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Ewa Jankowska-Steifer

Received: 28 July 2022

Accepted: 17 August 2022

Published: 23 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Advances of Epigenetic Biomarkers and Epigenome Editing for
Early Diagnosis in Breast Cancer
Pourya Sarvari 1,† , Pouya Sarvari 2,† , Ivonne Ramírez-Díaz 2,3 , Frouzandeh Mahjoubi 1 and Karla Rubio 2,4,*

1 Department of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology,
Tehran P.O. Box 14965/161, Iran

2 International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP),
Puebla 72160, Mexico

3 Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP),
Puebla 72410, Mexico

4 Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
* Correspondence: karla.rubio@usalud.edu.mx
† These authors contributed equally to this work.

Abstract: Epigenetic modifications are known to regulate cell phenotype during cancer progression,
including breast cancer. Unlike genetic alterations, changes in the epigenome are reversible, thus
potentially reversed by epi-drugs. Breast cancer, the most common cause of cancer death worldwide
in women, encompasses multiple histopathological and molecular subtypes. Several lines of evidence
demonstrated distortion of the epigenetic landscape in breast cancer. Interestingly, mammary cells
isolated from breast cancer patients and cultured ex vivo maintained the tumorigenic phenotype and
exhibited aberrant epigenetic modifications. Recent studies indicated that the therapeutic efficiency
for breast cancer regimens has increased over time, resulting in reduced mortality. Future medical
treatment for breast cancer patients, however, will likely depend upon a better understanding
of epigenetic modifications. The present review aims to outline different epigenetic mechanisms
including DNA methylation, histone modifications, and ncRNAs with their impact on breast cancer,
as well as to discuss studies highlighting the central role of epigenetic mechanisms in breast cancer
pathogenesis. We propose new research areas that may facilitate locus-specific epigenome editing as
breast cancer therapeutics.

Keywords: breast cancer; epi-drugs; epigenetic editing; epigenome

1. Breast Cancer Pathogenesis and Subtypes (Histological and Molecular)

Breast cancer (BC) is the most prevalent cancer in women worldwide. Over the
years, the global cancer landscape has changed, and the incidence of BC has been rising.
According to the global cancer statistics 2020 from the international agency for research
on cancer (IARC), and the American Cancer Society (ACS), breast cancer has overtaken
lung cancer worldwide as the most diagnosed cancer, with an estimated 2.3 million new
cases (11.7%), followed by lung (11.4%), colorectal (10.0%), prostate (7.3%), and stomach
(5.6%) cancers [1]. BC is a multifactorial and complex disease that arises from the interplay
between genetic factors and epigenetic dysregulation of critical genes modulating important
cellular pathways [2]. BC can occur in any cell of the mammary glands with a wide range
of histopathological and morphological subtypes, which often determine the BC treatment
strategies. Generally, BC is either a non-invasive, which is confined to the epithelial
components of the breast (carcinoma in situ), or invasive carcinoma. The invasive or
infiltrative carcinoma is often caused by the abnormal proliferation of neoplastic cells in
breast tissue, leading to the penetration of tumor cells from the duct wall into the stroma [3].
Both invasive and in situ carcinoma can be further classified as ductal and lobular, based
on the site from which the tumor is originated. In ductal carcinoma in situ (DCIS), the

Int. J. Mol. Sci. 2022, 23, 9521. https://doi.org/10.3390/ijms23179521 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23179521
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6166-4199
https://orcid.org/0000-0003-2119-920X
https://orcid.org/0000-0002-3761-6445
https://doi.org/10.3390/ijms23179521
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23179521?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 9521 2 of 32

epithelial cells lining the milk ducts become cancerous, but they do not spread into the
surrounding breast tissue. On the other hand, when DCIS spread through the wall of the
ducts into the nearby breast tissue it is known as invasive ductal carcinoma (IDC), which
is the most common form of invasive breast cancer. Lobular carcinoma in situ (LCIS) is a
rare type of breast cancer in which cancer cells form in the milk-producing glands (lobules),
but they are confined within the breast lobules [4]. However, when cancer cells break out
of the lobules to spread through the lymph nodes and other parts of the body, it is known
as invasive or infiltrating lobular carcinoma (ILC) (Figure 1). In addition to the four main
cancer subtypes mentioned above (DCIS, IDC, LCIS, ILC), there are two other main BC
subtypes, including inflammatory breast cancer (IBC) and metastatic breast cancer (MBC).
IBC is an aggressive and fast-growing BC subtype in which cancer cells mostly infiltrate the
skin and lymph vessels of the breast. Meanwhile, in MBC, cancer cells have spread through
other parts of the body such as the liver, lungs, bones, and brain. It is estimated that
metastasis is responsible for almost 90% of cancer-related deaths [5–7], a hallmark ability
of tumor cells to disseminate to distant organs throughout the body [8,9]. Several other
studies have classified more rare subtypes of breast cancer with different behaviors and
prognoses which help better define the characteristics and course of the disease [3,10,11]. It
is worth mentioning that whether the BC is invasive or non-invasive will determine the
patient’s treatment strategies and how they may respond to the treatments. Moreover, in a
few cases, both the invasive and non-invasive BC can be detected in the same specimen,
or a patient can be diagnosed with BC occurring in both breasts at the time of diagnosis.
This form of BC is known as bilateral breast carcinoma (BBC), affecting 2–5% of all breast
malignancies [12].

Despite serious efforts that have been made to assess the metastasis process in breast
cancer in recent years, challenges remain for the diagnosis of breast cancer in the early-
stages [13,14]. Although metastatic breast cancer (MBC) is considered incurable with
currently available therapies, the discovery of new epigenetic biomarkers can lead to BC
detection at early stages. Besides, drugs targeting specific epigenetic aberrations (epi-
drugs) can open new horizons and provide promising tools for new-generation breast
cancer treatment.

On the molecular level, breast cancer is classified into 5 major subtypes, as defined
by proliferation index (Ki-67) and hormone receptors (HR) expression, including estrogen
receptor (ER), progesterone receptors (PR), and human epidermal growth factor receptor
2 (HER2). These 5 subtypes include luminal ER/PR positive (luminal A and luminal
B), HER2 enriched, normal-like, and triple-negative receptors (basal-like) (Figure 1) [15].
Estrogen and progesterone are steroid hormones that have a significant role in regulating
female reproductive and sex organ development. ER is one of the most common biomarkers
used for BC prognosis. According to studies among all the BC subtypes, around 75–85%
of them are ER-positive (ER+), which is less aggressive than ER-negative (ER−) BC [16].
Luminal A is a subtype of BC that is positive for hormone-receptor ER and/or PR, but
negative for HER2 with the low level of Ki-67, whereas luminal B subtype is hormone
receptor-positive (ER+ and/or PR+) and is either HER2 positive or HER2 negative, but
with high levels of Ki-67. Luminal A subtype, however, has a better prognosis and a
higher survival rate compared with the luminal B subtype [17–19]. HER2 or Human
Epidermal Growth factor 2 is a transmembrane protein that functions as a tyrosine kinase
receptor and is located in the epithelial cells of the mammary glands. HER2 enriched breast
cancer subtype is hormone-receptor negative (ER−/PR−) and HER2 positive (HER2+)
with high Ki67 index, incorporating around 20% of all the BC subtypes [20], and has been
considered the subtype with the worst prognosis and lowest survival rate. However, with
the new advances in clinical treatments and therapeutic approaches, it can be handled
more successfully nowadays [21]. Normal-like subtype of breast cancer shares the same
characteristics as those observed in the luminal A subtype, which is hormone receptor-
positive (ER+/PR+), HER2 negative (HER2−), and low levels of Ki-67. Although both
luminal A and normal-like subtypes have a good prognosis (higher survival rate), the
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prognosis for normal-like is, to some kind, worse than that observed in luminal A subtype
(Figure 1) [22]. Triple-negative breast cancer, or TNBC, is the most aggressive and most
heterogeneous subtype which targets women at younger ages and has a higher prevalence
in women of African ethnicity [22]. This subtype of BC is negative for hormone-receptors
(ER−/PR) and HER2 (HER2−) receptor and shows the poorest prognosis among all other
breast cancer subtypes [17,22–24].

Figure 1. Main histopathological (left) and molecular (right) subtypes of breast cancer (BC). (DCIS—
ductal carcinoma in situ, IDCS—invasive ductal carcinoma, LCIS—lobular carcinoma in situ, ILC—
invasive lobular carcinoma, IBC—inflammatory breast cancer, MBC—metastatic breast cancer,
HR—hormone receptors, ER—estrogen receptor, PG—progesterone receptor, HER2—human epi-
dermal growth factor receptor) [3,17,22,25]. Figure created using BioRENDER.com. Accessed on 13
March 2022.

