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ABSTRACT The Virginia chicken lines have been divergently selected for juvenile body weight for more than
50 generations. Today, the high- and low-weight lines show a .12-fold difference for the selected trait, 56-d
body weight. These lines provide unique opportunities to study the genetic architecture of long-term, single-
trait selection. Previously, several quantitative trait loci (QTL) contributing to weight differences between the
lines were mapped in an F2-cross between them, and these were later replicated and fine-mapped in a nine-
generation advanced intercross of them. Here, we explore the possibility to further increase the fine-mapping
resolution of these QTL via a pedigree-based imputation strategy that aims to better capture the genetic
diversity in the divergently selected, but outbred, founder lines. The founders of the intercross were high-
density genotyped, and then pedigree-based imputation was used to assign genotypes throughout the
pedigree. Imputation increased the marker density 20-fold in the selected QTL, providing 6911 markers for
the subsequent analysis. Both single-marker association and multi-marker backward-elimination analyses were
used to explore regions associated with 56-d body weight. The approach revealed several statistically and
population structure independent associations and increased the mapping resolution. Further, most QTL were
also found to contain multiple independent associations to markers that were not fixed in the founder
populations, implying a complex underlying architecture due to the combined effects of multiple, linked loci
perhaps located on independent haplotypes that still segregate in the selected lines.
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Long-term selective breeding of animals and plants for extreme phe-
notypes has resulted in genetically distinct lines that are a valuable

resource for dissecting the genetic architecture of complex traits (Hill
2005). Most traits of interest in animal breeding (e.g., production of
eggs or meat, resistance to disease) are influenced by a combination of
genetic and environmental factors. Due to their multi-factorial nature
and despite the ability to obtain data on both genome-wide genetic
markers and phenotypes from large numbers of individuals, it is chal-
lenging to disentangle their genetic architecture by analyzing data from
the commercial populations. An alternate strategy is to make use of
experimental populations resulting from long-term selection experi-
ments, where the focus has been to develop divergent lines from a
common base population using more coherent selection criteria. Such
populations will display larger phenotypic differences than populations
subjected to composite, commercial breeding programs and hence fa-
cilitate in-depth studies of the genetic basis underlying the selection
response and general genetic architecture of these traits (Andersson
and Georges 2004). Given that many of the agriculturally important
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traits are related tometabolism, feeding-behavior and growth, they also
provide a good model for translational studies to decipher the genetic
architecture of traits of interest in human medicine, including obesity,
eating disorders, and diabetes.

Kemper et al. (2012) recently reviewed the literature on the genetic
basis of body size and highlighted how complex the genetic architec-
tures of body size are in species with contributions by many loci with
large, intermediate, and small individual effects. Also within species, the
genetic basis of variations in body size among strains of mice (Valdar
et al. 2006), breeds of cattle (Saatchi et al. 2014), pigs (Yoo et al. 2014),
and chickens (Van Goor et al. 2015) is often polygenic and due to
polymorphisms with modest individual effects. Studies of experimental
crosses from artificially selected populations with extreme body sizes in
the mouse (Bevova et al. 2006; Parker et al. 2011) and chicken (Sheng
et al. 2015) using, for example, chromosome substitution strains
(Bevova et al. 2006) and advanced intercross lines (AILs) (Darvasi
and Soller 1995; Besnier et al. 2011; Parker et al. 2011) have revealed
that the responses to selection in these populations has resulted from
selection on highly complex and polygenic genetic architectures.

The Virginia lines are experimental populations established in
1957 to study the genetic effects of long-term (.50 generations), di-
vergent, single-trait selection for 56-d high (HWS) or low (LWS) body
weight in chickens (Dunnington and Siegel 1996; Márquez et al. 2010;
Dunnington et al. 2013). The lines originated from the same base
population, composed by crossing seven partially inbred White Plym-
outh Rock chicken lines, and today display more than a 12-fold
difference in body weight at 56 d of age (Márquez et al. 2010;
Dunnington et al. 2013). In addition to the direct effects of selection
on body weight, the selected lines also display correlated selection
responses for a range of metabolic and behavioral traits including dis-
rupted appetite, obesity, and antibody response (Dunnington et al.
2013).

The Virginia HWS and LWS lines have been used extensively for
studying the genetic architecture of body weight and other metabolic
traits. These studies have uncovered a number of loci with minor direct
effects on body weight, metabolic traits, and body-stature traits by
quantitative trait loci (QTL) mapping in an F2 intercross (Jacobsson
et al. 2005; Park et al. 2006; Wahlberg et al. 2009). Also, a network of
epistatic loci has been found tomake a significant contribution to long-
term selection response through the release of selection-induced addi-
tive variation (Carlborg et al. 2006; Le Rouzic et al. 2007; Le Rouzic and
Carlborg 2008). Explorations of the genome-wide footprint of selection
by selective-sweep mapping suggests that perhaps .100 loci through-
out the genome have contributed to selection response (Johansson et al.
2010; Pettersson et al. 2013), andmany of these contribute to 56 d body
weight (Sheng et al. 2015).

To replicate and fine-map the body weight QTL inferred in the F2
intercross, we developed, genotyped and phenotyped for body weight at
56 d of age (BW56), a nine-generation AIL. This large AIL originated
from the same founders as the F2 intercross, but was selectively geno-
typed at a higher resolution (�1 marker/cM) in nine QTL (Besnier
et al. 2011). In this population,most of the original minor (Besnier et al.
2011) and epistatic (Pettersson et al. 2011) QTL were replicated and
fine-mapped. These earlier studies analyzed the data using a haplotype-
based linkage-mapping approach in a variance-component based
model framework to infer single-locus effects (Besnier et al. 2011) or
a fixed-effect model framework assuming fixed alternative alleles in the
two founder lines for detecting epistasis (Pettersson et al. 2011). The
variance-component model was used in the replication study to avoid
the assumption of allelic fixation in the founder lines. By implementing
it in a Flexible Intercross Analysis modeling framework (Rönnegård

et al. 2008), it was expected to improve power when the parental lines
carry alleles with correlated effects (e.g., multiple alleles with similar
effects).

