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Abstract

killing to wild type levels.

Background: Periplasmically localized copper-zinc co-factored superoxide dismutase (SodC) enzymes have been
identified in a wide range of Gram-negative bacteria and are proposed to protect bacteria from exogenously produced
toxic oxygen radicals, which indicates the potential significance of a Coxiella burnetii SodC.

Results: Assays for SOD activity demonstrated that the cloned C. burnetii insert codes for a SOD that was active
over a wide range of pH and inhibitable with 5 mM H,0, and 1T mM sodium diethyldithiocarbamate, a characteristic of
Cu/ZnSODs that distinguishes them from Fe or Mn SODs. The sodC was expressed by C. burnetii, has a molecular
weight of approximately 18 kDa, which is consistent with the predicted molecular weight, and localized towards the
periphery of C. burnetii. Over expression of the C. burnetii sodC in an E. coli sodC mutant restored resistance to H,0,

Conclusions: We have demonstrated that C. burnetii does express a Cu/ZnSOD that is functional at low pH, appears to
be excreted, and was able to restore H,O, resistance in an £. coli sodC mutant. Taken together, these results indicate
that the C. burnetii Cu/ZnSOD is a potentially important virulence factor.
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Background

Coxiella burnetii, the etiologic agent of Q fever, is an obli-
gate intracellular bacterium that replicates within the pha-
golysosome of monocytes/macrophages. The ability to
survive in the harsh environment of the phagolysosome
may require the subversion of macrophage microbicidal
mechanisms. Several enzyme systems potentially required
to survive in the phagolysosomal compartment, such as
catalase, cytoplasmically localized superoxide dismutase
(SOD), and acid phosphatase have been partially charac-
terized [1,2]. Catalase and SOD activities were detected in
C. burnetii whole cell lysates and were demonstrated to
be maximally active at neutral pH suggesting that these
enzymes were cytoplasmically localized and may be in-
volved in detoxifying endogenously generated oxygen
radicals [1]. Additionally, Heinzen et al. were able to
clone a C. burnetii SOD and functionally complement
an E. coli sodA sodB double mutant [2]. This C. burnetii
SOD was demonstrated to be homologous to known
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iron-containing SODs. Baca et al. also demonstrated
that supernatants from high-speed centrifugation of
sonicated C. burnetii contained acid phosphatase activ-
ity that was optimally active at low pH, localized to the
periplasmic space of C. burnetii, and was capable of
inhibiting superoxide anion production by stimulated
human neutrophils, suggesting that this enzyme may
prevent killing of the bacteria during uptake by inhibiting
the respiratory burst [3,4].

The C. burnetii genomic database from TIGR pre-
dicted a putative Cu/Zn SOD with a signal sequence
(CBU 1822). Recently, Stead et al. reported the presence
of a putative SodC protein in supernatants from C. bur-
netii cultured in acidified citrate cysteine media using a
FLAG-tag assay, which indicates the secreted nature of
the SOD [5]. Periplasmically localized Cu/Zn SOD en-
zymes have been identified in a wide range of Gram-
negative bacteria and are proposed to protect bacteria
from exogenously produced toxic oxygen radicals, which
indicate the potential significance of a C. burnetii Cu/Zn
SOD. For example, the survival of Mycobacterium tuber-
culosis and Salmonella typhimurium sodC mutants were
reduced by 90% and 5 fold, respectively, compared to
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wild type when exposed to exogenous superoxide anion
[6,7]. Additionally, Strohmeier Gort et al. reported that
an Escherichia coli sodC mutant was more sensitive to
hydrogen peroxide killing during stationary phase than
wild type and were able to restore resistance to hydrogen
peroxide killing through complementation [8]. Here we
describe the cloning, expression, and characterization of
a C. burnetii Cu/Zn SOD.

