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ABSTRACT

The current pandemic of Covid-19 has created a paradigm for possibly gaining greater insight in two conditions:

1) Inflammatory maladies in pregnancy, and.
2) The biology of IGF-1 in autism.

Studies since the beginning of this century have supported the view that IGF-1 deficiency in the neonate defines the basis of autism. As a result, it appears that
interleukin-6 in corona virus-based infections causes reduced defenses because of suppressed IGF-1, especially in older patients. This may also portend an increase of

autism in the offspring of gravidas currently affected severely by Covid-19.

Introduction/background

One of the dominant theories about the etiology of autism relates to
a postulated newborn deficiency of insulin-like growth factor-1 (IGF-1)
[1-6]. This component is central to neo-neuronal myelination via oli-
godendrocytes in the pre- and postpartum infant [7]. The IGF-1 defi-
ciency may be a consequence of inherited polymorphisms [8]. Such
defects cause diminished translation of IGF-1 by the IGFR/IRS1/PI3K/
AKT/mTOR intracellular pathway [9]. Another possibility of reduced
mTOR activity is decreased IGF-1 in the circulation. From puberty on-
ward, the normal level of IGF-1 gradually falls. Such age-dependent
change contributes to the activation of cytokine IL6 and is postulated to
correlate with the frailty and increased incidence of some diseases in
older people [10].

At the beginning of the present century, Patterson and coworkers
applied the concept that the developing fetus, although insulated
somewhat by the placenta and membranes, could be affected by coex-
istent disease processes in the gravida. Maternal immunologic activa-
tion produces an increase in pro-inflammatory cytokines. This would
elevate the amount of interleukin IL6 within the placental environment
in particular, thereby activating JAK/STAT-3. Such change would de-
crease the placental synthesis of growth hormone and IGF-1.
Downstream this would decrease the fetus’s ability to myelinate its
developing nervous system, leading to brain dysconnectivity [5,11]. If
such a myelinogenetic deficiency persists following birth, a neurologic
deficit would persist and exacerbate. The goal of dealing with such a
problem is early detection and correction, before lasting neurologic
miswirings in the brain occur.

At birth, the baby’s cord blood IGF-1 concentration is largely in-
dependent of the mother’s level [12]. Depressed levels of neonatal
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serum IGF-1 could be a consequence of antepartum exposure to IL6.
Reduced postpartum brain growth may be the result of this, especially
in SGA (small for gestational age) babies. Consequently, such an oc-
currence could be a predicter of reduced or delayed CNS development,
especially in preterm infants [13]. Thus, deficiency of IGF-1 in utero or
postpartum can cause autistic brain dysconnectivity in the neonate.
Behavioral and psychological problems characteristic of autism usually
do not appear before the child is at least 1 year old, whereas dyscon-
nectivity originates much earlier.

Several studies have reported the reduction of autism in children
who were breastfed exclusively, especially for the entire first post-
partum year. This is apparently due to the enhanced supply of IGF-1
found in breast milk, in contradistinction to the lower level in bovine
milk [14,15]. What remains to be determined is the umbilical cord
serum IGF-1 limit below which aggressive postpartum growth factor
replacement is indicated, as well as the minimum breast milk IGF-1
concentration that can be remedial in this regard.

Other forms of IGF-1 that can be administered orally are bioen-
capsulated in lettuce cells and rice seeds [16,17]. An additional ap-
proach that has been proposed is giving the neonate oral supple-
mentation with cyclic-glycyl-proline, which enhances the unbound
(active) form of IGF-1 [18]. However, this new agent has not yet passed
final FDA standards of review for general use.

Current relevance

Maternal infection with fever during pregnancy doubles the post-
partum risk of autism in the infant [19]. The elevated production of
cytokine IL6 in particular has been identified in the symptomatic pa-
thogenesis of the Spanish Flu pandemic of 1918, the SARS-CoV (Severe
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Acute Respiratory Syndrome) outbreak of 2003, the H5N1 avian in-
fluenza of 1987, and the MERS-CoV (Middle Eastern Respiratory Syn-
drome) epidemic of 2012. In severe cases, “cytokine storm”, with ele-
vated IL6 being produced, is essentially pathognomonic. In a study of
SARS in murine macrophages, cytokines TNF-a and IL8 were found to
be elevated as well [20-24].

In a recent report from China, elevated IL6 was determined to be
related to the severity of COVID-19 [25]. Thus, IL6 could be used as an
acute-phase biomarker in corona-induced disease monitoring. Its de-
crease appears to correlate with recovery progress as well. Lung par-
enchyma in such cases produces the excess IL6 [25,26]. The mono-
clonal antibodies against IL6, siltuximab and tocilizumab, have been
used to reduce cytokine release [27,28].

Proposed investigation

Unfortunately, a number of pregnant women have recently been
found to be suffering with COVID-19. Several possible parameters could
be investigated in these gravid cases without affecting the primary
modes of pulmonary therapy:

1) The relationship of the level of maternal serum IL-6 and the severity
of the malady during the period of treatment while still pregnant.

2) The level of IGF-1 in umbilical cord samples at birth.

3) The frequency and extent of breast-feeding of the newborn during
the first postpartum year.

4) The psychological diagnosis of possible childhood autism and the
determination of what position on the “spectrum” each case falls
during the first 2-3 years of postpartum life in Corona-positive
cases.

[Any researcher who is appropriately equipped and interested in
participating in this important study is invited to do so via email.
Assurance of patient disclosure, agreement, and confidentiality must be

ascertained and protected.]
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