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The p53 gene has the highest mutation frequency in tumors, and its inactivation can lead to
malignant transformation, such as cell cycle arrest and apoptotic inhibition. Persistent
high-risk human papillomavirus (HR-HPV) infection is the leading cause of cervical cancer.
P53 was inactivated by HPV oncoprotein E6, promoting abnormal cell proliferation and
carcinogenesis. To study the treatment of cervical intraepithelial neoplasia (CIN) and
cervical cancer by restoring p53 expression and inactivating HPV oncoprotein, and to
verify the effectiveness of nano drugs based on nucleic acid delivery in cancer treatment,
we developed poly (beta-amino ester)537, to form biocompatible and degradable
nanoparticles with plasmids (expressing p53 and targeting E7). In vitro and in vivo
experiments show that nanoparticles have low toxicity and high transfection efficiency.
Nanoparticles inhibited the growth of xenograft tumors and successfully reversed HPV
transgenic mice’s cervical intraepithelial neoplasia. Our work suggests that the restoration
of p53 expression and the inactivation of HPV16 E7 are essential for blocking the
development of cervical cancer. This study provides new insights into the precise
treatment of HPV-related cervical lesions.
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BACKGROUND

P53, the most commonly mutated gene in human cancer, is essential for maintaining the stability of
the human genome (Blandino and Di Agostino, 2018; Mendiratta et al., 2021). Its loss is a key event
in the development of various tumors (Klco and Mullighan, 2021; Rudin et al., 2021). P53 plays an
important role in protecting cells from malignant transformation by inducing cell cycle arrest or
apoptosis (Zhou et al., 2019). In recent years, researchers have tried to reactivate inactivated p53. In
spontaneous p53 mutant lymphoma and sarcoma models, the restored expression of wild-type p53
resulted in tumor growth arrest (Wang et al., 2011). Activating p53-dependent apoptosis in zebrafish
inhibited angiogenesis (Zhou et al., 2016). Restoring p53 expression induced cycle arrest and
apoptosis in non-small cell lung cancer (NSCLC) (Lu et al., 2017). Therefore, restoring p53
expression is a promising method in a variety of tumors.
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Cervical cancer is the second most common cancer in less
developed regions (Ferlay et al., 2015). Each year, 570,000 women
are diagnosed with cervical cancer and 311,000 women die from
this disease, which seriously affects women’s health worldwide
(Bray et al., 2018; Arbyn et al., 2020). Persistent high-risk human
papillomavirus (HR-HPV) infection is the leading cause of
cervical cancer (Francis et al., 2010). Oncoproteins E6 and E7
are key factors in HPV-associated carcinogenesis. P53 was also
inactivated by E6, promoting abnormal cell proliferation and
carcinogenesis (Moody and Laimins, 2010; Taghizadeh et al.,
2019). The HPV oncogenes E6 and E7 and their related host genes
(such as p53) are key targets for prevention and treatment in the
long process from HPV infection to CIN and ultimately cervical
cancer (Pal and Kundu, 2019).

To date, surgical treatment is mainly used for CIN and early
cervical cancer, however, it can’t solve the problem of virus
infection and subsequent changes in key cell-signaling
pathways. In recent years, an increasing number of gene-
targeted therapies based on recombinant plasmids have been
reported (Dominguez et al., 2016; Evers et al., 2016; Pahle and
Walther, 2016; Zhang et al., 2016; Almeida et al., 2019). The
CRISPR/Cas9 system is a powerful tool for the prevention and
treatment of HPV infection due to its simple composition,
convenient operation, high mutation efficiency, and low cost
(Chen et al., 2019; Sharma et al., 2021; Song et al., 2021).
Furthermore, it is necessary to develop a suitable vector to
ensure the successful delivery of recombinant plasmids (Xiao
et al., 2014; Xu et al., 2021). Clinical applications of viral vectors
are limited due to safety issues (Zhou et al., 2017; Li et al., 2021;
Ma et al., 2021). Non-viral vectors such as cationic liposomes
(Wang et al., 2021), polyethyleneimine (PEI) (Radmanesh et al.,
2021), and poly (β-amino ester) (PBAE) (Zhu et al., 2018; Zhang
et al., 2021) are widely used due to their low toxicity and
nonimmune characteristics. PBAEs have good biocompatibility
and biodegradability. These materials can compress plasmids into
nanosized composite particles, protect plasmids from nuclease
degradation, and effectively deliver plasmids to cells (Tzeng et al.,
2013; Guerrero-Cázares et al., 2014; Kim et al., 2016; Kaczmarek
et al., 2021).

