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Abstract
Clinical trials in patients with ulcerative colitis (UC) face the challenge of high and variable placebo response rates. The

Mayo Clinical Score (MCS) is used widely as the primary endpoint in clinical trials to describe the clinical status of

patients with UC. The MCS is comprised of four subscores, each scored 0, 1, 2 and 3: rectal bleeding (RB), stool frequency

(SF), physician’s global assessment (PGA), and endoscopy (ENDO) subscore. Excluding the PGA subscore gives the

modified MCS. Quantitative insight on the placebo response, and its impact on the components of the MCS over time, can

better inform clinical trial design and interpretation. Longitudinal modeling of the MCS, and the modified MCS, can be

challenging due to complex clinical trial design, population heterogeneity, and limited assessments for the ENDO subscore.

The current study pooled patient-level placebo/standard of care (SoC) arm data from five clinical trials in the TransCelerate

database to develop a longitudinal placebo response model that describes the MCS over time in patients with UC. MCS

subscores were modeled using proportional odds models, and the removal of patients from the placebo/SoC arm, or

‘‘dropout’’, was modeled using logistic regression models. The subscore and dropout models were linked to allow for the

prediction of the MCS and the modified MCS. Stepwise covariate modeling identified prior exposure to TNF-a antagonists

as a statistically significant predictor on the RB ? SF subscore. Patients with prior exposure to TNF-a antagonists had

higher post-baseline RB ? SF subscores than naive patients.

Keywords Ulcerative colitis � Placebo effect � Mayo Clinical Score � Proportional odds � Categorical modeling �
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Introduction

Ulcerative colitis (UC) is a type of inflammatory bowel

disease characterized by chronic inflammation of the large

intestine. The clinical course is unpredictable, and is

characterized by periods of remission and relapse. Cur-

rently, there is no cure for UC, and treatment is focused on

minimizing symptoms and disease progression. Clinical

trials for the development of new treatments in this popu-

lation face the challenge of high and variable placebo

response rates, which makes it difficult to draw conclusions

about treatment-related response. In addition, evaluating

efficacy of a new agent in pediatric trials encounters severe

ethical and feasibility issues if including a placebo/standard

of care (SoC) arm. When there is already efficacy data for

an active treatment in adults, the use of a placebo/SoC arm

in pediatric trials is avoided because it would expose

patients to a known inferior treatment. Enrollment in a

pediatric trial would also be difficult due to the lower

prevalence of UC in children [1–4]. Developing a model to

describe longitudinal placebo response can help guide the

design of clinical trials (e.g. sample size calculations), and

could potentially provide information about expected pla-

cebo response in trials where a placebo/SoC arm is not

available. In addition, such a model would allow for the
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evaluation of intrinsic and extrinsic factors that can influ-

ence placebo response in patients with UC.

TransCelerate BioPharma is an organization formed for

biopharmaceutical member companies to collaborate and

address inefficiencies in drug development. To promote the

understanding of placebo response and natural histories of

disease, TransCelerate Biopharma launched the Historical

Trial Data Sharing (Controls) initiative to share and pool

placebo/SoC arm data from completed clinical trials [5].

The database is readily accessible by member companies

and contains de-identified, patient-level placebo/SoC arm

clinical trial data for various indications including UC. The

current study extracted data from this database to develop a

placebo response model.

The Mayo Clinical Score (MCS) has been widely used

in clinical trials to describe the clinical status of patients

with UC. The MCS consists of four subscores, each scored

0, 1, 2 and 3: rectal bleeding (RB), stool frequency (SF),

physician’s global assessment (PGA), and endoscopy

(ENDO) subscore [6]. The subscores are added to give the

MCS, which can range from 0 to 12. Higher scores indicate

increased disease severity. Excluding the ENDO subscore

from the MCS gives the partial MCS, and excluding the

PGA subscore gives the modified MCS [7, 8]. The utility of

the PGA subscore has been called into question, as it is

unclear what distinct information it provides over the other

components of the MCS. This subscore is also subjective

and can introduce variability in the data [7]. Therefore, the

use of the MCS as an endpoint for pivotal trials is no longer

recommended. [9, 10] Instead, regulators recommend the

use of the modified MCS. The development of a longitu-

dinal model for the modified MCS can be challenging due

to the limited availability of the repeated ENDO subscores

given the ENDO subscore requires an invasive procedure.

