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Abstract: Entering the new millennium, nobody believed that there was the possibility of discovering
a new cellular type. Nevertheless, telocytes (TCs) were described as a novel kind of interstitial cell.
Ubiquitously distributed in the extracellular matrix of any tissue, TCs are regarded as cells with
telopodes involved in intercellular communication by direct homo- and heterocellular junctions or by
extracellular vesicle (EVs) release. Their discovery has aroused the interest of many research groups
worldwide, and many researchers regard them as potentially regenerative cells. Given the experience
of our laboratory, where these cells were first described, we review the evidence supporting the fact
that TCs release EVs, and discuss alternative hypotheses about their future implications.
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1. Introduction

Living cells communicate between themselves by different modalities, which are represented
by cell junctions and the cell secretion of different soluble factors. The latter can act in an autocrine,
paracrine, or endocrine manner. The last decade brought in a new evolutionary concept—that cellular
communication can also be mediated by the transfer of genetic information [1]. This genetic transfer
(e.g., mRNA, microRNA, long non-coding RNA, and occasionally genomic DNA) is intermediated
by extracellular vesicles generated and released by prokaryotic and eukaryotic cells [2]. Extracellular
vesicles (EVs) are nano-sized membrane-surrounded structures originating in the endosomal
compartment or shed from the plasma membrane. Classified by their size and mechanisms of
biogenesis, EVs can, in general, be categorized into three classes: (a) exosomes; (b) ectosomes or
shedding microvesicles; and (c) apoptotic bodies. Exosomes were discovered almost three decades ago
as “cell debris”, and have an endocytic origin and variable diameters between 30 and 100 nm [3,4].
Ectosomes (also known as microvesicles) have diameters between 100 and 1000 nm and form by
direct budding from the plasma membrane [5]. Apoptotic bodies (50 nm–2 µm) are released by
cells undergoing programmed cell death via outward blebbing of the apoptotic cell membrane.
EVs carry receptors, bioactive lipids, proteins, and, most importantly, nucleic acids, such as mRNA,
microRNA (miRNA), and non-coding RNAs. Their membrane composition (marker proteins) is
particular according to the vesicle type, and their content is also variable [4,6] Telocytes are no
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exception to this mode of communication, being able to release and receive different types of vesicles
(Figure 1).
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Figure 1. Schematic diagram of EVs transfer between cells, particularized for telocytes (TCs). Cells 
produce three types of extracellular vesicles (EVs): exosomes, ectosomes, and apoptotic bodies. The 
vesicles may be endocytosed, might fuse directly with the plasma membrane, or determine biological 
processes by ligand–receptor interactions on the cell surface. Arrows are indicative of the fact that the 
transfer is bidirectional and that EVs can shuttle between cells to communicate and exchange genetic 
material. Depending on the site of biogenesis, EVs’ heterogeneity, size, and composition are slightly 
different. ncRNA: non-coding RNA; miRNA: microRNA, MVB: multivesicular body. 

The presence of EVs has been reported in interstitial spaces and in all biological fluids, including 
plasma, saliva, urine, cerebrospinal fluid, sputum, bronchial lavage fluid, malignant ascites, amniotic 
fluid, breast milk, and seminal fluid [7–10]. EVs were also detected as a heterogeneous population in 
the secretome from cells cultured in vitro, in conditioned media [11,12]. Protected by their external 
lipid bilayer, the content of EVs targets the recipient cells by three different mechanisms: direct fusion 
with their plasma membranes, receptor-mediated uptake, and endocytosis (phagocytosis) [13–15]. 

EVs have been found to have important roles in many important physiological processes, such 
as stem cell upkeep [16,17], tissue repair [18], immune surveillance [19] and vascular hemostasis [20]. 
Moreover, EVs seem to play an important role in several diseases, such as cancer, neurodegenerative, 
cardiovascular, and metabolic diseases [21–26]. 