For a long time, breast cancer was regarded as a genetic disorder arising from muta-
tions in key regulatory genes such as BRCA1 and BRCA2 [26]. However, discoveries in
breast cancer in the last decades have shifted the focus away from genetics to epigenetics.
For instance, recent studies have reported the role of aberrant DNA methylation in several
cases of breast cancer [27,28], as well as other studies which have highlighted the epige-
netic modifications as the major cause of breast cancer initiation and progression [29,30].
Breast cancer is often characterized by various hallmarks, including sustained proliferative
signaling, activation of invasion and metastasis, evading immune destruction, apoptotic-
resistance phenotype, genome instability and mutation, cellular energetics dysregulation,
evading growth suppressors, induction of angiogenesis, vascular or lymphatic system
invasion, and tumor-promoting inflammatory microenvironment [31]. Remarkably, the
chronology and the contribution of cancer hallmarks differ according to cancer type, tumor
composition, microenvironment, immune system interactions, and origin of cancer tissue.
Some of the cancer hallmarks may have overlapping properties such as apoptosis resistance
and avoiding growth suppressors, which result in sustained proliferative signaling of
tumor cells. Other hallmarks might be required at distinct phases of tumor development.
For example, metastasis activation and invasion occur later in tumorigenesis. Many of the
mentioned hallmarks have tight links to epigenetic alterations affecting the expression of
proto-oncogenes/tumor suppressors, which occur during the initiation and progression
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of breast cancer (Figure 2). Moreover, recent studies indicated that abnormal epigenetic
modifications give rise to oncogenic properties on every cancer hallmark [32,33].

Figure 2. A collection of breast cancer hallmarks that characterizes the breast cancer phenotype with
the central role for epigenetic modifications shaping the tumor outcome. Disruption of epigenetic
processes modulates signaling pathways promoting breast tumorigenesis. Epigenetic alterations
which are attributed to specific breast cancer hallmarks are depicted. (HyperMet; promoter hyperme-
thylation) [6,34–37]. Figure created using BioRENDER.com. Accessed on 25 July 2022.

2. Epigenetic Modifications in Breast Cancer

Epigenetics is the study of heritable changes in gene expression that occur indepen-
dently of alterations in DNA sequence. Epigenetic modifications affect molecular pathways
during development, differentiation, and tumorigenesis, which are known to be triggered
by age, diet, stress, hormones [38–40], as well as exposure to other environmental stimuli
or factors known as exposome, as recently shown to significantly influence epigenetic
modification [41]. Moreover, epigenetic alterations can be inherited through cell divisions
and, in some cases, can be maintained over long periods of time or transmitted down
through generations [42,43]. Epigenetic mechanisms can alter the gene activity at the tran-
scriptional, post-transcriptional, and subsequent translational and post-translational levels,
and have been linked to multiple diseases, including different types of cancer [44–48]. The
main epigenetic modifications include DNA methylation, histone modifications causing
chromatin remodeling, and non-coding RNAs (ncRNAs) regulating gene expression at
post-translational levels. Unlike genetic changes, epigenetic changes are considered re-
versible, thus making them potentially promising therapeutic targets for disease treatment.
Epigenetic therapies are considered to reactivate the expression of genes that have under-
gone epigenetic silencing, hence reprogramming the cancer cells. A better understanding of
epigenetics in breast cancer may result in improved diagnosis, treatments, and prognosis.

BioRENDER.com
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2.1. DNA Methylation in Breast Cancer

DNA methylation is catalyzed by a conserved set of enzymes known as DNA methyl-
transferases (DNMTs), which transfer a methyl group from S-adenosylmethionine (SAM)
to the fifth carbon of cytosine residue to form 5-methylcytosine (5-mC) [49,50]. Methylation
of DNA, mainly of CpG islands (CGIs) on the promoter region, is a common epigenetic
mechanism that cells often use during differentiation, development, or disease initiation
and progression to block transcription. The repressive effects of DNA methylation are
mediated in large part by the methyl-CpG binding proteins (MCBPs). MCBPs specifically
bind to CpG methylated DNA and are associated with the larger complexes containing
histone deacetylases (HDACs) to “erase” the transcription-activating histone acetyl marks
and hence, block transcription [51]. So far, numerous studies have demonstrated that hyper-
methylation of tumor suppressor genes [52], and/or hypomethylation of oncogenes [53,54]
in tumors relative to non-tumorous tissues, is a common feature of a variety of cancers.
Moreover, genome-wide methylation profiling studies have linked DNA methylation with
the susceptibility to develop breast cancer [54,55], lower global DNA methylation in pe-
ripheral tissue being an indicator of an individual’s susceptibility to breast cancer [56,57].
Many of the detected hypermethylated genes are shown to act as tumor suppressors such
as P16 (cyclin-dependent kinase inhibitor 2A), BRCA1 (breast cancer gene1), and ATM
(ataxia telangiectasia mutated). In the last few years, there has been increasing interest
in using blood samples to measure DNA methylation in cancer studies, with the most
robust candidate genes ATM and BRCA1 showing associations between breast cancer risk
and methylation changes [58,59]. In addition, another study that conducted methylation
microarray analyses from peripheral blood DNA across various genes, including ATM,
TP53, CDH1, BRCA1, BRCA2, MLH1, and CHEK2, showed that hypermethylation of ATM
was associated with an estimated threefold increased risk of breast cancer development [60].
Interestingly, a recent genome-wide methylation profiling study in both canine mammary
tumor (CMT) and peripheral blood mononuclear cells (PBMCs) using reduced represen-
tation bisulfite sequencing (RRBS) led to the identification of 341 and 247 promoters of
differentially methylated genes (DMGs) in CMT tissues and PBMCs, respectively [61].
These results indicated that genes related to apoptosis and ion transmembrane transport
were hypermethylated, but cell proliferation and oncogene were hypomethylated in tumor
tissues. In addition, their analysis further revealed significant changes in DNA methy-
lation patterns of the subset of immune cells and host defense system-related genes in
PBMCs, especially chemokine signaling pathway-related genes. Furthermore, several CMT
tissue-enriched differentially methylated regions (DMRs) were identified from the promoter
regions of various microRNAs (miRNAs), including cfa-miR-96 and cfa-miR-149, which
were reported as cancer-associated miRNAs in humans. Overall, these findings suggest that
genome-wide hypomethylation [57] and gene-specific hypermethylation mainly of CGIs
on promoters which typically act to repress gene repression, mainly of tumor suppressor
genes [62,63], may appear at very early stages before diagnosis. Hence, they could be used
as epigenetic biomarkers for early detection or risk of breast cancer development.

Since DNA methylation is catalyzed by the family of enzymes known as DNA methyl-
transferases (DNMT1, DNMT3A, DNMT3B, and DNMT3L), various studies have been
conducted to understand aberrant DNA methylation patterns in association with the ex-
pression of DNA methyltransferases in different types of cancer [64–67]. In general, the
impact of DNMT aberrations in the promotion of tumorigenesis is still controversial, and
relevant targeted therapies for DNMTs are still under exploration [68,69]. Nevertheless,
multiple studies revealed the increased expression of DNMTs, including DNMT1, DNMT3a,
and DNMT3b, in breast cancer tissues, suggesting the involvement of the DNMTs dur-
ing breast carcinogenesis [51,70]. Currently, two DNMT inhibitors (DNMTi) have been
approved by the US Food and Drug Administration (FDA), including decitabine and azacy-
tidine and their combinations with other anticancer agents, are being tested as therapeutic
options for multiple solid cancers [71]. However, there is a crucial need to better optimize
and improve the treatment strategies for DNMTi, as these inhibitors are not specific and



Int. J. Mol. Sci. 2022, 23, 9521 6 of 32

are associated with the development of resistance, toxicity, severe side effects, and none
or partial treatment responses. In another study, it was demonstrated that inhibition of
DNMTs activity via the application of natural compounds such as EGCG and genistein
could restore or reactivate the DNA hypermethylated tumor suppressor genes such as
CDKN1A (p21). Hence, they strongly inhibit the formation of tumors in breast cancer [72].
In conclusion, DNA methylation is an important factor contributing to the pathogenesis of
various types of cancer, including breast cancer. However, epigenetic therapy for targeting
DNMTs to restore the tumor suppressor genes’ activity should be applied with caution in
an isoform-specific and tissue-specific manner.