Typically a colonoscopy is performed at the time of ran-

domization, time of the primary endpoint, and selected

times during the maintenance phase. While timepoints for

ENDO subscore are limited, the other non-invasive sub-

scores are evaluated more frequently and can provide

longitudinal data to support estimation of the time course

of placebo response.

Modeling the time course of the modified MCS faces the

additional challenge of complex trial design. For studies

with both an induction and maintenance phase, patients in

the placebo/SoC arm may be removed from the trial at the

end of induction or may progress to the maintenance phase

through a variety of mechanisms. Patients that progress

into the maintenance phase may remain in the placebo/SoC

arm, be re-randomized into a placebo/SoC or treatment

arm, or be placed into a treatment arm based on responder

status. A model accounting for this potential removal of

patients from the placebo/SoC arm at the end of induction

would allow for a more accurate characterization of

longitudinal placebo response through the maintenance

phase. Because an investigational therapy must demon-

strate efficacy in both the induction and maintenance

phase, a better understanding of placebo response in the

maintenance phase is needed to aid the evaluation of drug

effect.

Endpoints from clinical trials in UC are often categori-

cal in nature, and these categorical variables can be nom-

inal or ordinal. The modified MCS is ordered categorical

due to the finite number of integer values that have a clear

order in the scale. Ordered categorical data that have

greater than or equal to 10 categories are typically modeled

as continuous data due to the large number of parameters

associated with the categorical approach. With a large

enough dataset, however, the ordered categorical approach

may be appropriate for modeling the modified MCS. It may

be preferred so that predictions will always reflect actual

scores, whereas a continuous model may predict partial

scores that are inconsistent with the actual modified MCS

that can be obtained. Recently, the MCS for golimumab in

patients with UC was modeled using continuous and

ordered categorical approaches [11]. In that analysis, the

model developed using the ordered categorical approach

produced more accurate predictions than the continuous

model. The proportional odds (PO) model structure was

first used for nonlinear mixed effects modeling by Sheiner,

and has since been used widely to characterize ordered

categorical data [12]. Therefore, the current study used a

PO model to describe the longitudinal modified MCS. The

modeling of the PGA subscore, to allow for predictions of

the MCS, was also explored.

The previously developed categorical model describes

the MCS as a single endpoint [10]. The aim of the current

analysis is to develop a longitudinal model that describes

the subscores of the MCS as separate endpoints during both

induction and maintenance phases of a clinical trial in UC.

This would provide the flexibility to model individual

subscores and various combinations of the subscores (e.g.

MCS, modified MCS, partial MCS). The current analysis

also aims to improve model estimates in the maintenance

phase by accounting for the complex clinical trial design in

UC, where patients may be removed from the placebo arm

at the end of the induction phase. The effect of intrinsic and

extrinsic factors on the MCS subscores were also evalu-

ated. The resulting model would provide detailed infor-

mation on the relationship between the subscores, and the

longitudinal behavior of the MCS, modified MCS, or par-

tial MCS during both induction and maintenance phases of

a clinical trial.
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Methods

Placebo/SoC arm database

All available longitudinal, patient-level placebo/SoC arm

data from clinical trials for UC were extracted from the

TransCelerate database. Data were pooled from five ran-

domized, double-blind, placebo-controlled, multicenter

phase 2 and 3 trials for moderate to severe active UC

[13–17]. The modeling dataset was assembled and visual-

ized using the statistical software R (version 3.6.0).

Model structure

A longitudinal model for the RB ? SF subscore was

developed initially, as the RB ? SF subscore data is richer

than the ENDO subscore data. This allowed for subse-

quently developed subscore (i.e. ENDO and PGA sub-

scores) and dropout models to be informed by the

RB ? SF subscore model. The linkages between these

separate model components were explored to develop a

complete model that can estimate the modified MCS or

MCS over time. The predicted modified MCS or MCS

would be derived as the sum of the separate predictions of

the appropriate subscore models.

Subscore models

The subscores of the MCS were modeled using several PO

models. Each PO model estimates the cumulative proba-

bility of having an observation Yi,j for the ith patient at the

jth timepoint, that is greater than or equal to a given score

m. Logit transformations were used to ensure probabilities

fell within the range from 0 to 1. The general PO model

structure can be represented by the following equation:

Logit½PðYi;j �mjgi� ¼ am þ PLBþ gi ð1Þ

am is the intercept, PLB is the placebo effect, and gi is the

interindividual variability (IIV). In the model, P(Yi,j C 0)

= 1, and am for m[ 1 was reparameterized using a value

DFm\ 0 to ensure that P(Yi,j C m)[ P(Yi,j C m ? 1).