Although the initial studies mapped QTL under the assumption of
fixation, or an effect correlation, of divergent alleles in the parental lines,
the results at the same time implied that multiple alleles might be
segregating in several of the mapped regions. To this end, the first QTL
replication study in the AIL population (Besnier et al. 2011) found a
large within founder line heterogeneity in the allelic effects. Later the
selective-sweep studies, which utilized data from multiple generations
of divergently selected and relaxed lines, identified ongoing selection
and multiple sweeps in many QTL (Johansson et al. 2010; Pettersson
et al. 2013), as well as extensive allelic purging (Pettersson et al. 2013).
This allelic heterogeneity challenges attempts to dissect the architecture
of the selected trait via, e.g., QTL introgression (Ek et al. 2012). Alter-
native approaches are therefore needed to uncover multi-locus, multi-
allelic genetic architectures in QTL and their contributions to the
long-term response to directional selection.

In this study, we explore an imputation-based association-mapping
strategy for further dissection of previously mapped and replicated
QTL (Besnier et al. 2011; Pettersson et al. 2011). For this, we made use
of available high-density (60K SNP-chip) genotypes for founders
(Johansson et al. 2010; Pettersson et al. 2013) and intermediate-density
SNP-genotypes in several QTL in the entire nine-generation AIL ped-
igree. By increasing the marker density in the QTL throughout the AIL
by imputation, we aimed to better capture the effects of segregating
haplotypes within and between the divergently selected founder pop-
ulations than with the previously used markers. This aim can be
achieved as the original markers genotyped in the AIL were selected
to identify high- and low-line derived alleles, and not alleles that seg-
regate within or across the founder lines. By testing for association
between imputed markers and body weight, the fine-mapping analyses
were less constrained by the original selection ofmarkers and facilitated
a more thorough exploration of the genetic architectures of the nine
evaluated QTL. A single-marker association analysis was first used to
identify regions with candidate associations. These were then simulta-
neously analyzed using a backward-elimination approach with boot-
strapping to identify statistically independent signals that were robust
to the effects of markers elsewhere in the genome and the pedigree-
structure in the population. In regions where the signals were robust to
the pedigree-structure, the results from the single-marker association
analysis were used to fine-map the region. Our imputation-based ap-
proach replicated most QTL and also improved the resolution in the
fine-mapping analyses by not only using the recombination events in
the AIL, but also the historical recombinations in the pedigree. We
found that several of the original QTL are likely due to the combined
effects of multiple linked loci, several of which are segregating in the
founder lines of the AIL.

MATERIALS AND METHODS

Animals
TheVirginia chicken lines arepart of anongoing selectionexperiment to
study the genetics of long-term, single-trait selection (Márquez et al.
2010; Dunnington et al. 2013). It was initiated in 1957 from a base
population, generated by intercrossing seven partially inbred lines of
White Plymouth Rock chickens. From the offspring of the partially
inbred lines, resulting from the intercrossing, the birds with the highest
and lowest 56 d body weights (with some restrictions), respectively,
were selected to produce the high- and low-weight selected lines (HWS
and LWS) (Márquez et al. 2010; Dunnington et al. 2013). Since then,
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the lines have undergone divergent selection for increased and de-
creased body weights with one new generation hatched in March of
every year.

An AIL was founded by reciprocal crosses of 29 HWS and 30 LWS
founder birds from generation 40 (Besnier et al. 2011). The mean, sex-
averaged 56 d body weights for HWS and LWS at this generation were
1522 g and 181 g, respectively. Repeated intercrossing of birds was used
to develop a nine-generation AIL consisting of generations F0–F8. In
each generation,�90 birds were bred by pairedmating, genotyped, and
weighed at 56 d of age (BW56). In total, the AIL population consisted of
1536 F0–F8 individuals with complete records on pedigree and geno-
types (see Genotyping), and 1348 F2–F8 individuals with juvenile body
weight (BW56) records.

Genotyping
The complete AIL pedigree (1536 birds) had earlier been genotyped in
nine selected QTL for 304 SNP-markers that passed quality control as
described in Besnier et al. (2011). Further, 40 of the founders for the
pedigree (20 HWS and 20 LWS) had also earlier been genotyped using
a whole genome 60K SNP-chip (Johansson et al. 2010; Pettersson et al.
2013). The 6607markers from the SNP-chip that were informative and
passed quality control in that study are located in the nine QTL regions
targeted in this study. When merging the information from the 60K
SNP-chip and the information from the 304markers genotyped earlier,
55 markers in 40 founders were genotyped using both methods. Out of
these 55 markers, 28 markers with genotype inconsistencies between
the genotyping technologies were removed during quality control. In
total, our analyses were based on 6888markers, where 40 of the 59 AIL
founders had genotypes for all markers, and the remaining individuals
in the pedigree had genotypes for 281 markers. Table 1 shows how
these markers are distributed across the nine QTL regions.

Phasing and imputation of markers
All genotyped markers in the QTL (Table 1) were first ordered accord-
ing to their physical location in the chicken genome assembly of May
2006 (galGal3). In the ordered marker set, the SNP-chip markers were
evenly distributed in the intervals between the sparser set of markers
genotyped across the entire AIL.

Using the softwareChromoPhase (Daetwyler et al. 2011), we phased
and imputed genotypes for the complete set of 6888 markers across the
entire AIL pedigree. ChromoPhase first phases large segments of chro-
mosomes, in our case the QTL regions. It then imputes the missing
genotypes in the AIL individuals genotyped with the sparse set of
markers from the genotype information available in high-density gen-
otyped founders utilizing the pedigree information. It thus predicts
both phased haplotypes across the nine studied QTL and genotypes
at markers that were only genotyped in a subset of the founder indi-
viduals in the pedigree.