Therefore, to study the treatment of CIN and cervical cancer
by restoring p53 expression and inactivating HPV oncoprotein,
and to verify the effectiveness of nano drugs based on nucleic acid
delivery in cancer treatment, we attempted to reverse cervical
intraepithelial neoplasia by vaginal injection of nanoparticles
composed of PBAE537 and plasmids (wild-type p53
expression and HPV16 E7 targeting), providing a new idea
strategy for precise treatment of cervical cancer.

METHODS

Materials and Synthesis of Poly
(Beta-Amino ester)537
We purchased 1,5-pentanediol diacrylate (B5) from Aladdin
(B136168, N184580, China), 3-amino-1-propanol (S3) from
TCI (A0438, Japan), and 1-(3-aminopropyl)-4-
methylpiperazine (E7) from ALFA Aesar (L04876, Ward Hill,

MA). Branched poly(ethyleneimine) (water-free, 25 kDa, bPEI)
was purchased from Sigma-Aldrich (408727, USA). Cationic
liposome HP was purchased from Roche (6366236, USA). The
overexpression (OE) p53 (PCDH-CMV-MCS-EF1-RFP-T2A-
Puro) plasmids contained CMV promoter-expressing human
p53 or mouse p53. The plasmids pDest-EGFP-N1 (plasmid
31796, GFP) and pAAV-CAG-RFP (plasmid 22910, RFP) were
purchased from Addgene. The HPV16 E7-targeted CRISPR
plasmid sequence was ATATTGTAATGGGCTCTGTC CGG.
Plasmid DNA was prepared using an endotoxin-free plasmid
extraction kit (Omega, USA) and stored at −80°C. PBAE537 was
synthesized in a 2-step procedure (Figure 1) as follows: 1,5-
pentanediol diacrylate (B5) was mixed with 3-amino-1-propanol
(S3) and stirred on a magnetic stir plate at 90°C for 24 h with 2 ml
of DMSO at a 1.2:1 M ratio. After stirring, 1-(3-aminopropyl)-4-
methyl piperazine (E7) was added to the mixture (10-fold), and
the mixture was stirred for 30 s, incubated at room temperature
for 1 h, and precipitated in anhydrous diethyl ether to remove the
solvent and monomers. The polymer was washed three times
with ether and kept under a vacuum with desiccant for 48 h to
remove the final traces of ether. The polymer poly (beta-amino
ester) 537 was then divided into smaller volumes and stored at
−20°C with desiccant until needed. For further use, the polymer
was dissolved in DMSO at 100 mg/ml and stored at −20°C.

Preparation and Characterization of Poly
(Beta-Amino ester)537 and Plasmid
Polyplex Nanoparticles
PBAE537 (2 μg/L) was diluted with 25 mM sodium acetate (pH 5)
into 200 ng of plasmid at mass ratios of 5:1, 10:1, 20:1, 40:1, 60:1,
80:1, and 100:1. PBAE537 and plasmid were mixed gently in
20 µL of NaAc for 30 s and incubated at room temperature for at
least 20 min. The particle size and zeta potential of the
nanoparticle (NP) were measured by laser light scattering
(DB-525 Zeta PALS; Brookhaven Instruments, Holtsville,
NY, USA).

Transmission Electron Microscopy Imaging
Nanoparticles composed of PBAE537/GFP expressing plasmid
(hereinafter referred to as the GFP) were deposited on porous
carbon film carbon-coated copper mesh and characterized by
TEM (JEM-1230, Japan).

Cells and Animals
The cervical cancer cell lines SiHa, HeLa, CaSki, MS751, C33A,
and HEK293 were purchased from ATCC and passaged in our
laboratory. The S12 cell line is an immortalized human cervical
keratinocyte cell line, and it was a generous gift from Professor
Kenneth Raj (Health Protection Agency) with permission from
the original owner, Professor Margaret Stanley (Bechtold et al.,
2003). SiHa, HeLa, MS751, C33A, and HEK293 cells were
cultured in DMEM supplemented with 10% fetal bovine
serum (FBS). CaSki cells were grown in RPMI-1640
supplemented with 10% FBS. S12 cells were maintained in a 1:
1 mixture of DMEM/F12 (Gibco) and Ham’s F12 (Gibco)
medium supplemented with 10% FBS, 24.3 mg/ml adenine,
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0.5 mg/ml hydrocortisone, 8.4 ng/ml cholera toxin, 5 mg/ml
insulin, and 10 ng/ml epidermal growth factor (EGF). All cells
were cultured in a humidified incubator with 5% CO2 at 37°C.