DFm is the difference between am and am-1.

am ¼ am�1 þ DFm ½for m[ 0� ð2Þ

Baseline values for the subscores were included as

covariates on the intercept parameter of the respective

subscore model. Additionally potential effects of baseline

covariates: prior exposure to TNF-a antagonists, age,

c-reactive protein (CRP), albumin, smoking status, con-

comitant medications, and steroid use were evaluated on

the intercept parameter using a stepwise covariate model-

ing (SCM) approach. Covariates that resulted in a reduction

in the objective function value (OFV) of greater than 3.84

(p\ 0.05 for one additional degree of freedom) were

retained in the forward selection, and those that resulted in

a change in OFV of greater than 10.8 (p\ 0.001) were

retained in the backward elimination. Because individual-

level information on concomitant medications and steroid

use were not readily available for model building, sum-

mary-level information for each study on concomitant

medications required before baseline and permitted during

the study, and the proportion of placebo/SoC arm patients

using steroids at baseline were used for covariate modeling.

Studies were assigned a categorical value based on study

design criteria related to concomitant medications, and this

value was directly assigned to patients within the study.

Similarly, the proportion of patients using steroids at

baseline was identified in each study, and this value was

directly assigned to patients in that study as a continuous

covariate (e.g. if a study had 50% of patients using steroids

at baseline, patients in that study were assigned a value of

0.5) for covariate modeling.

Dropout model

Dropout was modelled to enable simulations that can be

compared to the observed data. For the trials that included

a maintenance phase, a dropout model was implemented to

estimate the loss of patients between the induction and the

maintenance phase. In addition, the gradual removal of

patients over time during the maintenance phase was esti-

mated separately in the model. A logistic regression model

structure was used for the dropout model.

Model building and evaluation

Model building was done using a non-linear mixed effects

approach in the NONMEM software version 7.4.3. The

Laplacian estimation method with the likelihood option in

the estimation record was used for parameter estimation.

Model selection was based on changes in OFV. Model

performance was evaluated using visual predictive checks

(VPCs) in which 500 replicates of the dataset were simu-

lated and compared to observed data. The VPC simulations

were based on complete observation time-points in all

patients (i.e. up to the end of study). Observations after the

simulated time of drop-out were censored to achieve data

that could be compared to the observed results. The sim-

ulated and observed scores shown in the VPCs are based on

the patients remaining in the study (i.e. that did not drop

out). Imputation at planned visits was done to provide

records that allow for the model to predict the probability

of dropout at any planned visit, rather than limiting model

predictions to observed visits for a given individual.

Without this imputation, a patient during simulation would

automatically dropout at the observed time of dropout or
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earlier. The imputed rows contained negative values that

indicate a patient has dropped out, and these values are not

included in calculating the observed or predicted average

scores. Bootstrapping was performed to evaluate parameter

uncertainty. Model diagnostics and SCM were assisted by

R version 3.6.0, Perl-speaks-NONMEM (PsN) toolkit

version 4.9.0 and Pirana version 2.9.9

Results

Placebo/SoC arm database

Individual-level longitudinal data from 755 adult patients,

placebo/SoC arm, were pooled from five Phase 2/3 clinical

trials [13–17]. The trials were conducted during the years

2006 to 2011. Three of the studies were both induction and

maintenance phase studies, and two of the studies were

induction phase only. All placebo/SoC arm patients with

data in the maintenance phase were also in the placebo/SoC

arm during induction phase. Patients had moderate to

severe active UC, as evidenced by a MCS of 6 to 12 points

and ENDO subscore of 2 to 3 points at baseline. Across the

trials, the RB, SF, and PGA subscores were evaluated

every 2–6 weeks, and ENDO subscore was evaluated at

weeks 0, 8, 32/36, and 52. Summary of clinical trial and

patient characteristics are summarized in Table 1.

Mayo Clinical Score model

The complete model consists of three subscore models and

one dropout model that are linked together using the

RB ? SF subscore as a covariate in the ENDO subscore

and dropout model, and the modified MCS as a covariate in

the PGA subscore model (Fig. 1). The MCS subscores

were modeled using a PO model. The RB and SF subscores

were summed and modeled as one endpoint (RB ? SF). A

linear placebo effect was included in the RB ? SF sub-

score model. A linear model was selected as it provided a

good description of the data. Estimating separate slopes for

induction and maintenance phases as a piecewise linear

function resulted in a significant change in OFV

(DOFV = -81.1), and this was incorporated in the final

model (Eq. 6). An exploration of the dataset using the

Spearman rank correlation test revealed the RB ? SF

subscore and ENDO subscore (q = 0.65), and the modified

MCS and PGA subscore were well correlated (q = 0.80).