Results

Demonstration of CuZnSOD activity

A C. burnetii sodC gene was cloned into pBAD, expressed
in AS454 E. coli cells and assayed for enzymatic activity
using SOD activity gels and a cytochrome C reduction
assay. Cu/ZnSODs are inhibitable with millimolar concen-
trations of H,O, and sodium diethyldithiocarbamate
(DDC) [9,10]. This characteristic can be exploited in a
polyacrylamide gel system to distinguish Cu/ZnSODs
from Fe or Mn co-factored SODs. Over-expression of the
cloned C. burnetii sodC gene by AS454(pREB102) revealed
that Cu/ZnSOD activity was inhibited by 5 mM hydrogen
peroxide (H,O,) but the Mn co-factored E. coli SOD
activity was not. Slight inhibition of the Fe co-factored E.
coli SOD also occurred, which is consistent with H,O,
exposure (Figure 1). DDC, which is known to be a spe-
cific inhibitor of Cu/Zn co-factored SODs, significantly
(p < 0.05) inhibited the activities of both the recombinant
C. burnetii SOD and the control bovine erythrocyte
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Cu/Zn co-factored SOD, but not the Mn or Fe co-
factored SODs (Figure 2). Without inhibitor, the recom-
binant C. burnetii SOD demonstrated similar activity as
the control SOD. In the absence of SOD, the DDC did
lower the baseline absorbance values but did not impact
the ability to determine the nature of the rCbSOD ion
co-factor. These data confirm that CBU1822 indeed en-
codes a typical Cu/ZnSOD. The lack of detection of E.
coli Cu/ZnSOD activity in the lysates from the non-
induced AS454 (pREB102) is indicative of its relatively low
concentration compared to that of Fe and Mn co-factored
SODs [10]. Due to the acidic nature of the environment in
which C. burnetii replicates, we predicted that the C.
burnetii Cu/ZnSOD would be active at low pH. The ac-
tivity of purified recombinant C. burnetii Cu/ZnSOD
was assessed at three different pH values, 5.0, 7.0, and
9.0, using a xanthine/xanthine oxidase reduction of
cytochrome C assay. Activities of superoxide dismutase
enzymes in this assay are determined by their ability to
inhibit the reduction of cytochrome C. SodC was active
at all three pH values (Figures 3 A, B, and C). After
10 minutes there was approximately 45% inhibition of
cytochrome C reduction by SodC at pH 9.0, 40% inhibition
of cytochrome C reduction by SodC at pH 7.0 and 50% in-
hibition of cytochrome C reduction by SodC at pH 5.0.
Taken together these data demonstrate that C. burnetii en-
codes for a copper zinc-dependent SodC, which is active at
a low pH.

1 2 1 2 3
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Figure 1 SOD activity gels. C. burnetii SodC activity was assayed in crude cell extracts of £. coli AS454 carrying C. burnetii sodC (pREB102) loaded
on 12% native-PAGE gels and stained for SodC activity without and in presence of the Cu/ZnSOD inhibitor H,0,. Lanes: 1: E. coli MnSOD (9 ug)
Sigma-Aldrich and FeSOD (2.5 ug) Sigma-Aldrich, 2: 30 pg of E. coli AS454/pREB102 lysate, 3: 30 ug E. coli AS454/pREB102 lysate after 4 h induction with
2% arabinose. - H,O, and + H,0, gels are identical; however, prior to being stained for SOD activity, the + H,0, gel was soaked in 5 mM H,0O, for 1 hr.
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Figure 2 Sodium Diethyldithiocarbamate (DDC) inhibition of SOD activity. To further support the copper-zinc nature of the recombinant C. burnetii
SOD, SOD activity assays were performed in the presence or absence of 1 mM DDC. Results represent the mean and standard deviation of
three independent experiments. Approximately one unit of each SOD was used in the assay. (*) indicates a statistically significant difference
between the 0 mM DDC and 1 mM DDC. Significant differences were determined using an unpaired two-tailed t-test.
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Expression and subcellular localization of C. burnetii SodC
To evaluate the expression of sodC by C. burnetii mono-
specific polyclonal rabbit antiserum was generated against
rSodC. Western blot analysis of C. burnetii whole cells ly-
sates with this antiserum demonstrated cross reactivity
with a single protein of approximately 15-kDa, which is in
agreement with the predicted size of the C. burnetii SodC
(Figure 4, lane 3). The slightly lower molecular weight of
the C. burnetii SodC compared to the rSodC in lane two
is likely due the removal of the approximately 2 kDa signal
sequence during the secretion process and the lack of the
approximately 1 kDa polyhistidine fusion tag present on
the rSodC. The additional bands in lane one of Figure 3
are likely due to antibodies in the polyclonal rabbit anti-
serum raised against residual E. coli proteins still present
in the purified rSodC preparation used to immunize the
rabbit or due to previous environmental exposure of the
rabbits to E. coli. In lane two of Figure 3, the purified
rSodC appears to migrate as two bands, one band visible
at approximately18 kDa which is in line with the predicted
size, and a second band visible at approximately 36 kDa.
The larger 36 kDa band is possibly the result of recombin-
ant protein aggregates that have formed due to the pres-
ence of imidazole in the elution buffer [11]. It is also
possible that the presence of the larger band is due to
antibodies in the polyclonal rabbit antiserum raised
against residual E. coli proteins still present in the
purified rSodC preparation used to immunize the
rabbit or due to previous environmental exposure of
the rabbits to E. coli such as in lane one. Given that
the antibody only reacts with a single band of the right
size in the C. burnetii extract (Figure 4, lane 3), and
the rSodC demonstrates Cu/Zn SOD activity (Figures 1

