that in patients (171,179). Few studies have
attempted to establish the long-term clonal persistence of
such t(14;18) bearing cells in healthy individuals, by per-
forming follow-up studies on the positive cases after a
period of few years (171). It was observed that though
there is an initial clonal expansion and persistence of a
single t(14;18) bearing clone, with time, independent hits
may lead to the formation of multiple cells bearing differ-
ent t(14;18) translocation breakpoint junctions. Recently,
it was also shown that the t(14;18) bearing cells in the
healthy individuals act as FL-like B cells, since they
were enriched in IgM memory cells and CD27 positive.
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Such cells could, therefore, act as novel intermediates
during the early stages of lymphomagenesis (180,181).
Another translocation which has been detected in
healthy individuals, albeit at a very low frequency is the
t(11;14) translocation, involving the BCL1 gene known to
occur in mantle cell lymphoma (MCL) (178,182).
Therefore, it will be of interest to see how a normal cell
bearing a translocation transforms into a cancerous cell
and this would undoubtedly be a topic of active research
in the coming years.

CONCLUDING REMARKS

Studies thus far suggest that RAGs and AID are the two
major enzymes that induce chromosomal fragility in
lymphoid cancers. The process of V(D)J recombination
causes breaks mostly during generation of antibody and
T-cell receptor diversity. In case of the partner chromo-
somes, RAGs induce breaks, when cryptic signal se-
quences or non-B DNA structures are present. AID can
deaminate cytosines, leading to chromosomal breaks, es-
pecially during t(8;14) translocation. However, this is just
the tip of the iceberg. Further studies will unravel the
mechanism of chromosomal breaks during many other
translocations in lymphoid as well as non-lymphoid
tissues. In addition, the presence of such translocations
in healthy individuals suggests that these translocations
alone are not enough to cause cancer. The nature of the
additional factors responsible for the transformation of
the normal cells bearing translocations into malignant
cells is an area which needs to be explored.
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