C57BL/6 female mice were purchased from Beijing HFK
Bioscience, and K14-HPV16 transgenic mice were provided by
the National Cancer Institute (NCI) Mouse Repository
(Frederick, MD, USA). All mice were housed at the SPF
animal laboratory in the Experimental Animal Center, Tongji
Medical College, Huazhong University of Science and
Technology (HUST, Wuhan, China) and managed by
regulations of Chinese law. The research was approved by the
Experimental Animal Ethics Committee of Tongji Medical
College of Huazhong University of Science and Technology.

Biocompatibility of Nanoparticles In Vitro
and In Vivo
PBAE537 solution (diluted with 25 mM sodium acetate at pH 5)
was added to the green fluorescent protein (GFP) plasmid at mass
ratios of 20:1, 40:1, 60:1, and 80:1. SiHa, HeLa, CaSki, and S12
cells were inoculated in 96-well plates with the same number of
cells per cell line in each well. Each well was transfected with
100 ng GFP. bPEI was diluted with PBS to 1 mg/mL as a positive
control. The cells were treated with nanoparticles for 4 h and then
cultured in a complete medium. Cell viability was defined as the
metabolic activity retained in each well after transfection,
measured at various time points using a Cell Counting Kit-8
(CCK-8, Dojindo) according to the manufacturer’s instructions.

One hundred microliters of nanoparticles (PBAE537/GFP 60:
1, 100 µg plasmid) were injected into the thigh muscles of C57BL/
6 mice once a day for 3 days. The same volume of bPEI/GFP

(bPEI/GFP 3:1, 100 μg) solution was used as a positive control.
Thigh muscles and other organs were collected on the 4th and
7th days after the initial injection. PBAE537/GFP or bPEI/GFP
(20 µL NPs containing 10 μg GFP) solution was pipetted into the
vaginas of C57BL/6 mice once a day for 20 days. The cervix and
other organs were then collected and fixed with
paraformaldehyde. Toxicity was evaluated by hematoxylin-
eosin (H&E) staining.

Transfection Efficiency
All cells were inoculated in sterile 6-well plates at a density of
40–70% at transfection. The nanoparticles formed by
PBAE537 and GFP at different mass ratios (20:1, 40:1, 60:1,
80:1) were dissolved in 100 μL of 25 mM pH 5 sodium acetate
and incubated at room temperature for 20 min before being
added to plate wells containing 900 μL of serum-free medium.
After incubation for 4 h, the nanoparticles were replaced with a
complete medium. The bPEI/GFP complex (mass ratio 3:1,
2 μg GFP) was mixed in PBS for 20 min and then added to
the cells.

Four-week-old C57BL/6 mice were injected with 20 μL of
nanoparticles into the vagina once a day for 3 days. The
vaginas were rinsed with PBS 3 times before each
administration to remove vaginal mucus. Three days after
administration, the mice were euthanized, and the cervix was
separated and frozen into 7 μm sections using Thermo Fisher
Scientific.

Xenograft Experiments
SiHa cells (5×106) were injected subcutaneously into 4-week-old
nude mice. When the tumor grew to nearly 35 mm3, the mice

FIGURE 1 | Synthesis of PBAE537. Synthesis of PBAE537. The PBAE nanomaterial PBAE537 was formed bymixing 1,5-pentanediol diacrylate (B5) with 3-amino-
1-propanol (S3) and stirring at 90°C for 24 h on a magnetic stirring plate and adding 1-(3-aminopropyl)-4-methyl piperazine (E7).

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 8267713

Xiong et al. Nano-Therapy for Cervical Cancer

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


were randomly assigned to four groups. We administered intra-
tumoral injections of 100 μL of NPs coated with 60 μg of plasmid
(PBAE537/plasmid 60:1) every 4 days. Subcutaneous tumors
were collected after the mice were euthanized, and the tumor
size was calculated using the following formula: L × W (Blandino
and Di Agostino, 2018) × 0.5. All experimental protocols were
approved by the Institutional Animal Care and Use Committee of
HUST, and the study was carried out in strict accordance with the
Guidelines for theWelfare of Animals in Experimental Neoplasia.