2.2. Histone Modifications in Breast Cancer

The modification of histone proteins is a crucial post-translational process that modu-
lates the chromatin structure and plays a key role in gene expression. Histone modifications
(HMs) are known to affect fundamental cellular processes, such as gene transcription, DNA
replication, DNA recombination, and DNA repair [73]. Moreover, histone modifications are
known to be connected to cancer initiation and progression [74–76]. Thus, a new terminol-
ogy, ‘histone onco-modifications’, is proposed to describe post-translational modifications
of histones, contributing to the cancer development [74]. Histones are chromatin proteins
and basic components of nucleosomes in eukaryotic cell nuclei, which are essential for
the packaging of the genomic DNA into compact structures. There are 5 types of his-
tones, including H2A, H2B, H3, and H4, with their ability to heterodimerize in specific
pairs, and H1 (linker) histone which links adjacent nucleosomes [77]. Numerous histone
modifications are expected to exist, which can serve as markers of diagnosis in various
cancer types [78,79]. So far, different types of histone modifications have been discovered
and classified, including acetylation, methylation, phosphorylation, and ubiquitylation,
which are the most well-understood, while O-GlcNAcylation, citrullination, crotonylation,
ADP-ribosylation, sumoylation, deamination, formylation, propionylation, butyrylation,
and proline isomerization are more recent discoveries that have yet to be thoroughly inves-
tigated [75,80–84]. Nevertheless, the two most studied histone modification mechanisms
are namely methylation and acetylation. Each of these histone modifications is added or
removed from histone amino acid residues by a specific set of enzymes.

Apart from DNA, which can be methylated to block transcription as described in
the previous section, histone proteins can also be methylated, which can cause chromatin
remodeling and affects gene expression. Histone methylation occurs mostly on arginine
and lysine [85,86], and in rare cases on histidine residues of histone proteins [87,88]. Lysines
are known to be mono-, di-, or tri-methylated [89,90]. While arginines are reported to be
mono- or dimethylated [91], histidines, on the other hand, are found to be monomethy-
lated [92]. Histone methylation can cause either transcriptional repression or activation.
Generally, methylation of histones on H3K4, H3K36, and H3K79 is thought to mark ac-
tive transcription, whereas H3K9, H3K27, and H4K20 methylation are associated with
silenced chromatin states [93,94]. Intriguingly, it was shown that there is a crosstalk be-
tween histone and DNA methylation mark and that methylation of histones on H3K9
and DNA was shown to be strongly associated [95,96]. Therefore, the relevance of H3K9
methyltransferases dysregulation can expand to DNA methylation. In addition, histone
methylation has been implicated in chromatin remodeling, DNA replication, and DNA
damage response repair (DDR) [79,97]. Histone methylation is a dynamic and reversible
process that is regulated by two groups of enzymes, including histone methyltransferases
(HMTs) and histone demethylases (HDMs), which add and remove methyl groups on
lysine and arginine residues within histone proteins, respectively. Recent studies indicated
that HMTs might have an impact on tumor progression and metastasis. For example, it was
shown that PRMT1 (a targeted HMT) could bind to the ZEB1 promoter, which mediated
histone methylation to promote the migratory and invasive behaviors in breast cancer
cells [98]. In addition, PRMT1 could specifically increase the expression ZEB1, but not the
rest of the crucial EMT markers such as TWIST1, SNAI1, and SNAI2. Additionally, the
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study unraveled a dual role and a potential therapeutic value for PRMT1 in the modulation
of both EMT and senescence via regulating ZEB1. In another study, the expression of
several histone methylation markers, including lysin methylation (H3K4me2, H4K20me3),
and arginine methylation (H4R3me2), was shown to be negatively correlated with tumor
grade, as evaluated in 880 well-characterized BC patients. This was further validated using
immunofluorescence staining and western blotting [99]. Besides, the high relative levels
of global histone methylation were shown in this study to be associated with a favorable
prognosis, which could be detected almost exclusively in luminal-like breast tumors (93%).
Another study demonstrated that G9a, a histone methyltransferase responsible for histone
H3 lysine 9 (H3K9) mono- and demethylation, is required for EMT-induced DNA methyla-
tion at the E-cadherin (CDH1) promoter in three model cell lines, and in Claudin-low breast
cancer CLBC [100]. Thus, it results in decreased CDH1 expression, a hallmark of EMT and a
major contributing factor to early metastasis and poor patient survival associated with BC.
Conversely, knockdown of G9a could restore CDH1 expression by suppressing H3K9me2
and blocking DNA methylation which resulted in cell migration and invasion inhibition
in vitro and suppression of tumor growth and lung colonization in models of CLBC metas-
tasis in vivo. Despite extensive epigenetic research in breast cancer, studies on how histone
methylation regulates BC progression and metastasis are still in infancy. Therefore, further
investigations are required to unravel its precise underlying mechanism and contribution
to breast cancer, which could define novel diagnostic and prognostic markers.

Histone acetylation is another well-known histone post-translational modification
(PTM) that is found to have a wide role in the transcriptional regulation of genes [101,102].
This dynamic process is the outcome of the balance between histone acetyltransferases
(HATs) known as “writers” and histone deacetylases (HDACs) or “erasers”. Histone
acetyltransferases (HATs) install acetyl groups onto lysine residues of histone tails, which
promotes open chromatin structure and leads to increased chromatin accessibility and
hence increased gene expression. Conversely, histone deacetylases (HDACs) remove acetyl
groups from histone tails, leading to a more compacted chromatin, lower transcriptional
accessibility, and transcriptional repression [103,104]. Generally, histone acetylation is
known to mediate both repression of tumor suppressors and activation of the proto-
oncogene [101,102,105,106].

EP300 is one of the most studied HATs, encoded by the E1A binding protein P300
(EP300) gene which mediates histone and non-histone protein acetylation, and it is in-
volved in gene activation [46,107]. Moreover, high expression and activity of EP300 was
demonstrated to be associated with various diseases and malignancies, including pul-
monary fibrosis [46], nasopharyngeal carcinoma (NPC) [108], hepatocellular carcinoma
(HCC) [109], non-small cell lung cancers (NSCLC) [110], prostate cancer (PCa) [111], and
breast cancer (BC) [112]. Moreover, EP300 is associated with several neurodegenerative
disorders [113]. Mice expressing a truncated EP300 protein in the hippocampus, amygdala,
cortex, and cerebellum were shown to have memory deficits in contextual fear condition-
ing and object recognition tasks [114]. Additionally, knockdown and pharmacological
inhibition of EP300 were shown to reduce tumor growth and metastasis in vitro and in a
xenograft mouse model of BC in vivo [112,115]. In addition to EP300, GCN5 is another
family member of HATs that was found to play a key role in the TGF-β/SMAD signaling
pathway in breast cancer cells [116]. Interestingly, knockdown of GCN5 was shown to
inhibit EMT and decrease the migration and invasion of MDA-MB-231 breast cancer cells,
which was associated with decreased expression of p-STAT3, p-AKT, MMP9, and E2F1,
and increased expression of P21. Furthermore, PCAF, also a member of the HATs family,
regulates EMT and promotes cancer metastasis via the BRD4-axis [117]. Hence, inhibition
of PCAF displays the potential to inhibit breast cancer growth.

The role of HATs is opposed by HDACs. Similar to HATs, HDACs have key roles in
various cellular functions, and their misregulation is linked to multiple types of cancer.
Up to now, eighteen different HDACs have been recognized in humans and divided
into four classes, based on phylogenetic and sequence homology to yeast proteins Hda1
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and Rpd3 [103]. The class I HDACs (HDAC1, HDAC2, HDAC3, and HDAC8) contain a
deacetylase domain and are primarily localized in the nucleus of cells. They have sequence
similarity to Rpd3. The class II HDACs have sequence similarity to Hda1 protein and are
commonly divided into two subclasses: subclass IIa consists of HDAC4, 5, 7, and 9, and
subclass IIb includes HDAC6 and 10 based on their primary structure. Moreover, members
of class II HDACs are considered to have tissue- and stage-specific expression, and are
also capable of shuttling between cytoplasm and nucleus in response to various regulatory
signals [118,119]. The Class III Sir2-like proteins (SIRT1, SIRT2, SIRT3, SIRT4, SIRT5,
SIRT6, and SIRT7) are protein deacetylases dependent on nicotine adenine dinucleotide
(NAD), known to regulate transcriptional repression, recombination, cell-division cycle,
microtubule organization, and cellular responses to DNA-damaging agents [120]. The sole
member of Class IV HDACs is HDAC11, which shares sequence similarity to both Rpd3
and Hda1 proteins and exhibits enzymatic activity to a certain extent [121].