The observed RB ? SF subscore from the same or most

recent study visit was therefore included as a time-varying

covariate in the ENDO subscore model. This resulted in a

significant change in OFV (DOFV = - 309.4). The ENDO

subscore was modeled as a function of the baseline ENDO

score and the observed RB ? SF subscore. Any time-

varying placebo response was hence included indirectly

based on the time-varying RB ? SF subscore. Attempts to

estimate parameters for an independent placebo effect on

the ENDO subscore resulted in difficulty with model

convergence and therefore could not be estimated. The

VPC for the ENDO subscore (Fig. 2b), however shows the

model predictions fitting the observed data, suggesting that

an additional slope parameter is not needed. The devel-

opment of a subscore model was also explored for the PGA

subscore. The observed modified MCS, derived by adding

predictions from the RB ? SF and ENDO subscore mod-

els, was included as a time-varying covariate in the PGA

subscore model. Inclusion of the modified MCS as a time-

varying covariate resulted in a significant change in the

OFV (DOFV = -609.7). The PGA subscore model included

a linear placebo effect, similar to the placebo effect

included in the RB ? SF subscore model. Without this

additional placebo effect parameter, the model significantly

overpredicted the PGA subscore over time. IIV was esti-

mated for the intercept parameter (am) of each of the

subscore models. The dataset did not support the estimation

of IIV on the placebo slope parameter. Baseline values of

the subscores were included as covariates in the corre-

sponding subscore model. In the SCM, the effect of prior

exposure to TNF-a antagonists on the RB ? SF subscore

model was the only covariate retained. None of the tested

covariates were identified as significant on the ENDO

subscore model. Patients with prior exposure to TNF-a
antagonists had higher post-baseline RB ? SF subscores

than naı̈ve patients. The subscore models are represented

by the following equations:

Logit½PðYi;j �mjgi;RBSFÞ� ¼ am;RBSF � BASERBþSF � TNF

þ PLBRBþSF þ gi;RBSF
ð3Þ

Logit½PðYi;j �mjgi;ENDOÞ� ¼ am;ENDO � BASEENDO

� PDVRBþSF þ gi;ENDO ð4Þ

Logit½PðYi;j �mjgi;PGAÞ� ¼ am;PGA � BASEPGA

� PDVmodMAYO þ PLBPGA

þ gi;PGA ð5Þ

where the baseline RB ? SF or PGA subscore (BASE) and

the RB ? SF or modified MCS from the same or most

recent visit (PDV) were included as continuous covariates

with the general structure (1 ? h 9 (covariate)). The

effect of prior exposure to TNF-a antagonists (TNF) and

baseline ENDO subscore (BASEENDO) were included as

categorical covariates with the general structure (1 ? h).

The piecewise linear function for the placebo effect

can be written as:
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PLB ¼ �hinduction � TIMEinduction � hmaintenance

� TIMEmaintenance ð6Þ

The dropout of patients was estimated at the end of the

induction phase, as well as during the maintenance phase.

Logistic regression with an intercept parameter, and a slope

parameter for the effect of the most recent RB ? SF sub-

score on the probability of dropping out was used, with

separate parameter estimates for dropout at the end of

induction and during maintenance. With this dropout

model, dropout does not occur prior to the end of induction.

A positive slope was estimated for both the induction and

maintenance phase showing that patients with higher

RB ? SF subscores had an increased probability of drop-

ping out at the end of induction and during the maintenance

phase. The dropout model is represented by the following

equation:

Logit½Pdrop� ¼ hintercept þ hslope � ðRBþ SFÞ ð7Þ

Parameter estimates for the subscore models and drop-

out model are presented in Table 2. For parameters that can

take a positive or negative value, standard error (SE) is

presented instead of relative standard error (RSE). Both the

SE and RSE in the table were obtained from the NON-

MEM covariance step. Non-parametric bootstrapping was

performed and for most parameters, resulted in SEs of

similar magnitude as those provided by the NONMEM

covariance step. SE from bootstrapping were slightly larger

for the modified MCS covariate parameter and intercept

parameters in the PGA subscore model.

