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Abstract

Background: Quantitative traits or continuous outcomes related to complex diseases can provide more information
and therefore more accurate analysis for identifying gene-gene and gene- environment interactions associated with
complex diseases. Multifactor Dimensionality Reduction (MDR) is originally proposed to identify gene-gene and
gene- environment interactions associated with binary status of complex diseases. Some efforts have been
made to extend it to quantitative traits (QTs) and ordinal traits. However these and other methods are still
not computationally efficient or effective.

Results: Generalized Fuzzy Quantitative trait MDR (GFQMDR) is proposed in this paper to strengthen identification
of gene-gene interactions associated with a quantitative trait by first transforming it to an ordinal trait and
then selecting best sets of genetic markers, mainly single nucleotide polymorphisms (SNPs) or simple sequence
length polymorphic markers (SSLPs), as having strong association with the trait through generalized fuzzy
classification using extended member functions. Experimental results on simulated datasets and real datasets
show that our algorithm has better success rate, classification accuracy and consistency in identifying gene-gene
interactions associated with QTs.

Conclusion: The proposed algorithm provides a more effective way to identify gene-gene interactions associated with
quantitative traits.

Keywords: Quantitative traits, Gene-gene interactions, Multifactor dimensionality reduction, Ordinal traits, Fuzzy
accuracy

Background
With the advent of the genomic era, doctors can utilize
genetic data to analyze the mechanisms of diseases and
customize medical treatment. Diseases are usually asso-
ciated with genetic variants, mainly single nucleotide
polymorphisms (SNPs) or simple sequence length poly-
morphic markers (SSLPs), which are already a valuable
source for mapping complex diseases and complex gen-
etic traits [1]. Searching for genetic factors that influence
complex traits and complex diseases is both a goal and a
challenge for modern geneticists.

In recent years, the field has been revolutionized by
using genome-wide association studies (GWASs) to as-
sess the statistical associations of genetic variants with
many important common diseases [2]. A single-locus ap-
proach, where each variant is tested individually for as-
sociation with a specific phenotype is used by most of
these studies. However research limited to individual
gene effects will make a large proportion of the heredity
of complex diseases and complex traits unexplained [3,
4]. Gene-gene and gene-environment interactions play
an important role in genetic association studies of com-
plex diseases and complex traits [5]. If a genetic factor
functions primarily through interaction with other gen-
etic factors or environmental factors, the effect might be
missed if the gene is examined individually without
allowing for its interactions with these other unknown
factors.

* Correspondence: zhou_xiangdong@hotmail.com
1College of Mathematics and Computer Science, Fuzhou University, Fuzhou,
Fujian, China
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Zhou and Chan BMC Bioinformatics  (2018) 19:329 
https://doi.org/10.1186/s12859-018-2361-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2361-5&domain=pdf
http://orcid.org/0000-0003-1048-9631
mailto:zhou_xiangdong@hotmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


A variety of methods have been proposed to identify
gene-gene interactions existing in complex diseases.
These methods include regression modeling [6–10], data
reduction [11–14], genetic programming [15], neural
networks [16, 17], pattern mining [18, 19] and machine
learning approaches, such as random forest [20], support
vector machine [21] and ensemble learning [22].
These methods are mainly used in a case control study

to identify interactive SNPs for predicting a binary dis-
ease status and have achieved great success. Among
these methods, the Multifactor Dimensionality Reduc-
tion (MDR) method, was proposed as a nonparametric
and model-free data reduction approach for identifying
interactions without significant main effects and has
been successfully applied to identify gene-gene interac-
tions in many common complex diseases [13, 23, 24]. In
the analysis of binary traits, MDR reduces high dimen-
sion of multi-locus genotype combinations to one di-
mension of two groups: high risk group and low risk
group, thus avoids the problem of sparse data combina-
tions and models with too many parameters. Each geno-
type combination is classified as either high risk or low
risk according to its ratio of cases and controls. The set
of genetic markers which has best classification perform-
ance is then selected as having the strongest association
with the trait. Although MDR has been extended in
many directions, it is mainly applied in binary traits.
However in many cases, continuous outcomes or

quantitative traits such as body weight, tumor size, blood
pressure can provide more accurate analysis.
Some efforts have been made to extend MDR to quan-

titative traits (QTs). The Combinatorial Partitioning
Method (CPM) [25] was proposed to identify partitions
of multi-locus genotypes for predicting variation in
quantitative trait levels. The Restricted Partition Method
(RPM) detects multi-locus genotypes as predictors of a
quantitative trait by a partitioning of genotypes into sub-
groups. The Generalized MDR (GMDR) [26] extends
MDR to continuous phenotypes and includes covariate
adjustment. In Model based MDR (MB-MDR) [27],
MDR is extended to continuous outcomes by using
parametric regression.
There are also methods based on information theory.