Nowadays, the importance EVs in research is highlighted by the immense interest of the 
extracellular vesicle community, since EVs are considered as biomarkers, and also as drug, vaccine, 
and gene vector delivery tools in human diseases [27–29]. 

In this review, we summarize the recent research on the characterization of a new cell population 
within the stromal compartment, namely the telocytes (TCs). We also highlight the fact that TCs are 
able to release EVs, and we assess the research being carried out and the current progress examining 
the roles of these cells as communicating devices. 

2. Telocytes as a Particular Type of Interstitial Cells 

Telocytes (TCs) represent a recently-discovered cell population of the connective tissue (the 
stromal compartment forming the supportive framework of any organ) [30,31]. According to 

Figure 1. Schematic diagram of EVs transfer between cells, particularized for telocytes (TCs).
Cells produce three types of extracellular vesicles (EVs): exosomes, ectosomes, and apoptotic bodies.
The vesicles may be endocytosed, might fuse directly with the plasma membrane, or determine
biological processes by ligand–receptor interactions on the cell surface. Arrows are indicative of the fact
that the transfer is bidirectional and that EVs can shuttle between cells to communicate and exchange
genetic material. Depending on the site of biogenesis, EVs’ heterogeneity, size, and composition are
slightly different. ncRNA: non-coding RNA; miRNA: microRNA; MVB: multivesicular body.

The presence of EVs has been reported in interstitial spaces and in all biological fluids, including
plasma, saliva, urine, cerebrospinal fluid, sputum, bronchial lavage fluid, malignant ascites, amniotic
fluid, breast milk, and seminal fluid [7–10]. EVs were also detected as a heterogeneous population in
the secretome from cells cultured in vitro, in conditioned media [11,12]. Protected by their external
lipid bilayer, the content of EVs targets the recipient cells by three different mechanisms: direct fusion
with their plasma membranes, receptor-mediated uptake, and endocytosis (phagocytosis) [13–15].

EVs have been found to have important roles in many important physiological processes, such
as stem cell upkeep [16,17], tissue repair [18], immune surveillance [19] and vascular hemostasis [20].
Moreover, EVs seem to play an important role in several diseases, such as cancer, neurodegenerative,
cardiovascular, and metabolic diseases [21–26].

Nowadays, the importance EVs in research is highlighted by the immense interest of the
extracellular vesicle community, since EVs are considered as biomarkers, and also as drug, vaccine,
and gene vector delivery tools in human diseases [27–29].

In this review, we summarize the recent research on the characterization of a new cell population
within the stromal compartment, namely the telocytes (TCs). We also highlight the fact that TCs are
able to release EVs, and we assess the research being carried out and the current progress examining
the roles of these cells as communicating devices.

2. Telocytes as a Particular Type of Interstitial Cells

Telocytes (TCs) represent a recently-discovered cell population of the connective tissue (the
stromal compartment forming the supportive framework of any organ) [30,31]. According to Popescu,
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their discoverer, the simplest description of TCs is cells with telopodes [32]. Telopodes are extremely
long extensions (tens to hundreds of micrometers) which arise from the small cell body of TCs
(Figure 2) [33]. Telopodes are characterized by a moniliform appearance in the bidimensional plane
of ultrathin sections, with dilated portions called podoms and very thin regions named podomers
(Figure 3). A three-dimensional perspective changes the first impression of telopodes, which appear
to be long, flattened irregular veils and tubular structures with uneven caliber, because of irregular
dilations corresponding to the podoms (Figure 4) [34,35].
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Figure 2. Transmission electron microscopy (TEM) of a telocyte in human non-pregnant myometrium. 
(A) Two cellular bodies (TC1, TC2) can be easily seen in the interstitial space between smooth 
myocytes. One telocyte has long, convoluting telopodes (TC2). Scale bar = 5 μm; (B) Higher 
magnification detail of the area marked with a dotted square in A. Note that the heterochromatin is 
mostly confined to the periphery of the nucleus, but is also dispersed throughout. Scale bar = 1.5 μm. 
TC: telocyte; Tp: telopode; SMC: smooth muscle cell; m: mitochondrion; rER: rough endoplasmic 
reticulum; N: nucleus; arrowhead: exosome; Ect: ectosome; arrow: cellular junction. 