A two-step fine-mapping approach accounting for
population structure
Earlier studies have shown that the genetic architecture of bodyweight is
highly polygenic in the Virginia lines (e.g., Siegel 1962a,b; Jacobsson
et al. 2005; Wahlberg et al. 2009; Johansson et al. 2010; Besnier et al.
2011; Pettersson et al. 2011, 2013; Sheng et al. 2015). We therefore
implemented a forward-selection/backward-elimination procedure
with a termination criteria suitable for a polygenic trait in a boot-
strap-based framework to correct for population structure in the AIL
(Valdar et al. 2009; Sheng et al. 2015). As all markers with genotypes
could not be included in a backward-elimination analysis due to the

limited sample size, we first used a forward-selection based single-
marker association analysis to identify a smaller set of statistically
suggestive independent signals within eachQTL region. The backward-
elimination analysis (Valdar et al. 2009; Sheng et al. 2015) was then
used to identify associations robust to possible influences of genetic
dependencies (linkage or LD) between markers within the QTL or
population structure in the AIL (Peirce et al. 2008; Cheng et al. 2010).

Single-marker association analyses: The qtscore function in the Gen-
ABEL package (Aulchenko et al. 2007) was used to test for association
between body weight at 56 d of age and, genotyped or imputed, indi-
vidual genetic markers within the targeted QTL. The allelic effect of
each marker, b̂genotype; was estimated using a regression model (Model
1), where the genotype at each marker was coded in Z as 0 if homozy-
gous for the major allele, 1 if heterozygous, and 2 if homozygous for
theminor allele. Sex and generation were added as categorical covariates,
with two different levels for sex and seven different levels for generation,
defined for each individual in X. The phenotype, body weight at 56 d of
age, is given in the numerical variable y.

y ¼ mþ bsex;generationX þ bgenotypeZ þ e ðModel 1Þ

e was assumed to be iid and normally distributed around 0 with
variance s2: m is the intercept, which in this model represented the
mean body weight at 56 d of age for individual F2 females. The
associations for the individual markers from this model were used
for comparisons to results from earlier linkage-mapping analyses to
fine-map the QTL in this pedigree that did not account for the pos-
sible effects of pedigree-structure (Model A in Besnier et al. 2011).
Further, they were also used to evaluate the resolution of regions with
associations robust to the pedigree-structure in the population (de-
scribed in detail in Results).

Next, a forward-selection analysis was performed by scanning across all
markers within each QTL using Model 1. If any of the markers were
nominally significant (P, 0.05) in the scan, the marker with the strongest
association was added as a covariate in the model. This procedure was
repeated until no additional significantmarkers were detected. Themarkers
from this analysis with an allele-frequency . 0.10 in the population were
subjected to the full backward-elimination analysis described in the next
section.

A multi-locus association analysis to identify regions with
associations that are robust to the pedigree-structure in the
population: In short, we used a bootstrap-based backward-elimination
model selection framework (Sheng et al. 2015) across the markers
selected by forward-selection in the QTL. An adaptive model selection
criterion controlling the False Discovery Rate (Abramovich et al. 2006;
Gavrilov et al. 2009) was used during backward-elimination in a stan-
dard linear model framework, starting with a full model including the
fixed effects of sex and generation, and the additive effects of allmarkers
(Model 2):

y ¼ mþ bsex;generation;markersX þ e ðModel 2Þ

where phenotype, sex, and generation were coded as described for
Model 1 and where e again is assumed to be iid and normally distrib-
uted around 0 with variance s2: The intercept,m; represents the mean
body weight at 56 d of age for female individuals from the F2 gener-
ation. In Model 2, genotypes were coded based on the line-origin of
the alleles at each locus. Genotypes of individuals homozygous for the
major allele in the AIL founders from the high-weight selection line
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were coded as 1 at that locus. If an individual was heterozygous, its
genotype was coded as 0. Genotypes of individuals homozygous for
the allele corresponding to the major allele in AIL founders from
the low-weight selection line were coded as 21. By coding geno-
types in a21, 0, and 1 manner, the estimates of the marginal allele-
substitution effects, b̂marker; from fitting Model 2 will be negative if
the allele that is at highest frequency in the high-weight line de-
creases weight or if the allele with highest frequency in the low-
weight line increases weight.

Convergence was based on a 20% False Discovery Rate (FDR) level.
The analysis was performed using bootstrapping with 1000 resamples.
Markers with anRMIP (ResampleModel Inclusion Probability). 0.46,
as suggested for an AIL generation F18 (Valdar et al. 2009), were
included in the final model. The FDR in the final model was con-
firmed using the original FDR procedure described in Benjamini
and Hochberg (1995) as implemented in the p.adjust function in the
R stats-package (R Development Core Team 2015). The additive ge-
netic effect for each locus was estimated using the multi-locus genetic
model described above (Model 2). The contribution of a set of n asso-
ciated markers to the founder line difference was calculated as
Pn

i¼1
ð2ai ·

�
�piðHWSÞ2 piðLWSÞ��Þ; where ai is the allele-substitution

effect for marker i, and piðLWSÞ are the frequencies of the major
AIL allele at marker i in the HWS and LWS founders, respectively.

Data availability
Genotype, phenotype, and pedigree data are included in the supple-
mental files. Supplemental Material, File S1 contains detailed descrip-
tions of all supplemental data files. File S2 contains the genotypes, File
S3 the pedigree, and File S4 the phenotypes.