HDACs are shown to regulate gene expression in multiple ways through targeted
recruitment, protein-protein interactions, and post-translational modifications [122]. More-
over, HDACs catalyze the removal of acetyl groups not only from histone proteins, but
also from various nonhistone proteins which can act as transcription factors, regulators of
DNA repair, recombination, replication modifiers, chaperones, and viral proteins [122,123].
For example, HDAC3 was shown to catalyze the deacetylation of the Notch1 intracellular
domain (NICD1), thereby promoting NICD1 protein stability, which regulates the progres-
sion of T-cell acute lymphoblastic leukemia (ALL) [124]. Moreover, Leus et al. showed
that HDAC3 could inhibit NF-κB lysine acetylation, thereby causing a proinflammatory
effect [125]. In another study, HDAC1 and HDAC2 were shown to deacetylate TP53 inde-
pendently, thereby suppressing its ability to induce apoptosis and activate target genes,
including P21 [126]. Thus, regulation of key cellular processes such as cell survival, cell
cycle progression, and differentiation are among the most important roles of HDACs. In
addition, HDACs can associate with various corepressor complexes such as SMRT, N-COR,
NuRD, and mSin3, which can further interact with other epigenetic modifiers to regulate
gene expression, such as DNA methyltransferases (DNMTs), histone methyltransferases
(HMTs), and methyl-CpG-binding proteins (MBDs) [103]. In general, the altered expression
or activity of HDACs is linked with various human cancers and poor prognosis [4,127–132].
Consequently, HDACs have been among the most promising therapeutic targets for cancer
treatment, including breast cancer, over the past two decades [133,134]. Recent studies
show that class I HDACs are differentially expressed in breast cancer tissues, HDAC2 and
HDAC3 being strongly expressed in the most aggressive tumor subtypes [135]. Moreover,
the expression of HDAC2 was significantly associated with an overexpression of HER2 and
the presence of nodal metastasis. In general, preclinical and clinical data show that HDAC
inhibitors (HDACis) can evoke different antitumor mechanisms in distinct BC subtypes
by targeting histone and several non-histone proteins. Hence, HDACis can sustain the
cellular acetylation profile and reverse the function of proteins responsible for BC develop-
ment [136]. Furthermore, it was demonstrated that HDAC11 promotes breast cancer growth
and dissemination from lymph nodes (LNs) through activation of PRM2 (pro-metastatic)
and inhibition of E2F7 and E2F8 (cell cycle suppressors) [137]. Moreover, they observed
decreased methylation of the HDAC11 promoter, which was correlated with its increased
messenger RNA (mRNA) expression in the mouse model of lymph node metastasis (AxLN).
Altogether, these findings propose that HDAC11 may itself be epigenetically modified in
the context of the LN microenvironment. Finally, HDAC11 suppression resulted in reduced
lymph node growth and significantly reduced tumorigenesis. However, the knockdown
of HDAC11 using short hairpins RNA (shRNAs), as well as global inhibition of HDACs
using vorinostat and entinostat which are not HDAC11-specific, led to increased distant
metastasis from LNs in vitro and in vivo, suggesting the involvement of other HDACs
and taking caution with the single-agent use of HDAC inhibitors during BC treatment.
Although the interest in histone deacetylase inhibitor-based therapies for cancer treatment
is increasing in preclinical studies, in breast cancer, the efficacy of different HDACis, includ-
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ing trichostatin A (TSA), valproic acid (VPA), suberoylanilide hydroxamic acid (SAHA),
and suberic bishydroxamate (SBHA), has been demonstrated. A better understanding of
the molecular mechanisms underlying each individual HDAC members on tumor initiation
and progression in breast carcinomas are required for the possible identification of new
therapeutic strategies.

2.3. Non-Coding RNAs (ncRNAs) in Breast Cancer

Numerous studies have delineated the role of non-coding RNAs in diverse cellular
processes, including proliferation, migration, invasion, apoptosis, and stemness. Moreover,
it was shown that ncRNAs such as long non-coding RNAs (lncRNAs) or microRNAs
(miRNAs) can be packed into extracellular vesicles (EVs) such as exosomes, and transported
to cells locally or systemically [138].

In addition, ncRNAs were demonstrated to play key roles in transcription, post-
transcriptional processing, and translation [139]. IncRNAs are one of the major subgroups
of ncRNAs larger than 200 nucleotides that modulate gene expression, mostly through
interaction with proteins and nucleic acids [140,141].

Recently, it was shown that a group of lncRNAs (HOTAIR, linc-ROR, and BCAR4)
can regulate metastasis in breast cancer [142]. Among them, HOTAIR recruits the Poly-
comb Repressor Complex 2 (PRC2) complex to specific target genes, which leads to an
altered histone H3 lysine 27 methylation, and subsequent epigenetic silencing of metastasis
suppressors, which increases cancer metastasis and invasion [143]. However, lncRNAs
can function specifically to either promote or inhibit cancer invasion and metastasis. For
instance, MALAT1, NKILA, and ANCR are known to suppress those mechanisms in breast
cancer [142].

miRNAs are single-stranded small non-coding RNAs that regulate gene expression in
a wide range of biological processes through binding to the 3′untranslated region (3′UTR)
of protein-coding genes, causing their translational repression [144–148]. Recent studies
have shown that microRNAs can also bind to protein-coding exons and promote gene
expression in mammalian cells [149,150].

MicroRNAs have been reported to play fundamental roles in modulating breast cancer
progression and metastasis [151,152].

Reports indicate an association between dysregulation of miRNAs and several hu-
man diseases, including obesity [153], cardiovascular disease [154,155], and cancer [156].
Changes in miRNA expression, such as mutation, amplification, or deletion on miRNAs loci,
have been reported to be linked to human cancers [157], highlighting the regulatory role of
miRNAs on human diseases. Lethal-7 (let-7) is a member of tumor suppressor miRNAs
highly expressed in epithelial tissues, which was shown to target oncogenes such as MYC,
RAS, HMGA2, BLIMP1, and LIN28 [158,159]. LIN28 is a proto-oncogene shown to be highly
expressed in various cancers, including breast cancer, which can drive or accelerate tumori-
genesis via a let-7 family of miRNAs dependent mechanism. [160]. Recently, an interesting
mechanism was discovered for a member of the let-7 family named Mirlet7d. Singh et al.
showed that Mirlet7d is involved in epigenome regulation and genome organizations via
binding to ncRNAs in the nucleus, forming Mirlet7d–ncRNA duplexes, which are further
bound by other proteins such as CD1, which in turn target the RNA exosome complex
and the PRC2 complex to the bidirectionally active loci [161]. Finally, this multicomponent
RNA–protein complex was initially formed by Mirlet7d, termed MiCEE, which tethers the
regulated genes to the perinucleolar region and hence is essential for the proper nucleolar
organization. In addition, miR-200 is another family of tumor suppressor miRNAs, since
its suppression in epithelial to mesenchymal transition (EMT) has been reported to be
associated with a considerably higher risk of breast cancer and invasiveness [162–164].
MiR-21 is miRNA highly expressed in breast cancer, and its upregulation is associated
with poor prognosis [165,166]. It has also been reported that miR-21 targets PTEN [167],
which consequently promotes MCF-7 breast cancer cell growth [168]. MiR-10b interacts
with HOXD10 and Krüppel-like factor 4 (KLF4) [169,170], which has been reported to be an
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oncogenic miRNA in metastatic breast cancer [169]. MiR-335 is a family of miRNAs which
is recognized as metastasis inhibitor through its interaction with the transcription factor
SOX4 and the extracellular matrix protein TNC, also reported to be silenced in the breast
cancer [171,172]. Another miRNA that is involved in breast cancer regulation is miR-155,
known to bind BRCA1, a breast cancer susceptibility gene [173,174]. Besides, miR-155 nega-
tively regulates SOCS-1 and FOXO3a, which modulate breast cancer development [175].
Additionally, miR34-a modulates breast cancer, since its downregulation is reported to be
associated with cancer development and progression through the upregulation of SIRT1
and BCL2 [176,177]. Downregulation of miR-205 is often associated with breast tumor
metastasis. Additionally, miR-205 depletion results in the propagation of breast tumor cells
and metastasis by increasing the levels of ERBB3, VEGFA, and ZEB1 proteins [178–180].

2.4. Non-Canonical Epigenetic Modification in Breast Cancer

In addition to the major canonical epigenetic modifications dysregulated in BC, includ-
ing DNA methylation, histone modification, and noncoding RNAs, there is an increasing
number of reports on epigenetic modifications on RNA, including N1-methyladenosine, 5-
methylcytidine, inosine, 2′-O-ribosemethylation, pseudouridine, and N6-methyladenosine
(m6A). These modifications strongly emerge as novel non-canonical epigenetic modifica-
tions associated with tumorigenesis [181,182]. Among them, m6A is considered the most
prevalent, and conserved internal transcript modification, especially in eukaryotic cells, sub-
stantially impacts RNA metabolism and is involved in the pathogenesis of many diseases,
including cancer [183,184]. Besides, m6A was mentioned to play a key role in pre-mRNA
processing, alternative splicing, nuclear export, stability, and translation [185,186].