and 2), we are confident that the 18 kDa band in lane
two of Figure 4 is rSodC. Localization of the C. burne-
tii SodC was achieved using immunoglold transmission
electron microscopy on C. burnetii, Nine Mile, (RSA493)
infected 1929 murine fibroblast cells. C. burnetii SodC was
shown to localize primarily towards the outer membrane
and appears even to be excreted into the phagolysosome
(Figure 5). Immunogold transmission electron microscopy
was carried out on non-infected 1929 murine fibroblasts
as well and demonstrated no immunogold labelling with
the rabbit anti-rSodC antibody (data not shown).

Complementation of an E. coli sodC mutant with
recombinant C. burnetii SodC

The lack of a well-established genetics system for C.
burnetii requires the use of heterologous cloning to assess
C. burnetii gene function. pREB102 was transformed into
an E. coli sodC mutant that was previously demonstrated
to be highly susceptible to H,O, killing in stationary phase
[8]. The ability of the recombinant SodC to compliment
an E. coli sodC mutant was assessed by comparing sensi-
tivities to exogenously added H,O,. When exposed to
2 mM H,0, the wild type (AN387) strain was sensitive
and the sodC mutant (AS454) strain was highly sensitive
to killing during the onset of stationary phase. Cells be-
came resistant to H,O, once again approximately 3 h later
(Figure 6). This observation is in agreement with what
Strohmeier-Gort et al. had previously reported for these
strains [8]. Strain AS545 complemented with pREB102,
when induced with 2% arabinose, demonstrated resistance
to H,O, killing similar to the wild type strain. Growth
rates for all three strains were similar (data not shown).
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Figure 3 Effect of pH on CuZnSOD acitivity. Purified recombinant C. burnetii CuZnSOD was assayed for its ability to inhibit the reduction of
cytochrome c at pH 5.0, (A); pH 7.0, (B); and pH 9.0, (C). Open circles represent the reduction of cytochrome C in the absence of SOD. Closed
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Discussion

There is mounting evidence that demonstrates the import-
ance of Cu/ZnSOD enzymes in bacterial protection against
oxidative killing. In fact, inactivation of the sodC gene has
been found to cause attenuation of virulence in a wide
variety of pathogenic bacteria [8,12-15]. The potential

importance of a Cu/ZnSOD for the intracellular survival
of C. burnetii is apparent by the obligate intracellular na-
ture of this pathogen. In an effort to begin to characterize
the potential role of this enzyme in C. burnetii intracellu-
lar survival a 570-bp region containing the signal sequence
of the C. burnetii sodC gene was PCR amplified, cloned
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Figure 4 Western blot analysis of C. burnetii cell lysate. C. burnetii whole
cell lysates were probed with polyclonal rabbit antiserum against rSodC.
The polyclonal rabbit sera reacted with an approximately 18-kDa
antigen in TOP10pREB102 induced with 2% arabinose (lane 1), purified
rSodC (lane 2), and C. burnetii Nine Mile phase | cell lysates (lane 3).

into pBAD-TOPO, and expressed as a fusion protein in
TOP10 E. coli cells. The copper-zinc nature of this SOD
was demonstrated by its inhibition by DDC and H,O,
using xanthine oxidase and native PAGE as demonstrated
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for other bacterial Cu/ZnSOD enzymes [10,16,17]. Several
previously characterized Cu/ZnSOD enzymes contain sig-
nal sequences and were demonstrated to localize to the
periplasmic space [10,14,15,18] leading to the hypothesis
that these enzymes aid in the detoxification of superoxide
(O3) produced by the host. The observations that the C.
burnetii SodC is expressed by C. burnetii and localizes to-
wards the periphery supports the hypothesis that this en-
zyme functions in a low pH environment and may play a
role in protecting C. burnetii from exogenously produced
reactive oxygen intermediates.