RESULTS AND DISCUSSION
We compared the results of the imputation-based association analyses
with the previously reported results from the linkage-based analysis of
the same nineQTL in Besnier et al. (2011). Figure 1 shows the statistical
support for association and linkage to BW56 across the QTL. The
significances for all the genotyped and imputed markers from the
single-marker associations are provided together with the results from
model A in Besnier et al. (2011) that were also obtained without cor-
rection for population structure. Figure 1 also highlights those regions
that contain associations robust to the pedigree-structure in the boot-
strap-based forward-selection/backward-elimination analyses (Figure 1

and Table 2). Overall, the results from these three analyses overlap well.
Together, they show that most regions with strong associations in the
single-marker association were robust to the pedigree-structure and
that the association analysis approach using imputed genotypes for
SNPs suggests that several QTL were likely due to multiple linked loci.
In the sections below, these results are described and discussed in more
detail.

Four statistically independent associated markers in the
GGA7 QTL Growth9
The QTL Growth9 on GGA7 (Gallus Gallus Autosome 7) (Figure 1;
10.9–35.5 Mb) was the only QTL that reached genome-wide signifi-
cance in the first F2 intercross between the HWS and LWS lines
(Jacobsson et al. 2005). It was later identified as a central QTL in an
epistatic network explaining a large part of the difference in weight
between HWS and LWS lines (Carlborg et al. 2006). In the earlier
fine-mapping analysis, the linkage signal covered most of the QTL
region (from 15 to 35 Mb), but subsequent analyses showed that two
independent loci were segregating in the region (Besnier et al. 2011).
The signal in the imputation-based association analysis performed here
is more focused, with a highly significant signal in a 2.8 Mb region
between 23.7 and 26.4 Mb. This region overlaps with the strongest
signal in the linkage-scan and is tagged by a single imputed marker
(rs16596357i; Table 2) in the multi-locus analysis accounting for pop-
ulation structure. The major allele in the HWS line (P = 0.67) increases
weight by 18.9 (SE 5.6) g, and it still segregates at an intermediary
frequency (P = 0.50) in the LWS line. Previously, Ahsan et al. (2013)
explored potential candidate mutations in the QTL and found two
regulatory SNPs near the peak at 21 Mb (21.6 and 22.7 Mb) and a
synonymous-coding SNP in a CpG island in an exon of the Insulin-like
growth factor binding protein 2 (IGFBP2) gene in the middle of the
major association peak at 24.8Mb. In addition to the strong association
around 24 Mb, the association analysis also highlights two additional
regions (centered around 18 and 29 Mb). A single imputed marker
(rs14611566i; Table 2) is retained in the first region in the multi-locus
analysis accounting for population structure. This marker has an esti-
mated allele-substitution effect of220.1 (SE 5.1) g, but as it segregates
at equal, intermediary frequencies in the HWS and LWS lineages (P =
0.50) it did not contribute to the founder line difference. Two linked
imputed markers are kept in the third region (rs10727581i;
rs317586448i; 2.6 Mb apart; Table 2). Here, the first marker is nearly
fixed for one allele in the LWS line (P = 0.93), but segregates at an
intermediary frequency in the HWS line (P = 0.61). At the second

n Table 1 Genotyped and imputed markers across the nine analyzed QTL

GGAa QTLb Startc (bp) Endc (bp) QTL Size (bp) Markers AILd Markers 60ke Markers Totalf Marker Densityg

1 Growth1 169 634 954 181 087 961 11 453 008 26 504 530 46
2 Growth2 47 929 675 65 460 002 17 530 328 33 667 700 40
2 Growth3 124 333 151 133 581 122 9 247 972 19 395 414 45
3 Growth4 24 029 841 68 029 533 43 999 693 57 1885 1942 44
4 Growth6 1 354 213 13 511 203 12 156 991 23 514 537 44
4 Growth7 85 459 943 88 832 107 3 372 165 14 141 155 46
5 Growth8 33 696 791 39 052 438 5 355 648 5 221 226 42
7 Growth9 10 916 819 35 491 706 24 574 888 76 1397 1473 60
20 Growth12 7 109 709 13 899 993 6 790 285 28 883 911 134
a
Gallus Gallus Autosome.

b
QTL names as in Jacobsson et al. (2005).

c
Base pair position according to Chicken genome assembly (galGal3) of May 2006.

d
Markers as in Besnier et al. (2011).

e
Markers as in Johansson et al. (2010).

f
Total markers in d and e.

g
Markers/Mb.
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marker, the major allele in the HWS (P = 0.74) segregates at an in-
termediary frequency in the LWS (P = 0.41). Due to the close linkage
between the associated markers, it is difficult to interpret their individ-
ual effects and disentangle whether the detected associations are due to
the LD-pattern of multiple closely linked loci or a single locus with
multiple segregating alleles. The peak in the F2 QTL overlaps the major
23.7–26.4Mb association peak detected in this analysis (Wahlberg et al.
2009). Due to the low differences in allele frequencies between the
associated markers in the three regions, their total contribution to the
founder line difference is small (8 g) amounting to only about 10% of
the original estimated F2 QTL effect of 86 g (Wahlberg et al. 2009).

Two statistically independent associated markers in the
GGA1 QTL Growth1
The strongest association in the study by Besnier et al. (2011) was found
on GGA1 in the QTL Growth1 (Figure 1; 169.6–181.1 Mb). Here, the
second strongest association was detected in that QTL. The imputa-
tion-based association analysis highlights two significant associations
separated by a region of very low association and both associations
remained in the multi-locus analysis accounting for population struc-
ture (the imputed marker rs13968052i and the genotyped marker
rs14916997 at 170.6 and 173.7 Mb, respectively). The strongest of these
association-peaks was located near the peak detected using the earlier
linkage-based analysis. Several of the significant associated markers
were located in this region (173.6–175.3 Mb). A candidate gene for
growth, Asparagine-linked glycosylation 11 homolog gene (ALG11),
is located at 174.6Mb and has a strongmutation in its regulatory region
(Ahsan et al. 2013). The second association was found to a group of
significant markers in a narrower region upstream from the main
linkage-peak (170.3–171.7 Mb). The association analysis thus suggests
that the original 10.6MbQTL region that has its peak betweenmarkers

located at 175.2–177.7 Mb is due to the effects of two separate loci
located in these confined 1.5 and 1.8 Mb regions. As the two associated
markers are closely linked in this population, it is difficult to interpret
their individual effects, but their total contribution to the founder line
difference (37 g) is about 75% of that by the original Growth1 QTL as
estimated in the F2 analysis (49 g; Wahlberg et al. 2009).