m6A modification is installed onto mRNA by the m6A methyltransferase complex
known as “writers”, including WTAP, RBM15/15B, METTL3/14, ZC3H13, and VIRMA,
and can be recognized by m6A-binding proteins known as “readers”, including eIF3,
YTHDC1/2, YTHDF1/2/3, IGF2BP1/2/3, and HNRNP. In contrast, demethylases, or
“erasers” such as FTO, ALKBH3, and ALKBH5, were shown to remove m6A modifica-
tion from mRNA, which is a dynamical and reversible biological process. For instance,
Jia et al. discovered that fat mass and obesity-associated protein (FTO) shows efficient
oxidative demethylation activity of abundant N6-methyladenosine (m6A) residues in RNA,
thus acting as m6A eraser partially localizing with nuclear speckles [187]. Moreover, they
showed that siRNA-mediated knockdown of FTO led to the increased levels of m6A in
mRNA, while overexpression of FTO resulted in a decreased level of m6A in human cells,
suggesting m6A in nuclear RNA as a major physiological substrate of the obesity-associated
FTO. Intriguingly, the heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2/B1)
was demonstrated to be increased in endocrine-resistant LCC9 breast cancer cells and
modulating the miRNA transcriptome upon its overexpression in MCF-7 cells [188]. Tran-
sient overexpression of HNRNPA2/B1 was associated with alteration on miRNA expression
(upregulation of 148 and 172 miRNAs and downregulation of 88 and 172 miRNAs, 48 h and
72 h after transfection, respectively). Moreover, in the same study, the overexpression of
HNRNPA2/B1 resulted in reduced MCF-7 sensitivity to 4-hydroxytamoxifen and fulvestrant,
suggesting a role for HNRNPA2/B1 in endocrine resistance in BC cells. Another study
discovered that HNRNPA2/B1 binds m6A-bearing RNAs as well as m6A marks in a subset
of primary miRNA transcripts in vivo and in vitro. Furthermore, HNRNPA2/B1 interacts
with the microRNA microprocessor complex protein, namely DGCR8, which promotes
primary miRNA processing [189]. Altogether, these studies highlight HNRNPA2/B1 as a
reader of the N6-methyladenosine (m6A) mark in primary-miRNAs (pri-miRNAs) and also
as a modulator of primary microRNA processing and alternative splicing. Recently, the
m6A methyltransferase METTL14 was shown to be significantly upregulated in BC tissues
compared with normal tissues [190]. In addition, METTL14 gain- and loss-of-function were
shown to regulate m6A levels in both MCF-7 and MDA-MB-231 cells. METTL14 overex-
pression revealed the enhanced migration and invasion capacities of BC cells via m6A
modification and has-miR-146a-5p expression. Conversely, treatment with the m6A inhibitor
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suppressed the enhanced cell migration and invasion observed in METTL14-overexpressed
BC cells.

Circular RNAs (circRNAs) are novel single-stranded non-coding RNAs in which the
5′ and 3′ termini are covalently linked by back-splicing of exons from a single pre-mRNA
forming a closed continuous loop [191]. Initially, these untypical RNA molecules were
considered aberrant splicing by-products [192–194]. However, new studies suggest that
circRNAs are abundant, evolutionarily conserved, and expressed at specific developmental
stages, in specific tissues or cell types, and even in a disease-specific manner [195–199].
Today, circRNAs emerged as a new research paradigm in RNA biology, with more than
32,000 different annotated circRNAs identified in the humans [200]. Increasing lines of
evidence show that circRNAs regulate a large number of cellular processes by acting as
a competing RNA molecule sponging miRNAs, transcriptional regulators, anchors for
circRNA binding proteins (cRBPs), molecular scaffolds, and sources for translation of small
proteins/peptides [201]. CircRNAs are generated by back-splicing which requires canonical
splicing machinery, including splice signal sites and spliceosomes, and is further modulated
by m6A in a METTL3/YTHDC1-dependent manner [202,203]. CircRNAs formed from
exons are predominantly localized to the cytoplasm [196]. However, some exonic circRNAs
are mentioned to be distributed in the nucleus [204] or in extracellular vesicles (EVs),
and can be detected in circulation and urine [205]. Nevertheless, circRNAs packaging,
delivery, and absorption still remain elusive. CircRNAs represent ideal candidates for
application as non-invasive biomarkers due to their high stability and easy detection in
body fluids. In addition, circRNAs can be detected by RNA-sequencing (RNA-seq) and/or
microarray techniques with RT-qPCR or digital droplet PCR [206]. So far, few circRNAs
have been reported to serve as miRNA sponges in BC. For instance, circEPSTI1 was found
as a prognostic marker and mediator of triple-negative breast cancer (TNBC) progression,
which binds to miR-4753 and miR-6809 as a miRNA sponge to regulate BCL11A expression
and affects TNBC proliferation and apoptosis [207]. In addition, silencing of circEPSTI1
inhibits TNBC cell proliferation and induces apoptosis in three TNBC cell lines. In another
study, Liu et al. identified hsa_circ001783 as a highly expressed circRNA in both BC cells and
tissues, which is significantly correlated with heavier tumor burden and poorer prognosis
of patients with breast cancer [208]. Intriguingly, hsa_circ001783 was shown to promote the
progression of breast cancer cells via sponging miR-200c-3p and serves as a novel prognostic
and therapeutic target for BC. Conversely, knockdown of this circRNA remarkably inhibited
the proliferation and invasion of breast cancer cells.

Overall, emerging evidence indicates that circRNAs may potentially serve as a required
novel biomarker and therapeutic target for cancer treatment. However, the function of
the majority of circRNAs remains elusive. In addition, little is known about the role of
circRNAs in breast cancer. Hence, further investigations are required to initially identify the
subtype-specific circRNAs and to unravel their biological role in regulating tumorigenesis
in BC.

3. Future Perspectives and Novel Strategies for Breast Cancer

Currently, diagnosis of BC at an early stage remains one of the biggest challenges
in oncology. In addition, a great proportion of breast cancer in low- and middle-income
countries (LMICs) is mentioned to be diagnosed at an advanced stage, mostly due to
the ill-prepared and fragile healthcare systems ranging from 30% to 50% in Latin Amer-
ica to 75% in Sub-Saharan Africa [209–211]. Furthermore, delays in the treatment of BC
have been associated with more advanced disease stage cancer at diagnosis and poorer
survival [212,213]. Although current methods for BC diagnosis are mostly based on mam-
mography, magnetic resonance imaging (MRI), ultrasound, computerized tomography,
positron emission tomography (PET), and biopsy, nevertheless, these techniques have
certain limitations, such as being costly, inability in detecting small cancers, especially
in women with dense breast tissues, time-consuming, and not being suitable for young
women. Moreover, the sensitivity of mammography is mentioned to be related to the age,
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personal history, ethnicity, radiologist’s experience, and technique quality [214]. Therefore,
to improve the current diagnostic options, developing a high-sensitive and rapid early-stage
breast cancer diagnostic method is urgent. Recently, with advances in computational and
analytical techniques, researchers have gradually shifted their attention to breast cancer
early detection through the development of specific biomarkers [214–216]. Hence, the
identification of novel diagnostic and prognostic biomarkers will pave the way for the
early detection of BC and provide better opportunities for its prevention and treatment,
which intends to result in a major shift in the reduction of mortality and morbidity of
BC worldwide.

3.1. Novel Diagnostic and Prognostic Epigenetic Biomarkers for BC Detection

The importance of the identification of biomarkers lies not only in their prognostic
value, which determines the future course of a disease, but also in the fact that they can
predict the patient’s response to a selected therapy. Thus, diagnostic biomarkers are re-
quired to screen and also classify BC patients. On the other hand, prognostic biomarkers
are needed to predict the patient’s survival [217,218]. Although earlier studies on biomark-
ers have been mainly focused on non-epigenetic molecular mechanisms, recent studies
have also evaluated the potential of epigenetic marks in both solid and liquid biopsies
from breast cancer patients [219]. Even in the last decade, some biomarkers have been
integrated into clinical practice. As an example, Kim et al. established a two-gene panel for
BC detection, namely RARβ and RASSF1A, which was shown to detect DCIS/IDC with
significant sensitivity and specificity of 94.1% and 88.8%, respectively [220]. In another
study, a seven-methylated-gene panel comprising APC, BRCA1, CCND2, FOXA1, PSAT1,
RASSF1A, and SCGB3A1 could detect BC in serum with high sensitivity, specificity, and
an accuracy of 95.55% [221]. Moreover, a novel panel of three DNA methylation markers,
including TDR10, PRAC2, and TMEM132C, was recently established as a high-potential
diagnostic and prognostic marker, mainly because of their high expression in BC tissues,
particularly in estrogen-receptor (ER)-positive patients [222]. Solid biopsies are considered
the current standard of care in clinical cancer management, providing useful information
about tumor histology, molecular biomarkers, histological subtyping, and treatment plan-
ning with optimal cost-effectiveness ratio [219]. Nevertheless, they inherently show several
limitations, including high cost, limited accessibility of primary tumors and metastatic
tissue, limitation of genetic and molecular information to the biopsy area, tedious and
time-intensive sample processing, the high-pain risk for the patients, and the possibility
for misleading interpretation due to the tumor heterogeneity. Liquid biopsy (LB), on the
other hand, permits investigating the disease features in a more comprehensive manner by
sampling biofluids such as circulating-tumor cells (CTCs) [223], circulating tumor DNA
(ctDNA) [224], circulating tumor RNA (ctRNA) [225], and EVs obtained from blood or
other body fluids [226,227], in a monitoring-compatible manner. Cells release DNA into
the circulation known as cell-free DNAs (cfDNAs). cfDNAs are degraded DNA fragments
derived from a combination of necrosis, apoptosis, and active secretion from both cancer
cells and non-cancer cells released into the blood plasma carrying genome-wide DNA
information [228]. ctDNA, on the other hand, is a small fraction of cfDNA which can be
derived from primary tumors and metastases and even circulating tumor cells (CTC) and
should not be confused with cfDNA. Nevertheless, ctDNA offers a non-invasive approach
for initial diagnosis and longitudinal treatment response by capturing tumor heterogeneity
and resistance patterns [229]. Furthermore, studies indicate that the use of ctDNA to predict
the risk of postoperative recurrence of NSCLC is a highly valuable method, and it is even
more reliable if combined with the dynamic changes of the cfDNA [230].