Model evaluation

VPCs were conducted such that the ENDO and PGA

subscore models generated predictions based on the model-

predicted RB ? SF and modified MCS, respectively. Cat-

egorical VPCs were generated for each of the subscore and

dropout models. The VPCs show the proportion of patients

in each category over time. The proportions for each of the

subscore categories account for dropout patients and are

calculated using the number of patients in each category

over the total number of patients possible in the induc-

tion/maintenance phase. Because the progression of

patients into the maintenance phase in induction-only trials

is not possible, the denominator is different for the

induction and maintenance phase. Categorical VPCs of the

RB ? SF and ENDO subscore models show an overall

good agreement between the predicted 95% confidence

interval and observed proportions (Fig. 2). For the PGA

subscore, a PO model informed by the modified MCS

slightly overpredicted the proportion of patients with sub-

scores of 1 and 2 (Fig. 2). Timepoints start at week 10 for

ENDO and PGA due to the first post-baseline ENDO
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assessment occurring during week 8–12 in the trials. While

the dropout model appears to fit the observed data well

during the maintenance phase, the model appears to over-

predict the proportion of patients dropping out at the end of

induction (Fig. 2). The dropout model estimates dropout at

a single time point at the end of induction, and the

appearance of fluctuations during maintenance phase in the

VPC is a result of data binning and differences between

studies in scheduled visits. It should also be noted that the

proportions for the ENDO and dropout at a given time

point in the VPCs may not add to 1. This is due to dif-

ferences in time resolution between the ENDO and dropout

assessments. The same is also true for PGA and dropout.

The continuous VPC of the modified MCS showed

agreement between the predicted 95% confidence interval

and observed data. (Fig. 3) The modified MCS was derived

by adding the RB ? SF and ENDO estimates at each

timepoint. Observed and predicted timepoints demon-

strated a decrease in both scores over time. It should be

noted that average scores at each timepoint were calculated

using only scores from patients remaining in the trial. The

dropout of patients (who generally had higher subscores)

appears to be a large driver of the decrease in modified

MCS over time. A comparison of model simulations with

dropout and with no dropout of patients demonstrates that

the decrease in the modified MCS over time is partly driven

by the placebo response, and largely driven by the dropout

of patients with higher modified MCS from the placebo/

SoC arm (Fig. S1).

Discussion

An ordered categorical model was developed to describe

the modified MCS and MCS over time in placebo/SoC

treated patients with moderate to severe active UC. While

the primary objective was to model the modified MCS,

modeling of the PGA subscore was explored to allow the

model to estimate the MCS over time. RB and SF sub-

scores were combined and modeled as a single endpoint, as

the combination of these scores is a good representation of

the symptomatic outcome at each time point. These two

subscores are also typically assessed at the same timepoints

in clinical trials. There is limited utility gained by sepa-

rating the subscores in the current model; and combining

the two subscores also allows for a more simple model

structure. The ENDO subscore was estimated as a separate

endpoint due to the limited number of ENDO assessments.

The model estimates probabilities for the ENDO subscore

categories at post-baseline timepoints based on the baseline

ENDO subscore and RB and SF subscores from the same

visit. The effect of the RB ? SF covariate on the ENDO

subscore model was statistically significant, and the model

is able to produce predictions that agree well with the time

course of the observed ENDO data (Fig. 2). The change

from baseline in ENDO subscore, and therefore the placebo

response in the subscore, can be explained by the time-

course of RB and SF without the need for an additional

parameter for time. In the current dataset, it appears that

the change from baseline in the ENDO subscore, may

hence be predicted using only the non-invasive RB and SF

subscore evaluations.

The primary objective of this analysis was to model the

modified MCS due to a number of considerations associ-

ated with the PGA subscore. The PGA subscore is sub-

jective, it is unclear what information it provides that is

distinct from the other subscores, and regulatory agencies

have recently recommended against its use in clinical trials.

While the PGA subscore can be evaluated at frequent

timepoints in a clinical trial, the PGA subscore is assessed

based on several factors including endoscopic evaluation.