It has been well established that C. burnetii is an acido-
phile [19-21] and although the cytoplasmic pH of the
organism remains near neutral [22], the periplasmic
space is presumably acidic. Therefore, we hypothesized
that a periplasmically localized Cu/ZnSOD in C. burnetii
would be active at low pH to defend the organism from
phagocyte derived O;. To test this hypothesis, the ability
of purified, recombinant C. burnetii Cu/ZnSOD to inhibit
cytochrome C reduction at low pH was determined. The
recombinant Cu/ZnSOD did retain activity at a pH of 5.0
suggesting that indeed this enzyme could function in the
periplasmic space and protect C. burnetii from host de-
rived O,. Interestingly, unlike acid phosphatase and
catalase activity previously demonstrated for C. burnetii, we
were not able to detect optimal enzymatic activity at any of
the three pH values tested for the CuZnSOD. Maximal
catalase activity was detected at pH 7.0 with much lower
activity detected at pH 4.5, whereas optimum acid phos-
phatase activity was observed at pH 5.0 and significantly
decreased as the pH was raised [1,3]. Bovine Cu/ZnSOD
for example has been shown to retain activity in 8.0 M urea

C. burnetii >

Cu/ZnSOD

are visible inside of a phagolysosome-like compartment. Bar=0.1 um.
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Figure 5 Immunogold electron microscopy of C. burnetii. Image shows localization of the C. burnetii Cu/ZnSOD. Several Cu/ZnSOD excreting C. burnetii
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Figure 6 Complementation of £. coli sodC mutant. £. coli AS454 (Ec sodC-) with C. burnetii sodC (Cb sodC) under induced (+) and uninduced (-)
conditions. Percent survival was determined after treatment with 2 mM H,0, at 45 min intervals and compared to wild-type E. coli AN387 (Ec wr).
The symbols and error bars represent the averages and standard deviations of three replicates.
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or 2% SDS and exhibit essentially constant activity over the
pH range 5.0-9.5 [23-25]. However, E. coli Cu/ZnSOD is
very thermolabile and sensitive to pH [10]. Thus, whether
or not C. burnetii Cu/ZnSOD does have a pH optimum re-
quires further study, but our data clearly demonstrates that
this enzyme is active at low pH.

Standard methods such as targeted gene disruption,
antibiotic selection and growth on axenic media used to
manipulate free living bacteria have not been readily avail-
able for C. burnetii. Although the genetic transformation
of C. burnetii was first reported in 1996 [26] and later in
2009 [27] along with the ability to grow C. burnetii axenic
media [28], performing targeted mutagenesis remains
challenging. This inability to readily manipulate C. burnetii
genetically has led to the use of heterologous cloning as a
means to study the organism’s genes and regulatory func-
tions. C. burnetii genes such as dnaj, era, pyrB, sdhCDAB,
icd, rnc, and SodA/SodB were used to successfully comple-
ment paralogous gene mutations in E. coli [2,29-34]. To
test functional expression of the C. burnetii Cu/ZnSOD,
pREB102 was transformed into an E. coli sodC mutant
(AS454) that was previously demonstrated to be highly
susceptible to H,O, killing in stationary phase [8]. Over
expression of the C. burnetii sodC restored resistance of
the E. coli sodC mutant to H,O, killing to wild type levels.
Immunoblot analysis confirmed that expression of C.
burnetii sodC in AS454 was achieved only upon induction,
suggesting that the restored resistance of the complemen-
ted mutant was not due to an artifact of pPREB102 or some
unknown factor (data not shown). This data suggests that
this enzyme does possess antioxidant properties and
supports the hypothesis that this enzyme may play a
role in C. burnetii intracellular survival in an oxidative
stress environment.