 
Figure 3. Transmission electron microscopy (TEM) of a telocyte in human non-pregnant myometrium. 
Image obtained by concatenation of seven microscopic fields. The telocyte exhibits a spindle-shape 
cell body, from where two extremely long telopodes are emerging. In the close proximity, other 
telopodes with tortuous trajectories contact the central telocyte by homo-cellular junctions, creating 
an intricate network. One can also observe numerous extracellular vesicles (arrowheads: exosomes; 
Ect: ectosomes) either shedding from or surrounding the telopodes. Arrows: cellular junctions; Tp(s) 
= telopode(s). Scale bar = 5 μm. 

Figure 2. Transmission electron microscopy (TEM) of a telocyte in human non-pregnant myometrium.
(A) Two cellular bodies (TC1, TC2) can be easily seen in the interstitial space between smooth myocytes.
One telocyte has long, convoluting telopodes (TC2). Scale bar = 5 µm; (B) Higher magnification detail
of the area marked with a dotted square in (A). Note that the heterochromatin is mostly confined to
the periphery of the nucleus, but is also dispersed throughout. Scale bar = 1.5 µm. TC: telocyte;
Tp: telopode; SMC: smooth muscle cell; m: mitochondrion; rER: rough endoplasmic reticulum;
N: nucleus; arrowhead: exosome; Ect: ectosome; arrow: cellular junction.
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Figure 3. Transmission electron microscopy (TEM) of a telocyte in human non-pregnant myometrium.
Image obtained by concatenation of seven microscopic fields. The telocyte exhibits a spindle-shape cell
body, from where two extremely long telopodes are emerging. In the close proximity, other telopodes
with tortuous trajectories contact the central telocyte by homo-cellular junctions, creating an intricate
network. One can also observe numerous extracellular vesicles (arrowheads: exosomes; Ect: ectosomes)
either shedding from or surrounding the telopodes. Arrows: cellular junctions; Tp(s) = telopode(s).
Scale bar = 5 µm.
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Figure 4. Focused ion beam scanning electron microscope (FIB-SEM) tomography. Three-dimensional 
reconstruction details of telopodes (Tps), from different viewing angles. (A) From this angle, four 
telopodes can be seen; (B) Tp2 has enlarged segments (podoms) alternating with slender segments; 
(C) Telopode with anfractuous contour. Extracellular vesicles appear in purple. Reproduced with 
permission from [35]. 

Telocytes are nowadays seen as connecting devices, since numerous papers describe their ability 
to interact with themselves by homocellular junctions and with other cell types by heterocellular 
junctions (for details see review [36]). In addition, TCs also contact—directly or at a certain distance—
important surrounding structures, such as blood vessels, nerve endings, smooth muscles, glandular 
elements, and covering epithelia [37,38]. 

Telocytes are functionally distinct from mesenchymal stem cells and fibroblasts with regard to 
their gene expression profile, and might have specific roles in cell signaling, tissue homeostasis, 
remodeling, and angiogenesis [39]. Chromosomal analysis also revealed that specific genes in lung 
TCs are different from those of pneumocytes, airway cells, mesenchymal stem cells, and lymphocytes 
[40–44]. Recently, TCs were characterized with the aid of various omics technologies such as mass 
spectrometry and multiplexed assays [45–47]. Several proteins were found to be up-regulated in TCs’ 
proteome—e.g., mitochondrial thioredoxin-dependent peroxide reductase, protein disulphide-
isomerase A3, myosin-14, myosin-10, filamin-B, sodium/potassium-transporting ATPase subunit α-
1 and keratin, type II cytoskeletal 1. These proteins are also regularly found in the proteome of 
mammalian extracellular vesicles, and therefore it has been proposed that TCs are involved in 
extracellular environment homeostasis, possibly influencing stem cell niches and leading to cell 
differentiation [47]. 