Transgenic Mouse Experiments
Six-week-old K14-HPV16 transgenic female mice were randomly
divided into four groups for vaginal administration. After
anesthesia with 4% chloral hydrate, the vagina was irrigated
3 times with PBS. PBAE537 and 10 μg plasmid with a final
volume of 20 μL (PBAE537/plasmid 60:1) were injected into
the mouse vaginas once a day for 20 days. The drugged mice
were placed in the supine position for at least 20 min while
anesthetized to prevent the drug from flowing out of the vagina
due to pressure. After 20 days of treatment, the mice were
euthanized, and the cervix was dissected and fixed with 4%
paraformaldehyde. The cervical tissues of the mice were
paraffin-embedded, sectionalized, and stained with HE and
IHC staining.

Immunohistochemical Staining
Paraffin-embedded sections (5 μm) were stained with H and E
and immunohistochemical (IHC) staining. The slides were
incubated overnight at 4°C with mouse anti-HPV16 E7 (1:50,
orb10573, Biorbyt), rabbit anti-P16 (1:100, A0262, Abclonal),
rabbit anti-RB1 (1:100, 10048-2-Ig, Proteintech), rabbit anti-
Ki67 (1:100, ab16667, Abcam), rabbit anti-CDK2 (1:400,
ab6538, Abcam), rabbit anti-E2F1 (1:200,12171-1-Ap,
Proteintech), rabbit anti-TP53 (1:150, A16989, Abclonal),
rabbit anti-14-3-3 Sigma (1:50, A1026, Abclonal) and rabbit
anti-P21 (1:150, A11454, Abclonal) primary antibodies.
Diaminobenzidine (DAB) was used for antibody detection.
Images were photographed from three randomly selected fields
using cellSens Dimension (version 1.8.1, Olympus). Staining
was assigned a score using a semiquantitative six category
grading system: 0, no staining; 1,1%to 10% staining; 2, 11% to
25% staining; 3, 26% to 50% staining; 4, 51% to 75% staining;
and 5, >75% staining. Staining intensity was assigned a score
using a semiquantitative four-category grading system: 0, no
staining; 1, weak staining; 2, moderate staining; and 3, strong
staining. Every core was assessed individually and the mean of
three readings was calculated for every slide. The staining score
was determined separately by two experts under the same
conditions.

Western Blot
Cells were lysed on ice for 30 min in lysis buffer containing
150 mmol/L NaCl, 1% sodium deoxycholate, 50 mmol/L Tris,
1% Triton X-100, 0.1% SDS, and a protease inhibitor cocktail.
The primary antibodies used were rabbit anti-GAPDH (1:
1,000, AM1020a, Abgent) and mouse anti-Cas9 (1:200,
14,697, CST).

Statistical Analysis
All quantitative data are expressed as the mean ± SEM of at least
three parallel measurements. One-way ANOVA was used for
statistical analysis, and GraphPad Prism software was used for
p < 0.05.

RESULTS

Synthesis and Characterization of
Nanoparticles
Poly β-amino ester 537 (PBAE537) was synthesized from 1,5-
pentanediol diacrylate (B5), 3-amino-1-propanol (S3) and 1-(3-
amino-propyl)-4-methyl piperazine (E7) as monomers. The
polymer was named PBAE537 according to the three
monomers of the main chain (B), side chain (S), and end cap
(E). The synthetic scheme of PBAE537 is shown in Figure 1.
Nanoparticles were prepared at different mass ratios of PBAE537
to GFP (5:1, 10:1, 20:1, 40:1, 80:1, and 100:1), and the plasmid
encapsulation ability of PBAE537 was determined by agar gel
electrophoresis. When the mass ratio of PBAE537 to GFP reached
40:1, most of the plasmids were encapsulated by PBAE537, and
only a few plasmids migrated. When the mass ratio was increased
to 60:1, the plasmid was almost completely encapsulated by
PBAE537 and remained in the spot pores of the agarose gel
without migration (Figure 2A). The dynamic light scattering
particle size range shows that the NPs and different mass ratios
were 146.1–354.5 nm, and the electric potential range was
14.5–30.6 mV (Figures 2B,C). The NP size was the minimum
when the mass ratio was 40:1, suggesting that the interaction
between PBAE537 and the GFP plasmid was closest to this mass