Conclusions

In conclusion, we have demonstrated that C. burnetii
does express a Cu/ZnSOD that is functional at low pH,
which appears to be excreted, and was able to restore
H,O, resistance in an E. coli sodC mutant. These studies
provide the framework to evaluate the role that C. bur-
netii SodC plays in intracellular survival. To address this
issue, the potential for regulation of this enzyme during
oxidative stress and/or by RpoS is currently under inves-
tigation, which should provide insight about the possible
role of this enzyme in a developmental life cycle and
virulence.

Methods

Bacterial strains, plasmids, media, and growth conditions
Bacterial strains (C. burnetii, and E. coli) and plasmids
used in this study are listed in Table 1. Luria-Bertani
(LB) medium was purchased from Difco Laboratories
(Detroit, Mich.) E. coli bacteria were cultured aerobically

Table 1 List of bacterial strains and plasmids

Strain or Description Reference
plasmid (s) or source
C. burnetii Nine mile, phase I, RSA 493

E. coli

DH5a Invitrogen
TOP10 Invitrogen
AN387 F~, rpsL, gal ®)

AS454 AN387, sodC:spec 8)
Plasmids

pBAD-TOPO TA cloning vector Ap' Invitrogen
pREB102 pBAD-TOPO with 570 bp Cburnetii This work

sodC insert
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at 37°C. Antibiotics, when required, were incorporated
into the culture media or plates at the following concen-
trations: ampicillin, 100 mg/liter; carbenicillin, 50 mg/liter,
and chloramphenicol, 20 mg/liter.

Cloning, expression, and purification of rCbSodC

PCR amplification of C. burnetii sodC was performed in a
Biometra UNO-Thermoblock (Biometra, Tampa, Fla.).
Primers FBB1.2 (5-GGAAATATTTTGAGGCGCGTC-3)
and RBB1.2 (5-ACACGCAATTCGCGCACC-3) (Sigma
Genosys, Woodlands, Tx.) were used at final concentra-
tions of 0.2 mM to amplify a 570 bp fragment including
the signal sequence of the C. burnetii sodC gene. Amplifi-
cation consisted of an initial 2 min denaturation step at
94°C followed by 30 cycles of 30 s at 94°C, 30 s at 60°C,
and 1 min at 70°C. PCR products were visualized in a 1.2%
agarose gel. The PCR product was then directly cloned into
pBAD-TOPO (Invitrogen) and transformed into TOP10
cells. Restriction digests were performed on the constructs
with BstEII to determine which clones contained the insert
in the correct orientation. Plasmid DNA from one of those
constructs was sent to the Gene Technologies Laboratory
at Texas A & M University for sequencing. This construct
was designated pREB102.

Expression of the recombinant SodC peptide was done
using the pBAD-TOPO expression system (Invitrogen).
Briefly, 10 ml of an overnight culture of TOP10 (pREB102)
was inoculated into 1 liter of LB broth containing ampicil-
lin (100 pg/ml) and incubated until an ODggy of 0.5 was
reached. Induction was achieved by adding 9 ml of 2% ara-
binose and incubating the culture for 4 hr at 37°C on a
shaker. Cultures were centrifuged at 5,000 rpm for
10 min. Purification of the recombinant SodC protein was
then done using a 1 ml HiTrap nickel affinity column
(Amersham Biosciences, Piscataway, NJ.). Briefly, the
pellet was resuspended in 50 ml of binding buffer
(0.02 M NaPQy, 0.5 M NaCl) pH 7.4 containing 50 mg
of lysozyme and incubated on ice for 30 min. Cells
were lysed using a French press and then centrifuged
for 15 min at 5,000 rpm. Twenty milliliters of the
French press lysate was filtered through a 0.8/0.45 pm
syringe filter and loaded onto the HiTrap nickel col-
umn using a parastaltic pump. The column was washed
with 8 ml of binding buffer and then washed with
4.5 ml of wash buffer (binding buffer with 100 mM
imidazole). His-tagged recombinant protein was eluted
using elution buffer (binding buffer with 0.5 M imidazole
and collected in 0.1 ml fractions and frozen at-20°C until
SDS-PAGE and Western blot analysis.