Therefore, the PGA subscore model in the current study

only estimates this subscore at timepoints in which the

ENDO subscore is measured. The need for an additional

linear placebo effect to prevent overprediction of the PGA

subscore model indicates the PGA subscore is affected to a

greater extent by the placebo effect than the other sub-

scores, and that the change from baseline in PGA subscore

cannot be estimated from the modified MCS alone. This

may be explained by the subjective and variable nature of

the PGA subscore. Model misspecification of the PGA

subscore may be affected by this subjectivity, and may also

be due to the linkages between the subscore and dropout

models. Any misspecifications in the RB ? SF or ENDO

subscore models, or dropout model can affect the PGA

subscore model predictions. It should also be noted that the

impact of RB ? SF and the modified MCS on the subscore

and dropout models was based on a continuous slope

intercept model. This allowed for a more parsimonious

approach involving less model parameters than if the

scores were evaluated as categorical covariates on the

subscore and dropout models.

In the covariate analysis, patients with prior treatment

with TNF-a antagonists had a higher post-baseline RB ?

SF subscore over time than patients who were naı̈ve to

TNFa antagonists. It should be noted that patients with

prior treatment with TNF-a antagonists had similar base-

line values of RB and SF subscores as those that were naive

to treatment with TNF-a antagonists. The covariate effect

is consistent with the reported difficulty in treating patients

with prior treatment with TNF-a antagonists [18]. This

should be interpreted with caution, however, as the

majority of data for patients with prior treatment with TNF-

a antagonists came from a single study in the current

dataset (Table 1). Notably, patient-related factors of age,

baseline CRP, baseline serum albumin level, and smoking
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status, and study-level differences in the proportion of

baseline steroid use and in the protocol specifications

related to concomitant medications did not have a signifi-

cant impact on the RB ? SF subscore. The lack of age

effect may be resulting from the lack of pediatric data, as

the current dataset is limited to only adult patients. The

effect of steroids and concomitant medications may be

difficult to identify due to the lack of patient-level con-

comitant medication data.

The findings of the dropout model, where patients with

higher RB ? SF subscores had an increased probability of

dropping out at the end of induction, are aligned with the

common practices in clinical trials of re-assigning or re-

randomizing only patients who responded to the assigned

treatment at the beginning of the maintenance phase, and of

providing rescue treatment to patients who do not respond.

Responder status is typically defined by components of the

MCS, where patients with higher scores are nonresponders,

and those reaching defined lower scores are responders.

The dropout model appears to slightly overpredict the

dropout of patients at the end of induction, and this is likely

due to the variety in mechanisms by which patients are

removed from placebo/SoC arms in the clinical trials. For

simulations of a single trial with set criteria for dropout,

this could potentially be mitigated by mirroring these cri-

teria in the model structure. In the current dataset, because

there were no flags provided to differentiate between

patients who drop out according to protocol criteria from

those dropping out for other reasons, a general logistic

regression structure (Eq. 7) was employed (similar to what

has been reported previously to account for the dropping

out from tumor measurement follow-up [19]) accounting

for the correlation between lack of efficacy and probability

of dropping out. The drop-out is assumed to be driven by

the observed score and not in itself be informative of the

response. Because dropout is correlated with efficacy out-

comes, it will influence the observed efficacy time course

and needs to be accounted for in the modeling process.

This allows for simulation based evaluations of the model

(VPCs) and an understanding of the contribution of drop-

out to the observed change in MCS over time. A simple

model structure without covariates was considered ade-

quate for the current modeling process as the purpose of the

drop-out model was to ensure that adequate VPCs could be

generated accounting for the correlation between drop-out

and efficacy outcomes in the simulations. It was also

assumed that the primary driver of dropout was lack of

efficacy. The dropout model was driven by the RB ? SF

subscore due to the frequent assessment of this subscore.

Requiring the ENDO or PGA subscore, in the current

model structure, would limit the observations informing

dropout to very few timepoints.

To our knowledge, this is the first study to model the

longitudinal MCS using linked models for MCS subscores

and dropout. Hu et al. had previously developed an ordered

categorical model, which estimated the MCS as a single

endpoint [11]. Modeling the data sequentially with separate

PO models provides the flexibility to estimate and under-

stand the behavior of individual subscores over time. The

RB ? SF subscore and PGA subscore models, for exam-

ple, may be used to predict the partial MCS and interpret

early clinical trial data or for interim analyses, when

Fig. 1 Schematic representing the overall model structure. The

RB ? SF subscore informs predictions for the ENDO and PGA

subscore models, and the dropout model. The ENDO subscore is

combined with the RB ? SF subscore to give the modified MCS,

which informs the PGA subscore model. Equations showing the

linkages between models are included in the model scheme
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ENDO subscores may not be available. With the complete