FIGURE 2 | Characterization of NPs. (A) Agarose gel (2%)
electrophoresis of NPs composed of PBAE537 and GFP at different mass
ratios. (B) Measurement of particle sizes of NPs with different mass ratios
(PBAE537:GFP) and (C) zeta potentials by dynamic light scattering. The
data represent the mean ± SEM (n = 3 per group).
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FIGURE 3 | Efficiency of NPs taken up by cell lines and the mouse cervix. (A) Representative images of green fluorescent protein expression in SiHa, HeLa, S12,
CaSki, MS751, C33A, and HEK293 cells after 72 h of nanoparticle (PBAE537/GFP 60:1) treatment. (B) Flow cytometry was used to determine the efficiency of
nanoparticles transfected with PBAE537/GFP at different weight ratios (20:1, 40:1, 60:1, and, 80:1) and HP/GFP (1:1) for the expression of the green fluorescent protein.
bPEI is a cationic polymer with transfection ability used as a control. (C) Representative images of red fluorescent protein expression in the cervix of the C57BL/6
mice treated with nanoparticles composed of different weight ratios of PBAE537 to RFP (10 μg RFP, once daily, for 3 days) compared with the control cervix treated with
sodium acetate alone without nanoparticles. Scale, 20 μm.

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 8267715

Xiong et al. Nano-Therapy for Cervical Cancer

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


FIGURE 4 | Toxicity analysis of nanoparticles in cell lines andmouse organs. (A–D) The toxicity of PBAE537/GFP nanoparticles with different mass ratios (20:1, 40:
(Continued )
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ratio. Transmission electron microscopy (TEM) showed that the
shape of NPs composed of PBAE537 and GFP was spherical and
uniform (Supplementary Figures S1A,B). These results indicate
that our synthesized material PBAE537 can wrap nucleic acid to
form nanoparticles.

Uptake of Nanoparticles in vitro and in vivo
The efficacy of gene therapy depends on the uptake rate of
nanoparticles by targeted cells and the expression rate of
delivered genes. In vitro, nanoparticles formed by GFP plasmids
and PBAE537were transfected into seven cell lines (SiHa, HeLa, S12,
CaSki, MS751, C33A, and HEK293). Transfection efficiency was
evaluated by fluorescence microscopy and flow cytometry (Figures
3A,B, Supplementary Figure S5). The transfection efficiency of
nanoparticles with the samemass ratio was different in each cell line.
In general, the transfection efficiency was highest when the mass
ratio of PBAE537 to GFP was 60:1. In some cell lines, such as SiHa,
HeLa, S12, and MS751, the efficiency was even higher than that of
bPEI (a cationic polymer with transfection ability) and the
commercial transfection reagent HP. Transmission electron
microscopy imaging of HEK293 cells transfected with
nanoparticles revealed the presence of nanoparticles in
cytoplasmic vesicles, indicating successful uptake of our
nanoparticles into the cells (Supplementary Figure S2).

In vivo, nanoparticles composed of PBAE537 and red
fluorescent protein (RFP) plasmid were injected vaginally into
female C57BL/6 mice, and the uptake of the nanoparticles in vivo
was assessed by the intensity of red fluorescence (Figure 3C). To
explore the experimental conditions to achieve the highest
transfection efficiency in vivo, we adjusted the following
conditions: the mass ratio of PBAE537 to GFP, the dose of
transfected plasmid, and the detection time point after
treatment (Supplementary Figure S3). The results showed
that the transfection efficiency was the highest when the mass
ratio was 60:1, the plasmid dose was 10 μg every 3 days, and
detection occurred on the sixth day after treatment. The
expression of fluorescent protein suggested that PBAE537 can
efficiently deliver nucleic acid in vivo and in vitro.

Toxicity Test of Nanoparticles
To evaluate the toxicity of nanoparticles, we transfected SiHa,
HeLa, CaSki, and S12 cells with nanoparticles at PBAE537/GFP
mass ratios of 20:1, 40:1, 60:1, and 80:1. Cell viability was detected
by CCK-8 assays at 24, 48, and 72 h after transfection (Figures
4A–D). When the mass ratio of PBAE537 to GFP was as high as
80:1, growth inhibition was most significant but less than that in
the positive control group (bPEI/GFP 3:1). The PBAE537 showed
low cytotoxicity in vitro.