Superoxide dismutase activity gels

SodC activity was visualized using a method previously de-
scribed by Beauchamp et al. [16] incorporating the modifi-
cation of Steinman [17]. Briefly, after electrophoresis on
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12% native PAGE, gels were soaked in a riboflavin solution
(0.028 M TEMED, 2.8 x 10° M riboflavin, 0.036 M KPO,
pH 7.8 for 20 min. at 37°C in the dark followed by soaking
them in 0.2% nitroblue tetrazolium (NBT) for 10 min. at
37°C in the dark. The gels were then illuminated for
approximately 30 min on a transilluminator. SOD ac-
tivity corresponds to achromatic zones in a uniformly
purple background. To identify the copper zinc nature
of the cloned C. burnetii SOD, one of the gels was
soaked in 5 mM hydrogen peroxide (H,O,) for 1 hr prior
to staining.

Superoxide dismutase assay

The copper-zinc nature of the recombinant C. burnetii
SOD was confirmed using a superoxide dismutase assay
kit from Cayman Chemical. The assay is based on the
utilization of tetrazolium salt for the detection of super-
oxide anions generated by xanthine oxidase and hypo-
xanthine. The activity of SODs is determined by their
ability to inhibit the reaction. Approximately one unit of
each SOD was utilized in the assay. One unit is defined
by the amount of SOD that will inhibit the reaction by
approximately 50%. The detection of superoxide dismut-
ase activity was done following the manufacturer’s instruc-
tions. Specific inhibition of the Cu/Zn SOD activity was
achieved by treating the control Cu/Zn SOD and recom-
binant C. burnetii SOD with 1 mM DDC for 15 min. at
room temperature prior to superoxide dismutase activity
detection. Manganese (Mn) and Iron (Fe) co-factored
SODs from Sigma were included to demonstrate the spe-
cificity of DDC for Cu/Zn co-factored SODs. SOD assay
kit sample buffer was used to dissolve and dilute all SODs
and was included in the no SOD control reactions.

pH effect on the activity of recombinant C. burnetii SodC

The activity of the recombinant SodC was determined at
pH 5.0, 7.0, and 9.0 by the method described by Flohe and
Otting [35] with some modifications. Briefly, 10 pg purified
rSodC was added to 50 mM sodium acetate buffer pH 5.0,
50 mM potassium phosphate buffer pH 7.0, or 50 mM
Tris—HCl buffer pH 9.0, respectively, each containing
0.01 mM EDTA. Prior to absorbance readings, 20 uM
cytochrome ¢ from horse heart (Sigma-Aldrich), 4 ul of
25 mM hypoxanthine (Calbiochem) and xanthine oxidase
from bovine milk (Calbiochem). For control reactions, the
hypoxanthine and xanthine oxidase were added in the
presence of the rSodC elution buffer. The amount of
xanthine oxidase added to each buffer system was adjusted
to achieve a reduction rate of approximately 0.0125 ab-
sorbance/min at 550 nm. The final reaction volume was
100 pl per well in 96 well plates. Plates were incubated at
37°C and reduction was monitored for 10 min by measur-
ing absorbance at 30 sec intervals. Inhibition of cyto-
chrome C reduction was determined by dividing the
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absorbance values at 10 minutes with rSodC by the absorb-
ance values at 10 minutes without rSodC and multiplying
by 100.

sodC expression by C. burnetii

Purified recombinant C. burnetii SodC (rSodC) was
combined with the adjuvant Titermax (Sigma) and used
to immunize a rabbit for the production of monospecific
polyclonal antibodies against rSodC. To determine
whether or not a CuZnSOD is expressed by C. burnetii,
C. burnetii cells purified from persistently infected L929
murine fibroblasts or E. coli cells overexpressing rSodC
were suspended in sample buffer (4% SDS, 10% -
mercaptoethanol, 20% glycerol, and 0.25 M Tris, pH 8.0),
boiled for 10 min, separated on 15% SDS-PAGE gels, and
transferred to nitrocellulose membranes (Biorad, Hercules,
CA). Membranes were blocked with 10% nonfat powdered
milk and 0.2% Tween-20 in Tris buffered saline, pH 7.4.
Blots were then incubated with rabbit antiserum to rSodC
at a 1:2,000 dilution followed by incubation with goat anti-
rabbit IgG horseradish peroxidase conjugated secondary
antibody at a 1:5,000 dilution (Biorad). The blots were de-
veloped using an enhanced chemiluminescence system
with luminol substrate (Amersham Biosciences). Images
were visualized using Kodak Scientific Imaging film.