Four statistically independent associated markers in the
GGA2 QTL Growth2 and Growth3
GGA2 contains two QTL, Growth2 (Figure 1; 47.9–65.5 Mb) and
Growth3 (Figure 1; 124.3–133.6 Mb). The multi-locus analyses identi-
fied three significantly associated markers in Growth2, where the first
two are clustered at 56.7 and 57.2 Mb (genotyped marker rs14185295
and imputed marker rs14185836i, respectively), with the last genotyped
marker (rs14196021) located at 65.5 Mb. The distance between the
markers, and the region of low association between them in the single-
marker analysis (Figure 1), suggests that two linked loci contribute
to the Growth2 QTL. In the earlier linkage-based analysis the strongest
signal in Growth2 was located in between these markers at 60.6 Mb.
The QTL-peak in the original F2 analysis (Jacobsson et al. 2005) is
difficult to assess as nearest marker (MCW130) is not mapped to the
chicken genome and no significant signal was found using a denser
marker-map by Wahlberg et al. (2009). As the first two markers in the
QTL are tightly linked, it is difficult to interpret the individual estimates
of their effects; however, the third marker located 8 Mb upstream from
them has a small independent effect. The estimated contribution by
these loci to the founder line difference is small (14 g), which amounts
to about 30% of the original contribution by theGrowth2QTL in the F2
analyses (Jacobsson et al. 2005). In Growth3, a single association was
detected to a genotyped marker (rs16120360) in the multi-locus anal-
ysis and this peak was inside the original F2 QTL [101.6–131.9 Mb;

Figure 1 Comparison between linkage- and association-based fine-mapping analyses of nine QTL in an AIL chicken population. Green lines show
the statistical support curve (score statistics from Model A) for the linkage-based mapping study of (Besnier et al. 2011) and the red dots
associations to each analyzed marker in the new imputation-based association analysis (this study). The green and red horizontal dotted lines
indicate the experiment-wide significance threshold for earlier linkage-analysis and the nominal significance in the imputation-based association
analysis, respectively. Arrowheads under the x-axis indicate the position of markers identified as experiment-wide significant (20% FDR) in the
bootstrap-based backward-elimination procedure.
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(Jacobsson et al. 2005)] but shifted almost 4 Mb upstream from the top
signal found in the earlier linkage-based analysis. The contribution by
this marker to the line difference is small (9 g) and about 15% of that in
the original F2 analysis (Jacobsson et al. 2005).

Six statistically independent associated markers in the
GGA5 QTL Growth8
One of the strongest association signals was found onGGA5 in theQTL
Growth8 (Figure 1; 33.7–39.1Mb) and six markers were retained in this
region after accounting for population structure in the multi-locus
analysis (Table 2). The single-locus analysis suggests that these markers
tag two loci – one from 33.7–36.3 Mb (three imputed and one geno-
typed marker; Table 2) and one around 38.8 Mb (two imputed
markers). The markers were located between the markers flanking
the original QTL (21.6–44.2Mb) in Jacobsson et al. (2005) and overlaps
with the earlier linkage signal. The association signal was, however,
stronger than the linkage signal suggesting that the imputed markers

tag the QTL better than the haplotypes inferred from the sparser set of
genotyped markers. Although the linkage between the markers again
makes it difficult to obtain stable estimates for the effects of individual
markers in the two associated loci, their estimated contribution to the
founder line difference (16 g) amounts to about one third of that
estimated effect in the F2 (Jacobsson et al. 2005).

Six statistically independent associated markers in the
GGA3 QTL Growth4
In the QTL Growth4 on GGA3 (Figure 1; 24.0–68.1 Mb), both the
association and linkage analyses identify a broad region of association
from 24 to 41 Mb. Although the statistical support curve in the linkage
analysis contains multiple peaks, that analysis was unable to fine-map
the region into multiple, independent signals. Here, the multi-locus
analysis suggests that perhaps up to four independent regions contrib-
ute to this QTL, with one associated genotyped marker at 26.2 Mb,
three imputedmarkers from 33.7–39.1Mb, one imputedmarker at 47.7

n Table 2 Estimated additive effects and standard error for experiment-wide independent association signals, between body weight at
56 d of age and genotype, identified in a bootstrap-based approach implemented in a backward-elimination model selection framework
across the markers in the genotyped QTL