model, various combinations of MCS subscores such as the

modified or partial MCS, can be estimated. It should be

noted that the linked model structure does not intend to

suggest causality between subscores. Rather, the model

structure was developed based on the assumption that each

subscore reflects disease progression, and therefore, may

inform other subscores. The development of the dropout

model allowed for the model to capture the complexity in

UC clinical trial design, where placebo/SoC arm patients

may or may not remain in the placebo/SoC arm during the

maintenance phase. As seen in Fig. S1, accounting for this

aspect of trial design is needed for accurate estimates of the

MCS during the maintenance phase. Modeling the dropout

of patients, in addition to the subscores, can also inform

sample size estimation in clinical trial design. Alternative

model structures (e.g. item response theory, Markov

models) were considered for this analysis, but the PO

model was selected. While an item response theory model

may allow for simultaneously fitting different subscores to

a shared underlying disease progression, the current model

structure still acknowledges the correlation between the

subscores. The PO model has the most simple structure,

and describes the current data well. More complex models

were therefore not considered necessary for the current

analysis. Alternative linkages between the subscore models

were also explored. A linkage in which subscore models

were informed by the model-predicted cumulative proba-

bility of RB ? SF C 1 rather than the observed RB ? SF

subscore or modified MCS was evaluated. This would

allow for ENDO and PGA subscores to inform parameters

for the RB ? SF subscore model. However, this did not

improve the model fit, and the current approach is favored

due to the easier potential application to future trials by

directly predicting components of the MCS based on

observed RB ? SF subscores alone.

Key limitations in the current model should be consid-

ered. The data only included patients who had moderate to

severe active UC at baseline. The developed model should

therefore not be used to predict outcomes in patients with

mild UC. IIV could not be estimated on the linear slope

parameter due to insufficient data. The effect of intrinsic

and extrinsic factors on disease progression, therefore,

could not be evaluated. Because there are no Markov

bFig. 2 Categorical VPCs are shown for the post-baseline a RB ? SF

subscore, b ENDO subscore, c PGA subscore, and d end of induction

and maintenance phase dropout. The observed data are represented by

the red line, and are overlaid on top of shaded areas representing the

95% prediction interval by the model. The y-axis is the proportion of

remaining patients in each category to the total patients enrolled in the

induction/maintenance phase
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elements to explicitly account for the relationship between

serial observations, the model is not suited for individual-

level predictions. The aim of the current model was to

generate summary-level predictions of the modified MCS

over time, however, and the incorporation of a Markov

element was not considered to be necessary. The model is

unable to predict baseline values for the subscores, because

baseline values are included as covariates in the subscore

models. The inclusion of the observed baseline score as a

covariate in the model is useful when the distribution of

baseline scores is non-normal or cannot easily be trans-

formed to a normal distribution [20]. This was the case in

the present data due to the inclusion criteria in the clinical

trials related to baseline MCS (e.g. subject must have a

MCS of 6–12 points and an endoscopy subscore of C 2).