Elevated cfDNA levels are associated with an increased rate of cancer relapse in
colorectal cancer patients [231]. Recently, Garcia et al. proposed cfDNAs in plasma as
a predictive and prognostic marker in patients with metastatic breast cancer [232]. In
addition, they showed that the amount of total cfDNA and the number of CTCs are pre-
dictors of overall survival (OS). However, total cfDNA levels are the sole predictor for
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progression-free survival (PFS) and disease response when comparing the response to
non-response to treatment. Additionally, they suggested the analysis of CTCs and cfDNA
is more informative than the combination of two conventional biomarkers (CA15-3 and
AP) for the prediction of OS. Another recent study assessed the prognostic and predictive
potential of the blood circulating cell-free DNA (ccfDNA) in early and advanced breast can-
cer [233]. The study consisted of 3 patient groups and 1 healthy control, including 150 and
16 breast cancer patients under adjuvant and neoadjuvant therapy, respectively, 34 patients
recognized with metastatic BC, and 35 healthy volunteers. Their findings showed that
elevated levels of the blood circulating cell-free DNA (ccfDNA) were statistically corre-
lated to the incidence of death, shorter PFS, and non-response to pharmacotherapy in the
metastatic BC group, but not in the other groups. Interestingly, they showed all three
types of fragment sizes of ccfDNA derived from apoptosis (~160 bp), necrosis (larger than
10,000 bp), and active secretion from viable cells (2000 bp), as analyzed by size-profiling
using capillary electrophoresis. Patients with increased tumor burden in the metastatic and
neoadjuvant groups often show abundance in shorter fragments and a more fragmented
pattern of distribution in relation to adjuvant and control groups. Furthermore, the same
study evaluated the methylation status of 5 cancer-related genes, including SOX17, WNT5A,
KLK10, MSH2, and GATA3 in plasma ccfDNA of BC patients. The results show that methy-
lation of SOX17, WNT5A, KLK10, or the simultaneous methylation of at least three genes,
was detected more frequently in 3 patient groups than in the controls. In addition, the
methylation of WNT5A was statistically significantly correlated to greater tumor size and
poor prognosis characteristics in advanced stage disease with shorter OS. In the metastatic
group, SOX17 methylation was significantly correlated with the incidence of death, shorter
PFS, and OS. They also showed that MSH2 was more frequently methylated in the adju-
vant and metastatic groups than in the controls, meanwhile, GATA3 was more frequently
methylated in the neoadjuvant group than in the control and adjuvant groups. Finally, they
concluded that ccfDNA emerged as a highly potent predictive classifier in metastatic BC in
combination with established clinicopathological features, which could help for early and
accurate diagnosis and prognosis. Another recent study which implemented a large-scale
prospective study of 259 participants reported a significant decrease in cfDNA blood level
after (1) surgery, (2) surgery and radiation, (3) neo-adjuvant chemotherapy and surgery,
and (4) at the end of all treatments [234]. However, cfDNA could not discriminate between
benign and malignant BC after mammography. Finally, they concluded that reducing
tumor burden by surgery and chemotherapy is associated with reducing cfDNA levels.
However, in a minority of patients, an increase in post-treatment cfDNA blood level might
be an indication of the presence of a residual tumor and higher risk.

It is noteworthy to mention that a proportion of cfDNA originating from mitochondria
termed mt-cfDNA is still not well characterized and can be present either in a naked form
or associated with internal and external mitochondrial membrane fragments which provide
a useful way to estimate tumor burden and BC progression [235]. Altogether, these studies
indicate the immense potential of cfDNAs as a versatile biomarker for diagnostics, prognos-
tics, and therapeutics in oncology. However, cfDNA has multiple limitations to overcome
that restrict its possible application as a definite marker to detect BC. cfDNA is not specific
and does not originate solely from tumor cells. It also comes from tumor microenvironment
cells and other non-cancer cells from various parts of the body which can elevate in other
malignancies and pathologies, such as inflammation, acute bacterial or viral infections, or
severe chronic disease, tissue trauma, sepsis, and myocardial infarction [236–238]. More-
over, there are yet a number of unresolved questions that remain to be answered, including
the nature of cfDNAs, their subtypes, and mechanisms of release, clearance in patients with
cancer, as well as their association with the origin, aggressiveness, response to treatment,
and metastatic tumor potential [239].

During the last few years, genome-wide association studies (GWAS) have detected
thousands of single nucleotide polymorphisms (SNPs) associated with human complex
diseases [240,241]. However, unraveling their molecular mechanisms and the biological
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functions underlying the pathogenesis of complex diseases remains a great challenge. Re-
cently, one of the largest GWAS studies (NHGRI-EBI GWAS Catalog of published genome-
wide association studies, targeted arrays) was detected over 7000 SNPs in BC [242]. Most
of these identified SNPs are, however, localized within the non-coding genomic regions,
and their physiological functions are yet to be determined.

It is widely accepted that the genetic information which flows from the genome to the
traits goes through different intermediate molecular layers, including genome, epigenome,
transcriptome, proteome, and metabolome [243]. Thus, the novel strategies today for
biomarker identification have evolved into a large-scale multi-omics data analysis, not
only for the identification of key drivers of diseases but also to discover novel biomarker
tools [244,245]. This type of analysis from solid and liquid biopsy samples can help to
detect specific genetic mutations such as SNPs and differentially expressed genes (DEGs)
combined with the identification of epigenetic aberrations, including DNA methylation,
the potential main site of histone modifications, the histone tail acetylation patterns, and
the circulating non-coding RNAs in specific tumor subtypes. Moreover, the integrative
multi-omics approaches offer unparalleled opportunities to decode the underlying biology
of complex diseases, including various types of cancer such as BC [244]. However, the
identified specific epigenetic marks should be correlated to the BC subtype, disease stage,
progression, and aggressiveness of the tumor to result in the development of a reliable
biomarker with high sensitivity, specificity, and positive predictive value (PPV) [246]. In
addition, extending the integrative multi-omics to draw a molecular signature of BC which
is not solely based on conventional mRNA expression levels, but integrating mutation, copy
number alterations (CNAs), epigenetic marks such as methylation, acetylation, mRNA,
microRNA, proteomics, and metabolomics datasets can lead to the identification of novel
BC subtypes which would be better translated to clinical tests and precision medicine to
facilitate novel therapeutic opportunities. Furthermore, the heterogeneity of breast cancer
is distinct between cancer subtypes. Thus, it is crucial to investigate the distinct epigenetic
dysregulation in both cancerous as well as non-cancerous cells in the BC tumor microenvi-
ronment (TME) [247]. In addition, these studies can further help to unravel the underlying
mechanisms of homeostasis of immune cells and the complex communication between
tumor and microenvironment, which is not yet well understood. Once the comprehensive
epigenetic modification profiles of the patients are identified, the epigenetic therapies using
epi-drugs and/or epigenetic editing should be applied to reprogram or abrogate epigenetic
aberrations associated with specific BC subtypes.