GGAa QTLb Locationc (bp) Markerd DAFe a 6 SEf Signg

1 Growth1 170 637 618 rs13968052i 0.28 16.3 6 6.6 1.3 · 1022

173 709 608 rs14916997 0.71 19.3 6 5.5 4.8 · 1024

2 Growth2 56 720 515 rs14185295 0.32 13.2 6 6.2 3.3 · 1022

57 198 629 rs14185836i 0.16 212.1 6 6.2 5.4 · 1022

65 460 002 rs14196021 0.32 14.0 6 5.9 1.7 · 1022

2 Growth3 126 000 254 rs16120360 0.36 12.6 6 5.8 3.0 · 1022

3 Growth4 26 215 175 rs14328509 0.53 19.8 6 5.4 2.3 · 1024

33 743 569 rs314044798i 0.46 221.9 6 6.1 3.8 · 1024

37 287 334 rs316425755i 0.12 27.8 6 6.9 5.7 · 1025

39 139 081 rs15468467i 0.23 27.0 6 7.3 2.1 · 1024

47 729 342 rs316384373i 0.30 213.1 6 6.8 5.5 · 1022

57 624 596 rs14363139i 0.64 18.2 6 4.1 2.9 · 1024

4 Growth6 2 392 397 rs14419462i 0.30 19.7 6 7.6 1.0 · 1022

10 914 312 rs14428120i 0.77 214.5 6 5.8 1.3 · 1022

13 511 203 rs15500313 0.78 17.7 6 6.0 3.4 · 1023

4 Growth7 86 755 267 rs14499758 0.32 18.1 6 6.3 3.9 · 1023

88 325 118 rs15639000 0.06 13.4 6 5.4 1.3 · 1022

5 Growth8 33 713 055 rs14530756i 0.46 213.5 6 5.3 1.1 · 1022

34 772 650 rs16487762i 0.53 15.0 6 6.8 2.7 · 1022

35 299 978 rs16487933i 0.40 218.6 6 6.0 1.8 · 1023

36 291 277 rs13585490 0.15 14.1 6 5.3 7.3 · 1023

38 774 986 rs315605733i 0.23 23.3 6 7.3 1.4 · 1023

38 867 279 rs314075508i 0.37 16.4 6 5.5 3.0 · 1023

7 Growth9 18 544 622 rs14611566i 0.00 220.1 6 5.1 9.4 · 1025

23 959 214 rs16596357i 0.17 18.9 6 5.6 7.7 · 1024

29 631 963 rs10727581i 0.32 15.9 6 6.1 9.0 · 1023

32 262 733 rs317586448i 0.33 213.2 6 5.0 8.7 · 1023

20 Growth12 9 302 754 rs14277526i 0.34 21.8 6 6.8 1.4 · 1023

10 165 171 rs14278292i 0.37 214.7 6 6.5 2.4 · 1022

10 667 729 rs16172598i 0.56 14.3 6 5.1 5.1 · 1023

13 427 530 rs16176151i 0.13 8.5 6 5.2 1.0 · 1021

For a marker with a positive estimated additive effect, the effect on weight is caused by the allele with its origin in the line associated with the sign of the effect, i.e., an
allele with its origin in high-line is associated with an increase in body weight and an allele with its origin in low-line is associated with a decrease in body weight. In
cases where a weight-increasing allele has its origin in the low-line or a weight-decreasing allele has its origin in the high-line the sign of the estimated additive effect
will be negative.
a
Gallus Gallus Autosome.

b
QTL name as in Jacobsson et al. (2005).

c
Base pair position according to Chicken genome assembly (galGal3) of May 2006.

d
SNP name as in NCBI dbSNP where imputed markers are labeled with i after the marker name.

e
Difference in allele-frequency between the HWS and LWS founder lines.

f
Additive effect 6 SE calculated in a model including all loci in the table.

g
Significance of the estimated additive genetic effect in a model including all loci in the table.
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Mb, and one at 57.6 Mb. The single-locus association analysis high-
lights two particularly strong and distinct association-peaks located
approximately between 24–27 and 33–37Mb, respectively. A candidate
mutation in Growth4 was found near the second association region at
33.6 Mb inside the regulatory region of Cysteine rich transmembrane
BMP regulator 1 (CRIM1) (Ahsan et al. 2013). The associated region
around 55–57 Mb displayed very low significance in the previous link-
age analysis. The outmost markers (26.2 and 57.6 Mb) have allele-
substitution effects of 19.8 (SE 5.4) and 18.2 (SE 4.1) g, respectively,
and are rather diverged between the lines (�50% difference between
the lines). For the other two clusters of markers, it is difficult to obtain
stable estimates of their individual effects. Their estimated joint contri-
bution to the founder line difference (35 g) is about 65% of that in the
original F2 analysis (Jacobsson et al. 2005).

Four statistically independent associated markers in the
GGA20 QTL Growth12
The earlier linkage analysis replicated the QTL Growth12 on GGA20
(Figure 1; 7.1–13.9 Mb), with the strongest associated marker at 10.7
Mb, and the signal covered most of the region (8–13.9 Mb). Four
markers were significant in the multi-locus analysis and three imputed
markers were located in the main single-marker association peak cov-
ering the region from 9 to 11 Mb, while the fourth associated imputed
marker was located about 4 Mb upstream (13.4 Mb). Again, it is dif-
ficult to interpret the individual effects of the tightly linked markers;
however, their estimated contribution to the line difference (22 g) is
about 75% of that estimated in the F2 analysis (Jacobsson et al. 2005).

Five statistically independent associated markers in the
GGA4 QTL Growth6 and Growth7
In both Growth6 (Figure 1; 1.3–13.6 Mb) and Growth7 (Figure 1; 85.4–
88.9 Mb) on GGA4, several markers were significant in the multi-
marker analysis. The single-marker analysis illustrates that these
markers tag association-peaks that were located very close to the main
peaks in the earlier linkage-based analysis, suggesting that both analyses
identified the same underlying loci. The association analysis identified
two genotyped markers in a region in Growth7 with strong association
around 86.5–88.5 Mb. It is difficult to interpret their individual effects
due to the close linkage, but their estimated contribution to the founder
line difference was small (13 g) amounting to about a fifth of that
estimated in the F2 population (66 g; Jacobsson et al. 2005). InGrowth6,
the multi-marker analysis detected associations to two imputed and
one genotyped marker representing one locus at 2.3 Mb and a second
locus at 10.9–13.5 Mb. Here, the tight linkage in the second locus also
makes interpretation of their individual effects difficult, whereas the
allele frequencies are not that differentiated in the first locus. Their
estimated contribution to the line difference is therefore small (17 g)
amounting to about a fifth of the 92 g estimated in the original F2
analysis (Jacobsson et al. 2005).