To further detect the toxicity of nanoparticles in vivo, we
reviewed the literature (Anderson et al., 2004) and conducted
maximum dose toxicity tests with 200 and 300 μg plasmids for
vaginal administration and intra-tumoral administration,
respectively. Nanoparticles consisting of PBAE537 or bPEI
coated with 100 μg of GFP were injected into the vaginas of
C57BL/6 mice daily for 20 days, and toxicity was detected on the
11th and 21st days after initiation of vaginal administration.
Compared with the untreated control group, the bPEI/GFP
treatment group exhibited significant increases in the number
of inflammatory necroses in the cervix and pyknosis of the liver
nucleus, while no similar changes were observed in the
nanoparticle (PBAE546/GFP 60:1)-treated group (Figure 4E).
Low toxicity was observed in the heart, spleen, lungs, or kidneys.
Nanoparticles consisting of PBAE537 or bPEI coated with 100 μg
GFP were injected daily into the thigh muscles of C57BL/6 mice
for 3 days, and toxicity was detected on the 4th and 7th days after
initiation injection. In the bPEI/GFP treatment group, local
injection caused large-scale necrotic inflammatory infiltration
of muscular tissue, while no similar changes were observed in
the 60:1 group treated with PBAE546/GFP (Figure 4F). Low
toxicity was observed in other important organs (Supplementary
Figure S4). The above data indicate our nanoparticles’ safety and
low toxicity, which are necessary characteristics for
pharmaceutical use.

Efficacy of Nanoparticles (Poly (Beta-Amino
ester)537/Therapeutic Plasmids) on
Cervical Cancer Cells In Vitro and In Vivo
Based on the clear understanding of the toxicity of PBAE537, we
further studied the therapeutic effect of PBAE537/therapeutic
plasmid in vivo and in vitro. As shown in Figures 5A−D,
targeting HPV16 E7 decreased the viability of HPV16-
positive SiHa and CaSki cells but did not significantly inhibit
the growth of HPV18-positive HeLa and HPV-negative C33A
cells. The p53 overexpression group and the group with the
combination targeting HPV16 E7 and over-expressing p53
showed significant growth inhibition in all four cell lines. To
observe the inhibitory effect of NPs on tumor growth in vivo,
SiHa cells were inoculated subcutaneously into nude mice.
When xenograft tumors grew to about 35 mm (Klco and
Mullighan, 2021), NPs were used for intra-tumoral injection.
The grouping of the experiment was the same as that of the
in vitro experiment, including the single target of HPV16 E7,
p53, and double target of both. Compared with the control
group, SiHa subcutaneous tumor growth and volume were
significantly reduced in the three groups of targeted therapy

FIGURE 4 | 1, 60:1, and 80:1) was detected in (A) SiHa, (B) HeLa, (C) S12, and (D) CaSki cells. bPEI/GFP (3:1) was used as a positive control. The time points of
cytotoxicity were 24, 48, and 72 h after transfection. Each time point represents the mean ± SEM (n = 4). (E)HE staining of paraffin sections of cervical and liver tissues of
mice that received continuous vaginal injections of PBAE537/GFP (60:1) and bPEI GFP (3:1) for 10 and 20 days. Mice were injected intravaginally with 10 μL
nanoparticles containing 10 μg plasmids. Vaginal treatment was performed once daily for 10 or 20 days. Significant damage was observed only in the bPEI group, but
less in the PBAE537 group. (F) Nanoparticles composed of PBAE537/GFP (60:1) and bPEI/GFP (3:1) were injected into the thigh muscles of mice for 3 consecutive
days. Representative images of HE staining in paraffin sections of thigh muscle tissue and liver tissue of mice at 4 and 7 days after the initial injection. One hundred
microliters of plasmids containing 100 μg nanoparticles were injected into the thigh muscles of mice every day. Scale, 20 μm.
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mice (Figures 5E,F). Growth inhibition of cervical cancer cell
lines and subcutaneous tumors confirmed the therapeutic effect
of our PBAE537 nanoparticles.