3.2. Epigenetic-Modifying Drugs for Therapeutic Intervention in BC

Unlike genetic modifications which result in DNA sequence alterations, aberrant
epigenetic modifications are potentially reversible. Hence, the application of epigenetic-
modifying drugs to restore normal phenotype is feasible and provides excellent opportuni-
ties for therapeutic intervention [248,249]. So far, the application of inhibitors for histone
deacetylases (HDACs) or DNA methyltransferases (DNMTs) in BC treatment have been
assessed in numerous clinical trials to evaluate the efficacy of these drugs to overcome
epigenetic alterations (https://clinicaltrials.gov). Nevertheless, azacitidine and decitabine
(cytidine analogs) are the two DNMT inhibitors or hypomethylating agents which received
approval by the US food and drug administration for the treatment of myelodysplastic
syndrome (MDS), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML),
which were shown induce DNA demethylation [66,250–252]. Furthermore, their combina-
tions with other anticancer drugs are being validated as therapeutic options for various
solid cancers such as ovarian, colon, and lung cancer [71]. Intriguingly, estrogen receptor
(ER) or progesterone receptor (PR) was shown to be epigenetically silenced by DNMT and
HDAC in BC, which could be restored by the application of epi-drugs [253,254]. Recently,
a comprehensive study on assessing the effects of decitabine in breast cancer revealed a
range of responses to decitabine that could not be predicted based on mechanisms like
demethylation of tumor suppressor genes and viral mimicry response [255]. Furthermore,

https://clinicaltrials.gov


Int. J. Mol. Sci. 2022, 23, 9521 15 of 32

they demonstrated that while decitabine induces genome-wide expression changes and
demethylation using transcriptome and methylome analysis, these effects are not neces-
sarily paired and do not correlate with sensitivity. Instead, they showed that the multiple
gene expression changes induced by decitabine are either an indirect result of its demethy-
lation or the effects of induced cell death, DNA damage, and immune responses. Thus,
the antitumor effects of hypomethylating drugs encompass cytotoxic effects, apoptosis,
growth arrest, differentiation, and inhibition of angiogenesis. Therefore, the efficacy of
monotherapy with epi-drugs is not satisfactory, and combining epigenetic drugs with other
therapies such as immunotherapy or chemotherapy for solid tumors seems to be a better
option [256,257]. Similarly, HDAC inhibitors simultaneously induce acetylation of histones
as well as non-histone proteins, involved in the regulation of gene expression in various cel-
lular pathways, which thus can contribute to toxic and fatal side effects. Although various
studies targeting HDACs in an isoform-specific manner delineated their valuable effects on
correcting abnormalities in cell proliferation, migration, vascularization, and apoptosis in
malignant cells, they could achieve enhanced clinical utility by reducing or eliminating the
serious side effects associated with non-selective HDAC inhibitors [258,259].

3.3. Epigenetic Editing as a Valuable Tool for Rewriting or Erasing Aberrant Epigenetic Marks
in BC

Epigenetic editing offers powerful tools for locus-specific erasing or rewriting an
epigenetic modification aiming to reprogram or modulate its expression. In principle, epi-
genetic editing involves the fusion of epigenetic enzymes or their catalytic domains (CDs)
(also known as epigenetic effector domain) with programmable DNA-binding platforms
such as the clustered regularly interspaced short palindromic repeat (CRISPR) to target
a specific endogenous locus (Figure 3) [260]. CRISPR-Cas9 was mostly used for conven-
tional genome editing. However, it is no longer just a gene-editing tool. The application
of CRISPR-Cas9 has exceeded in different areas, including gene regulation, epigenetic
editing (when coupled to epigenetic modifiers), chromatin engineering, and imaging [261].
Nevertheless, safety and efficiency issues regarding double-strand breaks (DSBs) and
off-target mutations are still crucial limitations regarding the clinical application of the
CRISPR-Cas9 technology [262,263]. On top of that, prime editing has recently emerged as a
new CRISPR-Cas9-based approach with high accuracy that has revolutionized the genome
editing area [264–266]. In this approach, no DSB-dependent repair is required for accurate
repairing of DNA, which prevails the limitations of conventional CRISPR-Cas9 genome
editing tools [263,267]. The high efficiency of prime editing arises from the potentiality of
targeting any part of DNA and its ability to induce insertion/deletion (INDELs) [263,268].
The prime editing method leans on reverse transcriptase (RT) and prime editing guide
RNA (pegRNA), which are conjugated to the Cas9 nickase (Cas9n) to exert the required
edits in the genome [263,266]. Even though prime editing is a newly evolved approach,
reports show its increased application in a variety of studies [269–275]. Interestingly, it
has recently been demonstrated that the application of the prime editing technology can
reverse a TP53 missense C > T mutation (L194F) in the T47D luminal A breast cancer cell
line [263], providing new hopes for breast cancer therapy and clinical treatment. Addi-
tionally, the application of CRISPR-Cas9 technology has further extended to the field of
genome-wide screening which helps to identify gene alterations and their relation to cancer
predispositions. In a recent study, using in vivo genome-wide CRISPR screening, Ji et al.
demonstrated that Lgals2 promotes TNBC via inducing the polarization and proliferation
of M2-like macrophages through the CSF1/CSF1R cascade that consequently leads to the
immune escape in TNBC [276]. In another study using genome-wide screening, TNBC
susceptibility was unraveled as the result of interactions between oncogenic and tumor
suppressor pathways. More specifically, it was discovered that the mTOR and Hippo
signaling pathways are key regulators of TNBC [277]. Additionally, they demonstrated that
synergistic mTOR/Hippo-targeted combination therapy apply torin1 and verteporfin in-
hibits the mTOR1/2 and YAP, respectively, which leads to a much more efficient anti-tumor
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activity compared with the application of the drugs individually. Mechanistically, torin1
stimulates micropinocytosis and an endocytic program, which results in the encompassing
of extracellular fluid and catastrophic cell death, in turn promoting the verteporfin uptake
and accelerating its pro-apoptotic impact on cancer cells [277]. As discussed in the previous
section of this review, various genes are repressed by DNA methylation, which is associ-
ated with BC progressions such as BRCA1 and P16. Targeted demethylation of BC-related
genes in this case, or even deposit DNA methylation marks on BC proto-oncogenes at
a specifically targeted locus via epigenetic editing tools, would offer unique therapeutic
possibilities for breast cancer in the future. Moreover, transcription activator-like effector
nucleases (TALEN, developed in 2010) is an efficient nuclease protein containing a TALE
domain from Xanthomonas bacteria, and an endonuclease domain isolated from Flavobac-
terium okeanokoites, that can be engineered to target and modify specific sites of the genome
in a living cell [278,279], hence making it a desirable tool for genome editing with high
precision. TALEN appeared as the first genome editing tool to provide hope for human
cancer treatment in 2015 [280]. Moreover, it has been the leading tool for the production of
genome-engineered crops [281]. So far, TALEN has been used in multiple biological studies
to produce targeted mutations across different species [282–285]. TALEN can be delivered
as protein, as RNA, or as DNA, and can be transferred to a living cell or to an organism
through different methods depending on the goal of the project and the recipient organism:
(1) physical methods: microinjection and electroporation, (2) viral delivery, (3) bacterial
delivery, and (4) chemical methods: liposomes or PEG [286]. For instance, there have been
several reports on the effective transfection of TALEN DNA or RNA into mammalian cells
via electroporation [287–289]. Other studies have shown the efficient application of viral
vectors, such as lentivirus [290] and adenovirus [291,292], for the TALEN delivery method
in mammalian cells. Bacterial-mediated approach is another efficient TALEN delivery
method that has been reported in mammalian cells [293,294]. Alternatively, chemical ap-
proaches of TALEN delivery such as liposomes have been reported to be promising tools
for genome editing [293,295,296].

3.4. Biorecognition Engineering and Partitioning of Anticancer Drugs to Improve BC Therapeutics

Biorecognition engineering is the process of creating bioreceptors or biosensors using
various technologies that can interact with cancer biomarkers, and hence can be useful as
diagnostic and therapeutic tools [297]. One type of biorecognition technology is antibody
mimetic molecules such as aptamers and affibodies. Aptamers are oligonucleotides, either
ssRNA or ssDNA, that bind to multiple targets with affinities and specificities comparable
to antibodies, and can be modified to direct the release of supramolecular structures such
as nanoparticles (NPs) [298]. For instance, EpApt-siEp is an aptamer against the Epithelial
cell adhesion molecule (EpCAM), a marker for cancer stem cell (CSC), and a biomarker
for metastatic BC [299,300]. Injection of MCF7 cells treated with EpApt-siEp into mice
resulted in robust anti-proliferative activity and tumor regression without toxicity [300].
pRNA–HER2apt–siMED1 is an aptamer-based complex nanoparticle that binds HER2-
overexpressing BC to silence the ER coactivator Mediator Subunit 1 (MED1) expression,
a molecule implicated in tamoxifen resistance [301]. The HER2 RNA aptamer reduced
the growth and metastasis capacities and made BC cells more susceptible to tamoxifen
treatment [301].
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Figure 3. Epigenetic modifications detection and novel strategies for epigenetic editing in the thera-
peutic approaches for breast cancer. The aberrant changes of the epigenetic mechanisms, such as DNA
methylation, histone modifications, and ncRNAs led to the activation of oncogenes and/or silencing
of tumor suppressor genes affecting signaling pathways pivotal for cell maintenance, repair, and
homeostasis. These epigenetic modifications regulate and contribute to every single cancer hallmark
discussed (Figure 2), and eventually trigger breast cancer initiation, progression, and metastasis. The
specific type of epigenetic modifications can be detected using solid and liquid biopsy sampling and
the application of integrative analysis of multi-omics (genomics, proteomics, transcriptomics, epige-
nomics, metabolomics) approaches. The multi-omics data derived from human and mouse models
of BC can help for the identification of aberrant epigenetic profiles, providing insights into cancer
biology and rendering novel tumor epigenetic diagnostic, prognostic biomarkers, and epigenetic
therapeutic tools with an important clinical value. Strategies for epigenetic corrections in BC patients
are depicted. In site-specific epigenetic editing, CRISPR-Cas9 fused to the effector domain (ED) for
epigenetic corrections, and TALEN strategies integrated with cell-specific promoters can be used to
restore normal chromatin structure and correct specific epigenetic aberration localized to specific
cell types. In addition, the application of a nano-based drug delivery systems (NDDs) increases
the uptake rate of target cells or tissues and reduces enzyme degradation, hence improving the
safety and effectiveness of drugs. Me—methylated DNA or methylated histone, P—phosphorylated
histone, Ac—acetylated histone, ncRNAs—noncoding RNAs, miRNA—micro RNAs, BC—breast
cancer, ED—effector domain. Figure created using BioRENDER.com. Accessed on 17 April 2022.