General comments
Here we report the results from using an imputation-based association-
mapping strategy to fine-map QTL in a nine-generation, outbred AIL.
By combining high-density genotyping of the AIL founders with
imputation throughout the rest of the pedigree utilizing a sparser
genotyped marker backbone, we increased the marker density �20-
fold in the studied regions. This subsequent association analysis had a
comparable power for replication of QTL to the earlier used linkage-
based strategy. In addition to this, the new analyses also detected
multiple association-peaks in several of the QTL and narrowed the asso-
ciated regions considerably compared to the regions detected previously
(Besnier et al. 2011). Together, they suggest that this imputation-based

association-mapping approach is a promising strategy for improving
the resolution in fine-mapping studies in outbred pedigrees, where
high-density marker genotypes are not available for all studied individ-
uals. When interpreting the full results from the multi-locus backward-
elimination analysis (Table 2), it should be noted that the results are
reported at a 20% False Discovery Rate. Although a significant pro-
portion of the markers could thus be false positive associations, as
illustrated by the individual P-values for the additive effects of the
associatedmarkers,most of the peaks on the chromosomes also contain
markers with more significant individual associations. We used this
threshold because earlier mapping and replication studies confirmed
that the QTL contain at least one small-effect locus contributing to 56 d
weight, and that the major aim of this study was to provide an overall
view of the most likely genetic architecture of the fine-mapped QTL,
rather than high-confidence estimates for the individual regions.

In both Growth1 and Growth4 two strong, distinct association sig-
nals were identified. Also in the QTL Growth8 and Growth9 the new
analysis identified strong association-peaks covering many markers. In
these regions, the strongest linkage signals identified in the previous
fine-mapping analysis (Besnier et al. 2011) overlap with the strongest
signals in the current analyses. However, the association analysis also
separates the signals into multiple peaks and highlights narrower re-
gions. Hence, it provides more useful input for further analyses to
identify candidate genes underlying the QTL. In most cases the asso-
ciated regions are restricted to distinct 2–3 Mb regions, which as in-
dicated by the findings from Ahsan et al. (2013), is useful for restricting
the bioinformatics analyses to only themost promising candidate genes
for further functional studies. InGrowth6,Growth7, andGrowth12, the
association signals were not as significant as in the other QTL. Despite
this, the multi-locus analyses suggest that the linkage signals in the
earlier analyses were due to distinct loci with independent effects,
mapped here into narrower association-peaks.

Overall, the location of the association signals in this study over-
lappedwell with the top signals in the earlier linkage analyses. However,
in two of the QTL (Growth2 and Growth3), the association-peaks are
shifted when comparing results from both studies. Further work is
needed to explore whether this reflects separate loci with distinct ge-
netic architectures that could only be detected with the respective
methods, or if they reflect a signal of the same underlying causal locus.

Here, we estimated the additive genetic effects of the fine-mapped
regions using data from the F2–F8 generations of the AIL. To evaluate
whether they were in general agreement with estimates obtained for the
same regions in earlier studies, we compared them to the estimates
obtained from our first large F2 population (Jacobsson et al. 2005;
Wahlberg et al. 2009). The QTL effects were generally lower in
the F2–F8 data than in the F2. Although this may be interpreted as the
F2 estimates being inflated, several other factors could also be considered.
First, the 56 d body weights were considerably lower for the F8 gener-
ation because younger dams were used to generate these (Besnier et al.
2011). In the analyses, a fixed effect of generation was used to account
for the mean weight differences between generations. However, it did
not account for the likely scenario that the QTL effects were smaller in
these F8 birds due to their lower body weight. As about 30% of the birds
in the pedigree are from this generation, this would bias the overall
effects downward. Standardization of the phenotypes from different
generations to the same mean and variance is a way to possibly account
for this, but a caveat of that approach is an introduction of an upward
bias of the effects if the QTL effects in the F8 are, in fact, not that much
smaller. We therefore chose to report the more conservative estimates
based on analyzing the nonstandardized phenotypes. Second, eight of
the nine QTL contain fine-mapped regions with associations to
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several tightly linked markers. If these markers are located on the
same haplotypes, it is not possible to disentangle their effects in this
pedigree as too few recombination events have accumulated in the
F2–F8 generations of the AIL, and due to such collinearities the esti-
mates for the individual markers reported here would not properly
describe the contributions of these haplotypes to the line difference.
In several of the regions with multiple associated markers, the esti-
mates of the additive effects were also negative for at least one of these
markers. Although this could be interpreted as transgression being
common in the population, we find them more likely to result from
the collinearities among the closely linked markers. Further analyses
utilizing, for example, later AIL generations, markers that specifically
tag the haplotype-structure of the founder lines and methods that can
account for multi-allelic genetic architectures will be needed to dis-
entangle the genetic architectures of these loci and quantify their
contributions to the founder line difference. Third, the F2 QTL esti-
mates were obtained using a line-cross analysis where it is assumed
that the founder lines are fixed for alternative QTL alleles (Jacobsson
et al. 2005; Wahlberg et al. 2009). In the current association analysis,
it is instead assumed that the alternative alleles at the tested markers
tag nearby functional alleles. As none of the associated markers were
fixed for alternative alleles in the founder lines (Table 2 and Table S1),
the current fine-mapping analysis suggests that one, or both, founder
lines segregate for multiple functional alleles in the QTL. To compare
the estimates from the line-cross analysis in the F2 and the association
analyses in the AIL F2–F8 generations, they need to be compared
using a common reference. Here, we did this by estimating howmuch
the associatedmarkers in each QTLwere expected to contribute to the
founder line difference under the assumption that they act completely
additively. Under this assumption, their contribution would equal
twice the sum of the allele-substitution effects of the markers in a
QTL weighted by their respective allele-frequency differences between
the founder lines. That is, if the markers are fixed for alternative alleles
in the founder lines they would contribute two allele-substitution effects
to the founder line difference, whereas they would contribute nothing if
the allele was present at equal frequencies in both founder lines. This
estimate is conservative as, for example, dominance leads to an under-
estimation of the contribution of the locus. This as, in the presence of a
dominant allele, one line will not need to be fixed to contribute most of
its effect because this is also displayed in the heterozygotes for that allele.
When comparing estimates this way, the combined effects of the asso-
ciated markers in each of the QTL contribute from 10 to 75% of that
estimated in the F2 by Jacobsson et al. (2005). In total, the QTL repli-
cated here contributed 171 g to the founder line difference, compared to
the 416 g in the F2. As discussed above, further analyses in other pop-
ulations with more informative genetic markers using other statistical
methods are, however, required to explore this further.