Immunogold transmission electron microscopy

1929 murine fibroblast cells persistently infected with C.
burnetii, Nine Mile, (RSA493), were fixed and processed
as described previously [36]. Cells were fixed with 0.2%
picric acid, 1% glutaraldehyde, 4% paraformaldehyde,
0.5 mM CaCl, in phosphate buffered saline (PBS, 140 mM
NaCl,, 3 mM KCl,, 2 mM KPO,, 10 mM NaPOy,), pH 7.4
for 3 hr at room temperature while turning end over end.
Cells were spun at 10,000 x g for 10 min and the pellet
was incubated for 1 hr at 4°C after resuspension in 50 mM
NH,CI, 250 mM sucrose, PBS. Cells were then centrifuged
at 10,0000 x g for 10 min. Ammonium chloride was re-
moved by resuspending the pellet in 3.5% sucrose, 0.5 mM
CaCl, in PBS pH 7.4 overnight at 4°C. Phosphate buffers
were removed by washing 4 x 15 min with 0.1 M maleate
buffer, with 3.5% sucrose, pH 6.5. Post fixation staining
was carried out with 2% uranyl acetate in sucrose/maleate
buffer, pH 6.0 for 2 hr at 0°C protected from light. Dehy-
dration and infiltration into LR White was carried out a
room temperature in 45 min. steps of: 50% acetone, 70%
acetone, 90% acetone, 1:1 100% ethanol/LR White, 3:7
100% ethanol/LR White, 100% LR White, then fresh LR
White overnight, second change of fresh LR White before
samples were enclosed in gelatin capsules (Electron Mi-
croscopy Scences, Hatfield, PA). Polymerization was car-
ried out at 50°C for 24 hr. Silver to gold sections were
collected on 300 mesh nickel grids (Electron Microscopy
Sciences). All staining was carried out in the BioWave
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microwave (Ted Pella, Inc., Redding, CA.) at 30°C. Block-
ing (2% nomal goat sea), primary (rabbit anti-sodC, 1:25
dilution in 2% normal goat sera), and secondary antibody
incubations (goat anti-mouse conjugate 12 nm gold parti-
cles, (Jackson ImmunoResearch laboratories, West Grove,
PA.), diluted 1:40 in 2% normal goat sera were done in
three cycles of 1 min on, 1 min off at full power. Primary
antibody was washed three times in Tris buffered Saline
(TBS, 5 mM Tris, 15 mM NaCl,), pH 7.4, for one min per
wash. Secondary antibody was washed in TBS pH 8.4, 3 x
1 min. Secondary antibody was fixed in 1% glutaraldehyde
for 1 min with gentle agitation at room temperature. Fixed
grids were briefly washed with water then stained with 2%
uranyl acetate in the microwave for six seconds at full
power. Grids were briefly washed in water with gentle agi-
tation at room temperature. Grids were viewed with a
JEOL operated at 100 kV.

Complementation of E. coli sodC null mutant
Complementation studies were carried out using an E. coli
s0odC mutant (AS454) previously demonstrated to be more
sensitive to killing by exogenous H,O, than the wild type
parental strain (AN387) during early stationary phase [8].
To genetically complement the sodC mutant, plasmid
pREB102 was electroporated into AS454. Transformants
were selected on LB agar plates containing ampicillin
(150 pg/ml). AN387, AS454, and AS454 (pREB102) were
grown in LB broth or LB broth containing ampicillin
(100 pg/ml) overnight at 37°C on a shaker, subcultured
into fresh media at a starting ODgop of = 0.01. In order
achieve expression of sodC, AS454 and AS454 (pREB102)
were either induced or not induced with 2% arabinose
4 hr prior to H,O, challenge. At 45 min intervals aliquots
for H,O, challenges were removed, diluted 1:10,000 in
PBS, and challenged with 2 mM H,O, for 30 min while
shaking at 37°C as previously described [8]. Survival was
determined as the percentage of colony counts (cfu/mL)
from surviving bacteria after HyO, treatment and from
untreated bacteria by plating on LB plates with or without
ampicillin (150 pg/ml).
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