The developed model allows for predictions of the longi-

tudinal MCS for other trials based on an assumed distri-

bution of baseline scores e.g. similar to the current data set

as shown in Table 1 or based on the expected distribution

of the baseline score in the population of interest. All of the

clinical trials included in the current study were 10 years or

older, and trial design and conduct may not be consistent

with more recent clinical trials. In particular, the included

trials are unlikely to have used central endoscopies, and

therefore the ENDO data is likely more variable than the

data from more recent trials. The standard of care has also

changed for UC over time, as new therapeutic agents have

become available. Placebo/SoC arm patients in more recent

clinical trials are thus more likely to have been treated with

Table 2 Model parameter estimates

Parameter Estimate RSE (%) SE

RB ? SF subscore PO model

a1 5.34 0.19

DF2 - 2.34 5.3

DF3 - 1.32 5.3

DF4 - 1.37 5.1

DF5 - 1.66 5.2

DF6 - 2.27 5.9

SLOPEPLB,IND (1/day) 0.015 0.0020

SLOPEPLB,MAINT (1/day) 0.0011 6.4 � 10–4

BL_RBSFa1 0.18 0.013

TNFa1 0.14 0.037

Var(ga1) 3.47 9.4

ENDO subscore PO model

a1,endo 0.53 0.17

DF2,endo - 2.84 7.3

DF3,endo - 2.56 8.0

BL_ENDO a1,endo 0.41 0.073

PDV_RBSF a1,endo 1.63 0.59

Var(ga1,endo) 1.01 34.1

PGA subscore PO model

a1,PGA 0.0093 4.4 � 10–4

DF2,PGA - 4.56 9.0

DF3,PGA - 4.77 10.0

SLOPEPLB,PGA,IND 0.016 0.0039

SLOPEPLB,PGA,MAINT 0.0023 8.6 � 10–4

BL_PGA a1,PGA 0.24 0.035

PDV_MMCS a1,PGA 130 13

Var(ga1,PGA) 1.21 57.2

End of induction dropout logistic regression model

INTERCEPTIND - 1.94 0.25

SLOPEIND 0.68 0.071

INTERCEPTMAINT - 4.65 0.31

SLOPEMAINT 0.84 0.072

RSE relative standard error, SE standard error, a1 intercept parameter

on the logit scale for score C 1, DFk parameter for score k such that

ak = ak-1 ? dfk, SLOPEPLB,IND slope of the time effect on the sub-

score during induction phase, SLOPEPLB,MAINT slope of the time

effect on the subscore during maintenance phase, BL_RBSF effect of

baseline RB ? SF subscore, TNF effect of prior anti-TNF treatment,

Var(g) variance of between-subject variability, BL_ENDO effect of

baseline ENDO subscore, PDV_RBSF effect of observed RB ? SF

subscore, BL_PGA effect of baseline PGA subscore, PDV_MMCS

effect of observed modified MCS, INTERCEPTIND intercept of the

logistic regression at the end of induction phase, SLOPEIND slope of

the logistic regression at the end of induction phase,

INTERCEPTMAINT intercept of the logistic regression during main-

tenance phase, SLOPEMAINT slope of the logistic regression during

maintenance phase

Fig. 3 Continuous VPC of modified MCS over time in patients

remaining in the trial. The median of the observed data is represented

as a blue line, and the 2.5th and 97.5th percentiles are represented as

red lines. Observed data are overlaid with shaded areas representing

95% prediction intervals by the model. Timepoints start at week 10

due to the first post-baseline ENDO assessment occurring during

week 8–12 in the trials
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TNF-a antagonists and other newer therapies than patients

from older trials. Because patient-level data for concomi-

tant medications could not feasibly be formatted for mod-

eling, the effect of concomitant medications could only be

evaluated using information from the study protocols on

the minimum length of treatment prior to study and the

medications permitted in the study. In addition, the RB ?

SF subscore may be calculated in a trial using a variety of

methods (e.g. worst score in a time interval, average score

in a time interval), which may contribute to variability in

the RB ? SF subscores in the current dataset [21]. Because

the methods used across all of the studies could not be

determined, the effect of various calculation methods on

the RB ? SF subscore model was not evaluated in the

model.

The current model presents a case example for use of the

historical trial data provided by TransCelerate Biopharma.

TransCelerate’s data sharing initiative promotes the use of

historical trial data to improve efficiency in drug devel-

opment. Their historical control database is a collaborative

platform with member companies actively contributing de-

identified, patient-level clinical trial data [5]. As the data-

base grows and incorporates data from more recent trials,

the use of historical data can be improved and explored in

other indications as well. Outside of disease modeling, the

database can be used for additional cases including safety

signal interpretation and biomarker development.

Future directions would involve incorporating addi-

tional, more recent clinical trial data to update the model.

Considering the additional challenges in pediatric drug

development for UC, the availability of pediatric data

would also allow for a better understanding of age effects

on placebo response. A robust model can generate pre-

dictions that can be used as a ‘‘virtual placebo arm’’ for

pediatric trials in which a placebo/SoC arm is not feasible

to enroll. The model could also have a drug effect

parameter incorporated into it, so that it may be applied to

data from treatment arm patients. Drug effect may be

evaluated categorically, by including separate slopes for

the linear effect (Effect = - SLOPE 9 TIME) for

patients in the treatment and placebo arm. If an examina-

tion of the concentration–response relationship was of

interest, observed or population PK model predicted values

may be accounted for in the current model using various

approaches such as an effect compartment or indirect

response model. The current study pooled data from five

clinical trials to develop a longitudinal model describing

the modified MCS over time in placebo/SoC arm patients

with moderate to severe active UC. By providing insights

into the time course of placebo response, and factors that

influence the response, the model can support clinical trial

design and data interpretation.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s10928-

021-09789-2.
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