Figure 4. Focused ion beam scanning electron microscope (FIB-SEM) tomography. Three-dimensional
reconstruction details of telopodes (Tps), from different viewing angles. (A) From this angle,
four telopodes can be seen; (B) Tp2 has enlarged segments (podoms) alternating with slender segments;
(C) Telopode with anfractuous contour. Extracellular vesicles appear in purple. Reproduced with
permission from [35].

Telocytes are nowadays seen as connecting devices, since numerous papers describe their ability to
interact with themselves by homocellular junctions and with other cell types by heterocellular junctions
(for details see review [36]). In addition, TCs also contact—directly or at a certain distance—important
surrounding structures, such as blood vessels, nerve endings, smooth muscles, glandular elements,
and covering epithelia [37,38].

Telocytes are functionally distinct from mesenchymal stem cells and fibroblasts with regard to
their gene expression profile, and might have specific roles in cell signaling, tissue homeostasis,
remodeling, and angiogenesis [39]. Chromosomal analysis also revealed that specific genes in
lung TCs are different from those of pneumocytes, airway cells, mesenchymal stem cells, and
lymphocytes [40–44]. Recently, TCs were characterized with the aid of various omics technologies
such as mass spectrometry and multiplexed assays [45–47]. Several proteins were found to be
up-regulated in TCs’ proteome—e.g., mitochondrial thioredoxin-dependent peroxide reductase,
protein disulphide-isomerase A3, myosin-14, myosin-10, filamin-B, sodium/potassium-transporting
ATPase subunit α-1 and keratin, type II cytoskeletal 1. These proteins are also regularly found in
the proteome of mammalian extracellular vesicles, and therefore it has been proposed that TCs are
involved in extracellular environment homeostasis, possibly influencing stem cell niches and leading
to cell differentiation [47].
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3. Telocytes and the Horizontal Transfer of Information

Telocytes—formerly known as interstitial Cajal-like cells (ICLC)—were shown to release EVs.
Mandache et al. showed the presence of such vesicles soon after the first detailed ultrastructural
characterization of ICLC [48]. Since that early study, which suggested the existence of a paracrine
and/or juxtacrine intercellular mutual modulation between these special cells and the surrounding
cells, much interest was dedicated to this type of intercellular communication. In the stromal space of
different organs, other studies revealed the existence of EVs derived from the cellular body of TCs
and also from their telopodes [38,49–51]. In addition, a morphometric comparison was performed
between extracellular membranous vesicles (exosomes and shedding microvesicles) found in human
non-pregnant and pregnant uterus [52]. In these two physiological conditions, exosome release seemed
to be more pronounced in pregnancy, suggesting a horizontal transfer of important macromolecules
among neighboring cells [52]. Telocytes have been shown to be implicated in a variety of human
pathologies (as reviewed in [53]), where they are significantly reduced and altered. Therefore, we can
consider that the release of EVs might also be affected in this context through altered intercellular
signaling. Additionally, as based on their different immunohistochemical subtypes (suggesting
organ-specific phenotypes of TCs [54,55]), their local and distal microcommunication mechanisms
might also be diverse, including the content of the EVs.