Affibodies are engineered scaffold proteins based on a three-helix bundle domain
designed to bind with high affinity to desired targets and obtain affibody-drug conju-
gates [302]. Xia et al. designed Z-M ADCN, a conjugate nanoagent self-assembled into
nanomicelles, resulting in improved pharmacokinetics and in vivo targeting performance
due to longer retention time in blood and higher drug accumulation in the tumor [303]. In
addition, Yamaguchi et al. evaluated the combination of Near-infrared photoimmunother-
apy (NIR-PIT) with a HER2 Affibody-IR700Dye and a trastuzumab-IR700Dye conjugate
in BC [304]. IR700Dye is a photosensitizer that, when irradiated with near-infrared light
(690 nm), causes damage to the cell membrane and cell death without an effect on normal
cells [305]. Both conjugates, which target different epitopes on HER2 protein, enhanced
the effect of NIR-PIT against HER2-positive BC cells, including those with low HER2
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expression, thus proposing a new therapeutic strategy for HER2+-patients resistant to
trastuzumab [304].

Delving into the mechanisms that produce drug resistance is essential for understand-
ing the activity and efficacy of the drug. Resistance to chemotherapy is a multifactorial
problem that may be associated with mutations and overexpression of key proteins such
as ER and MED1, respectively, in BC [306–308]. In addition to cellular mechanisms, there
is currently a need to study the physicochemical properties of anticancer molecules as a
new approach for improving drug design [309]. Intriguingly, Klein et al. demonstrated
that antineoplastic drugs can be selectively partitioned and concentrated within phase-
separated biomolecular condensates such that their pharmacodynamic characteristics are
disturbed [310]. Biomolecular condensates are membraneless intracellular subcompart-
ments that concentrate molecules. They can be formed through stoichiometric molecule-to-
molecule binding, such as with chromatin scaffolding and histone modifications, or through
liquid–liquid phase separation (LLPS) thermodynamically driven [311,312], regulate cell
functions through various mechanisms, thus endowing cancer cells with traits [313]. BC
cells that overexpress MED1 are resistant to tamoxifen, due to an increase in the volume of
transcriptional condensates where MED1 is incorporated, resulting in dilution of tamoxifen,
which in turn affects its ability to dissociate the ERα-MED1 condensate, promoting onco-
gene transcription [310]. The study of the physicochemical properties of the compounds
that allow them to concentrate in certain condensates not only leads to the design of new
ways of modifying the drug but also improves the efficacy of the delivery systems or
conjugates that direct it to specific condensates to overcome therapeutic limitations, such
as drug resistance.

3.5. Nanoparticle-Based Drug Delivery to Overcome Drug Resistance in BC Treatment

Nano-drug delivery systems (NDDS) and nanomedicine have opened a new thera-
peutic era with specific advantages, including improved stability and biocompatibility,
enhanced permeability and retention effect, and precise targeting over conventional drug
delivery systems, hence reducing the adverse effects of anticancer drugs [314,315]. More-
over, Nanocarriers (NCs) or Nanoparticles (NPs) raise big hopes to overcome cancer-related
drug resistance and are considered to enhance immunotherapy, as well as reverse the tumor
immunosuppressive microenvironment [316–318]. In addition, NPs not only increase the
half-life of drugs and enhance their accumulation into tumor tissues due to deep tissue
penetration abilities [319], but also offer a platform for poorly soluble drugs to be encap-
sulated and delivered more efficiently into the circulation [320]. Nevertheless, the NPs
are required to hold certain characteristics, such as the ability to escape the mononuclear
phagocyte system (MPS), and the reticuloendothelial system (RES) clearance, penetration in
extracellular matrix (ECM), remain stable in the vascular system until they reach the target,
high-pressure penetration into the tumor fluid, and accumulate in the tumor microenviron-
ment (TME) via tumor vasculature [321]. However, NPs should still pass through numerous
physiological and biological barriers to extravasate into the tumor tissue and reach cellular
and subcellular levels such as complex systems of several layers (epithelium, endothelium,
and cellular membranes), ability to escape from the endo-lysosomal system, and enzymatic
components [316]. Nevertheless, there are two defined targeting strategies for NPs drug
delivery systems: passive targeting and active targeting [322,323]. Regarding active target-
ing, cancer cells are targeted specifically by means of direct interactions between ligands on
the surface of NPs which bind to the overexpressed cluster of receptors, such as epidermal
growth factor receptor (EGFR), on the surface of cancer cells [324–326]. The ligand–receptor
interaction system allows NPs to distinguish targeted cells from non-targeted healthy cells,
and therefore induces receptor-mediated endocytosis to successfully release therapeutic
drugs inside targeted cells [327]. However, actively targeted NPs should reach their target
in the first place to take advantage of this increased affinity and avidity, which remains a
formidable challenge [328,329]. In addition, the active targeting mechanism relies on the
overexpression of specific markers in tumor cells relative to the non-targeted healthy cells.
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However, healthy cells in certain tissues of the body may present the same amount of those
specific markers, or even to a greater extent than in targeted-tumor cells, which leaves
those non-targeted cells more vulnerable to drug toxicity [330,331]. Hence, efficient passive
targeting seems to be a prerequisite for NPs designed to target tumor cells and seems less
complex than the active targeting [328]. Passive targeting takes advantage of the enhanced
permeability and retention (EPR) phenomenon and unique characteristics of solid tumors,
such as leaky vasculature and impaired lymphatic drainage. Under certain circumstances
such as hypoxia, inflammation, or neovascularization, the endothelium layer of the blood
vessels becomes more permeable, which provides very little resistance to extravasation, and
hence permits NPs and even macromolecules to leak or diffuse from such blood vessels and
ultimately collect within cancer cells [316,332,333]. This process denotes the enhanced per-
meability part of the so-called enhanced permeability and retention (EPR) effect. However,
when a tumor develops, the lymphatic function gets impaired, which leads to minimal
interstitial fluid uptake and can cause the NPs retention as they are not cleared and stored
in the tumor interstitium, which is the main cause for enhanced retention part of the EPR ef-
fect [334]. Hence, encapsulating these small molecules in nanosized drug carriers should be
routinely carried out to improve tumor selectivity, entry into tumor cells, and reduce their
side effects [335]. The size of NPs is an important factor in determining their characteristics
and applications, which influences their extravasation and accumulation [314]. NPs that
are larger than 100 nm are more likely to be cleared from circulation by phagocytes [336].
On the other hand, smaller NPs that are less than 10 nm in diameter can be easily filtered
by kidneys, and tiny NPs less than 1–2 nm can leak rapidly from the normal vasculature to
the damaged normal cells [337]. Thus, a size range of 10 to 100 nm in diameter is generally
considered appropriate for cancer therapy. Another factor that affects the characteristics of
NPs and influences their bioavailability and half-life is the surface material. For example,
coating the surface of NPs with hydrophilic materials such as polyethylene glycol (PEG)
was shown to reduce the opsonization and hence avoid their clearance by the immune
system [338]. Moreover, hydrophilic NPs were shown to increase the drug circulation time
with improved penetration and accumulation in tumors [338,339]. Moreover, the elasticity
of NPs was shown to have potential benefits [340] with prolonged blood circulation for
softer nanoparticles (10 kPa) compared to harder nanoparticles (3000 kPa) when applied
in vivo. Furthermore, softer nanoparticles exhibit significantly reduced cellular uptake
in vitro in immune cells (J774 macrophages), endothelial cells (bEnd.3), and cancer cells
(4T1) [340]. In the meantime, regardless of NPs’ active or passive targeting strategies,
their application in the clinical treatment of various cancer types remains unsatisfactory,
with significant challenges such as complexity and sophistication in design, and lack of
diagnostic imaging technologies to evaluate the targeting efficiency of NPs. Above all,
the NP-mediated toxicity in the host due to inadvertent immune system recognition of
nanoparticles can trigger a multi-level immune response, resulting in invasiveness of tumor
cells and metastasis to distal organs. Hence, further investigations are required for a better
understanding of the TME and the crosstalk between NPs and tumor immunity, identi-
fication of real biomarkers coupled with the development of better and more predictive
pre-clinical animal models would help for more precise drug design and exploitation.
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