Effects of Nanoparticles Targeting
HPV16 E7 and p53 on Protein Expression in
HPV16 Transgenic Mice
Encouraged by the above results, we next performed cervical
in situ therapy with nanoparticles in HPV16 transgenic mice
(Medler et al., 2018), a cervical precancerous lesion model.
After 20 days of continuous treatment, the malignant
phenotype of the cervical epithelium in the mice treated
with the three targeted nanoparticles was significantly
reversed. The proliferation of epithelial cells was inhibited,

the basal cells were arranged neatly, and the nuclear volume
was reduced. The cervical epithelial cells of the untreated
control mice were hyperplastic. Immunohistochemistry was
used to detect the expression levels of HPV16 E7 and p53 and
related proteins. The expression of the target molecule
HPV16 E7 and the HR-HPV substitute marker P16 was
significantly reduced in all three targeted administration
groups, while the expression of the tumor suppressor gene
RB, which interacts with the E7 oncoprotein, was restored.
The levels of p53 and its downstream molecules P21 and 14-3-
3 Sigma, which are responsible for cell cycle regulation, were
increased to a certain extent in both targeted activation
groups. The expression of the proliferation-related protein
Ki67, cell cycle-related protein CDK2, transcription factor
E2F1, and apoptosis suppressor gene Bcl2 was significantly

FIGURE 5 | Growth inhibition of cervical cancer cells by PBAE537–therapeutic plasmid polyplex NPs in vitro and in vivo. (A–C) The CCK-8 method was used to
detect the cell viability of (A) SiHa, (B) HeLa, (C) S12, and (D) CaSki cells at 24, 48, and 72 h after treatment with nanoparticles (PBAE537/plasmid 60:1) composed of
PBAE537 and three targeted plasmids (HPV16 E7 inactivation group, p53 overexpression group, and 1:1 mixture of the two plasmids group). (E, F) SiHa cells were
injected subcutaneously into the right hind limb of BALB/c-nu mice. When the transplanted tumor grew to approximately 35 mm3, NPs consisting of PBAE537 and
the CRISPR/Cas9 plasmid targeting HPV16 E7 and p53 were injected intratumorally (60:1). NPs were injected as a volume of 100 µL containing 60 μg of plasmid once
every 4 days. (E) The subcutaneously formed tumors were photographed, and (F) the estimated sizes were measured after treatment with NPs. One-way ANOVA was
used for statistical analysis, *: p < 0.05, **: p < 0.01, ***: p < 0.001, N.S.: no significant difference.
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inhibited (Figure 6). These results suggest that our
nanoparticles targeting HPV16 E7 or supplementation with
wild-type p53 can effectively reduce the expression of
oncoproteins, restore the expression of suppressed tumor
suppressor factors, and affect the related signaling
pathways, thereby reversing the malignant phenotype of
cervical epithelium in HPV16 transgenic mice.

DISCUSSION

In this study, we developed the nanomaterial PBAE537, which
showed low biotoxicity, degradability, and high transfection
efficiency (Figures 1, 2). In addition to the size of the
nanoparticles, the electric potential of the nanoparticles and
the characteristics of the transfected cells also affect the

FIGURE 6 | Therapeutic effects of nanoparticles composed of PBAE537 and therapeutic plasmids targeting HPV16 E7 and p53 K14-HPV16 transgenic mice. (A,
B)Representative images of H and E and IHC staining and (C) comparison of the cervical epithelium between untreated HPV16 transgenic mice (control group) and three
other targeted groups treated with nanoparticles composed of PBAE537 and plasmids (60:1, 10 μg of plasmids per day for 20 days continuously. IHC staining indicators
included HPV16 E7, P16, RB1, E2F1, p53, 14-3-3 Sigma, P21, Ki67, andCDK2. Scale bars, 20 μm. The data represent the mean ± SEM (n = 3). One-way ANOVA
was used for statistical analysis, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001, N.S.: no significant difference.
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transfection efficiency. These all affect the ability of
nanoparticles to encapsulate and release plasmids. We
believe that PBAEs are suitable for vaginal usage because
the acidic environment of the vagina is conducive to the
stability of PBAEs (Li et al., 2020). Vaginal usage can
significantly reduce the amount of PBAEs in the blood and
thus significantly reduce side effects such as hemolysis.
Toxicity is the greatest challenge in nanomaterial therapy,
so we chose to fully evaluate the toxicity of PBAE537 by
muscular and vaginal delivery forms. The effects on other
organs can be observed after nanoparticles enter the
circulatory system by muscle administration. Vaginal
delivery has the advantage of mimicking what occurs in
clinical trials, although a small fraction of the drug may
flow out of the vagina. PBAE537 showed very low
biotoxicity (Figure 4), which is very promising for the
further clinical transformation of drugs. In addition, PBAEs
are highly plastic, and higher efficacy and fewer side effects can
be achieved by optimizing their structure (Liu et al., 2019). The
delivery efficiency of PBA537 was satisfactory (Figure 3).
These optimizations deserve further study.