The release of EVs by TCs has also been demonstrated in vitro with the aid of electron microscopy
and electron tomography. Fertig et al. described that cardiac TCs in culture release exosomes
(45 ± 8 nm), ectosomes (128 ± 28 nm), and multivesicular cargos (MVC; 1 ± 0.4 µm) [56]. To gain
insight into the third dimension of the arborescent conformation of TCs, focused ion beam scanning
electron microscope (FIB-SEM) tomography was recently used to highlight human skin TCs. The 3D
analysis of the reconstructed ultrastructural volume depicted the biological fine structure of some
EVs (diameter 438.6 ± 149.1 nm, n = 30) at high resolution (Figure 5) [35]. The budding phenomenon
was caught in progress, and represents valuable data about the three-dimensional morphology of
telopodes and their capability to furnish extracellular vesicles at nanoscale dimensions (Figure 6).
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It is known that the transfer of microRNA is mediated by EVs, which function as effective 
delivery vehicles. In fact, it has been shown that EVs are enriched in miRNAs and that secreted 
miRNAs are protected by the membrane structures of EVs [57,58]. Several miRNAs were reported as 
associated or not with TCs. In an effort to identify a biomarker for the identification of TCs, it has 
been demonstrated that the lack of miR-193 expression differentiates microdissected TCs from other 
stromal cells (3T3 fibroblasts) in cell culture. Moreover, they do not express any of the cardiomyocyte-
specific miRNAs (miRs) (miR-1, 133a, or 208a). Instead, various levels of miR-21, 22, 29, and 199a-5p 
were detected, in accordance with TCs’ mesenchymal origin [59]. 

Recently, additional evidence has accumulated (in vivo and in vitro) about the importance of 
EVs in accomplishing the role of TCs in intercellular communication. Cismasiu and Popescu 
demonstrated the microRNA exchange between TCs and cardiac stem cells in cell cultures, when the 
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soon after acute myocardial infarction [60]. Several experiments also reported an association between 
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infarcted myocardium [45,61,62]. This might also explain why cardiac TCs were found to be 
significantly increased in exercised heart, where they might contribute to cardiac renewal and 
regeneration [63]. The participation of TCs in angiogenesis is likely possible, since human lung 
telocytes could produce soluble factors such as VEGF and EGF, and were shown to induce the 
proliferation of pulmonary endothelial cells in cell cultures [64]. In a recent study, Li et al. [65] showed 
that both vascular TCs and vascular smooth muscle cells express miR-24, but the expression level of 
miR-24 is higher in TCs. Whether or not this miRNA is a cargo of the EVs and directly responsible 
for the effect remains to be established, but what is certain is that the supernatant of TCs in culture 
promoted the proliferation of vascular smooth muscle cells. Some other soluble factors in the 
supernatant—e.g., cytokines, including VEGF (vascular endothelial growth factor), IL-6 (interleukin-
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It is known that the transfer of microRNA is mediated by EVs, which function as effective
delivery vehicles. In fact, it has been shown that EVs are enriched in miRNAs and that secreted
miRNAs are protected by the membrane structures of EVs [57,58]. Several miRNAs were reported as
associated or not with TCs. In an effort to identify a biomarker for the identification of TCs, it has been
demonstrated that the lack of miR-193 expression differentiates microdissected TCs from other stromal
cells (3T3 fibroblasts) in cell culture. Moreover, they do not express any of the cardiomyocyte-specific
miRNAs (miRs) (miR-1, 133a, or 208a). Instead, various levels of miR-21, 22, 29, and 199a-5p were
detected, in accordance with TCs’ mesenchymal origin [59].