Our analyses suggest that there is extensivewithin-line segregation in
the QTL regions. One possible explanation for the slow fixation in these
loci couldbe that thebeneficial allelesat the linkedfine-mapped lociwere
located on different haplotypes at the onset of selection. Due to the low
selection pressure on each QTL region resulting from the highly poly-
genic architecture of the selected trait, the close linkage between the loci
contributing to theQTL, and the small effectivebreedingpopulation, the
probability that beneficial recombinant haplotypes are selected and
increase in frequency in the population should be low. Another alter-
native explanation could be that the effects of the linked loci are
dependent on the genetic background (epistasis) or dominance, which
might have affected the selection pressure on individual contributing
loci.Aswedidnot explore the contributionsbydominanceor epistasis in

this study, further work would be necessary to evaluate their contribu-
tions to the low fixation in the QTL.

A key for successful imputation of the high-density marker set
throughout the AIL pedigree is that the haplotypes across thesemarkers
are correctly estimated in the founders. There are several properties of
the Virginia lines that improve haplotype estimation from high-density
genotypes. First, as the number of generations since the lines diverged is
relatively few (40 generations), most new haplotypes will result from
recombination of original haplotypes, rather than by new mutations.
Second, the strong artificial selection imposed on the populations since
they were founded is likely to have further reduced haplotype diversity
across the genome. This is likely the reason that many selective-sweeps
across longhaplotypeshavebeen foundtobefixed,ornearlyfixed, across
the genome within and between the lineages (Johansson et al. 2010;
Pettersson et al. 2013). This is reflected in a large average LD-block size
(. 50 kb) across the genome (Marklund and Carlborg 2010). Given the
density of the 60k SNP-chip genotyping used here, several markers will
be present on each such LD-block and hence improve efficiency in
haplotype estimation. Additional genotyping will, however, be neces-
sary in subsequent generations to experimentally confirm the associa-
tions to imputed markers reported here.

Genotype data are available for all individuals in the AIL pedigree.
The densemarker backbone (�1marker/cM) from the first genotyping
of the AIL (Besnier et al. 2011), allow the relatively long haplotypes that
are inherited as intact segments from parents to offspring to be effi-
ciently phased, imputed, and traced throughout the pedigree for later
association analyses.

The highly polygenic genetic architecture in this population is
consistent with what has been revealed in other fine-mapping analyses
in deep intercrosses (Parker et al. 2011) and chromosomal substitution
strains (Bevova et al. 2006) involving intensively selected mouse pop-
ulations. Recent work on a mouse population that has evolved to an
extreme body size in nature has also uncovered a highly polygenic
architecture of adaptation (Gray et al. 2015), illustrating that complex
genetic architectures are likely to be involved in responses to both
natural and experimental selection. Further, our detection of multiple
associations to nearby markers in our AIL is also consistent with re-
ports from other AIL-based fine-mapping studies in chickens from
outbred base-populations (Van Goor et al. 2015) and association stud-
ies within and across cattle breeds (Saatchi et al. 2014). Subsequent
studies will help to elucidate whether the underlying genetic architec-
ture of associations detected to linkedmarkers in this and other outbred
populations are primarily due to the segregation of multiple haplotypes
in the outbred founder populations and breeds or a reflection of several
tightly linked functional polymorphisms.

Here, the association analysis was performed using a linear model
including fixed effects of genotype, sex, and AIL generation. Sex and
generation were included as both these environmental factors had signif-
icant effects on BW56 (Besnier et al. 2011). Implementing the model
selection by backward-elimination in a bootstrap-based framework is a
way to account for possible effects of population structure in the AIL that
might increase the risk for reporting false positives. However, since the
association signals in most cases overlap well with the final marker set
resulting from the testing of experiment-wide significant associations, we
do not find this to be any cause of great concern in this experiment.

Conclusions
In conclusion, this study shows that the proposed imputation-based
association-mappingstrategy, and furthermodel selectionbybackward-
elimination in a bootstrap-based framework, is useful for identifying
independent association signals within and across the nine evaluated
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QTL. The association-peaks were narrower than those obtained in the
earlier performed linkage analysis, often highlighting regions down to
2–3 Mb in length allowing the identification of multiple association
signals in several QTL. This suggests that the association-based strategy
has higher resolution, as well as provides an improved power to disen-
tangle the effects of multiple linked loci inside QTL, compared to
linkage-based fine-mapping. Combining traditional linkage-based ap-
proaches to analyze outbred advanced intercross populations with im-
putation-based association-mapping approaches might thus be an
important and cost-effective approach to improve the efficiency in
postassociation bioinformatics analyses and functional explorations
aiming to identify candidate mutations. A previous candidate gene study
based on the nine QTL fine-mapped here has already reported some
interesting mutations in growth-related genes (Ahsan et al. 2013) over-
lapping with the association signals reported here. Further bioinfor-
matics investigations of the regions fine-mapped here could potentially
reveal new important genes andmutations affecting body weight in these
chicken lines and provide new candidate genes for studying the genetic
architecture of metabolic traits in other species, including humans.
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