We selected therapeutic targets. The E6 and E7 viral
oncogenes encode oncoproteins that disrupt cell cycle
regulation and enhance cell proliferation by inactivating the
tumor suppressors p53 and RB, respectively (Longworth and
Laimins, 2004; Strickland and Vande Pol, 2016; Ghanaat et al.,
2021). P53 inactivation mediated by E6 or p53 mutations may
be a key step in the development of cervical cancer (Scheffner
et al., 1991; Park et al., 1994). Previous studies have used
CRISPR/Cas viral vectors to specifically inactivate E6 or E7 in
tumor cells, but these therapies are limited by the safety of viral
vectors and the specificity of oncogene sequences of different
HPV types. Their downstream tumor suppressors, such as p53,
avoid the complexity of the single guide RNA design.
Dysfunction of the tumor suppressor p53 is closely related
to insensitivity to treatment and recurrence of many malignant
tumors, including cervical cancer.

An increasing number of studies have shown that the
recovery of p53 activity can induce cell cycle arrest and
apoptosis, eliminate chemoradiotherapy resistance, and
inhibit the growth of tumor cells (Einbond et al., 2021;
Granados-López et al., 2021). Therefore, activating wild-
type p53 and restoring p53 function seems to be an
attractive therapeutic strategy (Merlin et al., 2021).
Pharmacological activation of the p53 pathway has been
reported for the treatment of skin cancer, neuroblastoma,
prostate cancer, and other tumors (Loureiro et al., 2020;
Patiño-Morales et al., 2020; Won and Seo, 2020; Zafar et al.,
2021). Some studies directly restore p53 expression to achieve
the purpose of tumor treatment (Blandino and Di Agostino,
2018; Kong et al., 2019; Hu et al., 2021). Reactivation of p53 has
also been considered as a potential treatment in cervical cancer
(Zhao et al., 2021). Thus, in this study, we chose to focus on the
efficacy of restoring p53 expression and targeted knockout of
E7 in a mouse model of cervical precancerous lesions. The
CRISPR/Cas9 recombinant plasmid expressing wild-type p53

and the overexpression plasmid targeting HPV16 E7 and their
mixtures were delivered by PBAE537.

Nucleic acid delivery by PBAE has been used in many kinds of
tumors (Zhang et al., 2020; Qu et al., 2020; Niu et al., 2020;
Kaczmarek et al., 2018). For example, it was reported that the
transfection efficiency of PBAE in B16-F10 cells was 65%
(Routkevitch et al., 2020). Our PBAE537 showed comparable
transfection efficiency and low toxicity to previous studies, both
in vitro and in vivo. In this study, growth inhibition of cervical
cancer cell lines (SiHa (HPV16 positive), HeLa (HPV18 positive),
CaSki (HPV16 positive, HPV18 positive), and C33A (HPV
negative)) and subcutaneous tumors confirmed the therapeutic
effect of our PBAE537 nanoparticles (Figure 5). Restoration of
p53 expression in cervical vaginal epithelium of HPV transgenic
mice reversed the phenotype of CIN (Figure 6). Restored p53
expression increases apoptosis of epithelial cells, and when
apoptosis increases, E7 and Rb expression may be affected.
We hypothesized that p53 overexpression may restore RB
expression through some pathways. Previous reports have
confirmed the cross-talk between p53 and Rb/E2F signaling
mechanisms (Rajasekaran et al., 2017). We can see that E7 is
still expressed in the basal region. The expression of E7 is derived
from exogenous HPV and is relatively independent, so it remains
expressed in the basal region even with increased apoptosis.

Our work suggests that the restoration of p53 expression and
the inactivation of HPV16 E7 are essential for blocking the
development of cervical cancer. Restoration of p53 activity can
be extended to a variety of tumors, and the PBAE537 delivery
vector can also be used for the treatment of other genes and
tumors. Restoration of p53 expression can also be applied to other
tumors caused by p53 inactivation, such as lung cancer,
hematological malignancies, etc., becoming a promising broad-
spectrum targeted anticancer drug.
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