Recently, additional evidence has accumulated (in vivo and in vitro) about the importance of EVs
in accomplishing the role of TCs in intercellular communication. Cismasiu and Popescu demonstrated
the microRNA exchange between TCs and cardiac stem cells in cell cultures, when the EVs released
from TCs are taken up by cardiac stem cells via endocytosis [60]. Furthermore, they demonstrated that
cardiac stem cells deliver microRNA-loaded EVs to TCs, and suggested that “there is a continuous,
post-transcriptional regulatory signal back and forth between TCs and stem cells” [60]. Several miRNAs
with pro-angiopoietic potential (miR-126, miR-130, let-7e, and miR-100) were found to be expressed by
TCs, and, moreover, the level of expression is increased in the myocardium soon after acute myocardial
infarction [60]. Several experiments also reported an association between TCs and cardiac stem cells,
stressing the contribution of TCs to neo-angiogenesis, especially in the infarcted myocardium [45,61,62].
This might also explain why cardiac TCs were found to be significantly increased in exercised heart,
where they might contribute to cardiac renewal and regeneration [63]. The participation of TCs in
angiogenesis is likely possible, since human lung telocytes could produce soluble factors such as
VEGF and EGF, and were shown to induce the proliferation of pulmonary endothelial cells in cell
cultures [64]. In a recent study, Li et al. [65] showed that both vascular TCs and vascular smooth
muscle cells express miR-24, but the expression level of miR-24 is higher in TCs. Whether or not this
miRNA is a cargo of the EVs and directly responsible for the effect remains to be established, but
what is certain is that the supernatant of TCs in culture promoted the proliferation of vascular smooth
muscle cells. Some other soluble factors in the supernatant—e.g., cytokines, including VEGF (vascular
endothelial growth factor), IL-6 (interleukin-6), MIP-1α (macrophage inflammatory protein 1-α) might
contribute to the repair process, too [45].

4. Future Directions

On one hand, there is a current growing interest in EVs is based on their physiological role in
intercellular communication (especially in stem cell biology, where they can maintain the stemness
capacity intervening in tissue repair) [66,67], and in pathological conditions (particularly in the
pre-metastatic niche formation, cancer progression, and in the spread of numerous pathogens) [68–70].
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On the other hand, the discovery of a new cell type known as telocytes, which are able to release
EVs and interfere upon stem cells in their niches and upon other different somatic cells, allows us
to speculate that they need special attention in the future. We need to learn more about the cargo
in the EVs released by TCs, and if these vesicles are different in physiological and pathological
conditions. Besides releasing vesicles, TCs were shown to have endocytic properties in the enteric
wall (colon) and to participate in the uptake and storage of endogenous or exogenous particles
in the skin and periodontal tissues (e.g., hemosiderin, melanin, and some components of dental
amalgam). Therefore, Diaz-Flores et al. suggested that TCs are the principal non-macrophage cells
with phagocytic-like properties [71]. As a consequence, one can consider that TCs represent important
players in intercellular communication in between cells, locally or at a distance. A lot of information
must be gathered before deciphering their precise role in physiological processes. In addition, TCs
seem to change phenotype according to organ location [72–75], a phenomenon possibly explained
by the different cargo in EVs and their shuttle trafficking between different cell types in response
to diverse stimuli. Deciphering whether the content of EVs released/received by TCs is different
according to location will open promising perspectives for controlling tissue homeostasis. It is possible
that in the future we will be able to control the formation of telopodes [76], as well as the use of EVs as
therapeutic potential agents.

As mentioned above, several hypotheses were raised about the functional roles of TCs;
however, hardly any have been addressed to date. Although there are several papers discussing
the interrelation between TCs and stem cells, the existing information about the involvement of TCs in
cancer is scarce. Only two papers address this topic. Mirancea et al. [77] showed that TCs in normal
dermis of the skin establish more heterocellular junctions in comparison with TCs of tumor dermis
of basal cell carcinoma and squamous cell carcinoma, concluding that by decreasing their number of
junctions, TCs might induce changes in intercellular communication into the peritumoral stroma and,
consequently, into the whole tumor mass. Mou et al. stated that in situ “TCs communicate with breast
cancer cells as well as other stromal cells, and might serve as a bridge that directly links the adjacent
cells through membrane-to-membrane contact”, while in experimental conditions of a reconstituted
breast cancer “TCs and other breast stromal cells facilitated the formation of typical nest structure,
promoted the proliferation of breast cancer cells, and inhibited their apoptosis” [78].

In conclusion, TCs are cells capable of acting as integrators of many intercellular functions;
however, there is a long way ahead until their functional capabilities are elucidated. Moreover, the
specific cargo for their EVs must be characterized, and the biodistribution of these vesicles also remains
to be established. TCs are seen by different groups as future targets with implications for regenerative
medicine [79–81].
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