In [28], a method built on two information-theoretic
metrics, the k-way interaction information (KWII) and
phenotype-associated information (PAI) is developed for
analyzing the gene-gene and gene-environmental inter-
actions associated with quantitative traits. In [29], as an
extension of the usefulness of information gain, a non-
parametric evaluation method of conditional entropy of
a quantitative phenotype associated with a given geno-
type is proposed. In [30], an entropy-based statistic
which asymptotically follows a χ2 distribution is pro-
posed to test genetic epistasis. This approach can test

genetic epistasis with high efficiency in a case-only
design.
CPM searches over the state space made up of all pos-

sible sets of genotypic partitions of all the m-locus geno-
types to identify m loci that divide corresponding
genotypes into k partitions that are most similar within
and most dissimilar between partitions for the mean of a
quantitative trait. The number of k sets of genotypic par-
titions is a Stirling number of the second kind:

S gM;k
� �

¼ 1
k!

Xk−1
i¼0

−1ð Þi k
i

� �
k−ið ÞgM ð1Þ

Where gM is the size of the set of m-locus genotypes.
A permutation test is used to estimate P values for the
R2 for each of the k sets of genotypic partitions.
The RPM tries to find the most reasonable partition

for evaluation to decrease most of the computational
burden associated with the CPM. However a permuta-
tion test is used for all possible m-locus classifiers.
MB-MDR is implemented in R (https://www.r-projec-

t.org/) but is only used on one-way and two-way inter-
action models [30]. G-MDR still requires the outcome in
the data file to be dichotomous [30].
KWII needs to compute the entropies of all subsets of

m loci. Although the computation of the PAI requires
only individual and joint entropies, making it computa-
tionally far more tractable than the KWII, the hill climb-
ing algorithm it employs will miss many interactions
which have small main effects.
In Quantitative MDR (QMDR) [31], to exploit con-

tinuous outcomes to make the analysis more accurate, a
test statistic, rather than the balanced accuracy, is used
to determine the best interaction model. This is a com-
putationally efficient algorithm. However this method
still classified the outcome into two groups: high and
low level groups, which results in the loss of the large
variability of the quantitative outcome.
Also there are few methods applied to ordinal categor-

ical traits. Ordinal categorical traits such as the obesity
classification based on body mass index (e.g., normal,
pre-obese, mild obese and severe obese), the diabetes
diagnosis based on glucose level (e.g., normal, impaired
glucose tolerance and diabetes) are common in many
genetic association studies. These traits are also derived
from quantitative traits. In Ordinal MDR (OMDR) [32],
MDR is extended to analyze gene-gene interaction for
ordinal traits and tau-b [33], a common ordinal associ-
ation measure, is used to replace balanced accuracy to
evaluate interactions. However the tau-b measure only
measures the degree of tendency of positive association
between true categories of an ordinal trait and predicted
categories and doesn’t consider the difference between
true categories and predicted categories.
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In order to better use the information contained in the
quantitative trait, we first classify the quantitative outcome
into several (greater than two) ordinal levels. Then an ex-
tended MDR is used to identify gene-gene interactions on
this converted ordinal categorical trait. Rather than using
balanced accuracy or common ordinal association mea-
sures, such as tau-b, we use a generalized fuzzy classifica-
tion method to select the set of genetic markers as having
the strongest association with the trait. Usually for each
prediction of a category, its accuracy value is either 1, if the
prediction is right, or 0, if the prediction is wrong. However
for quantitative or ordinal traits, when the prediction is
wrong, the closeness of a quantitative value to the true cat-
egory is different. To reflect such difference, member func-
tions of fuzzy sets could be employed to compute accuracy
in classification. Since the range of a member function is
between 0 and 1, to better describe the difference of quanti-
tative values to a category, we extend its range to {− 1, 1}
when it is used in fuzzy classification.
In this paper, a new kind of member functions which

have an extended output range from − 1 to 1 are pro-
posed to be used in fuzzy classification first. Then Gen-
eralized Fuzzy Quantitative MDR (GFQMDR) algorithm
which is an improvement of Fuzzy Quantitative trait
based Ordinal MDR (FQOMDR) in [34] is given to
strengthen identification of gene-gene interactions asso-
ciated with QTs. This algorithm first transforms a quan-
titative trait into an ordinal trait and then select best
sets of SNPs as having strong association with the trait
using such kind of member functions in the extended
MDR. To test the performance of the proposed algo-
rithm, we use it to identify five different interaction
models in simulated data and compare success rates
with three other methods. We also use it in two real
data sets to select SNPs having strong association
with the trait and compare balanced test accuracy
and consistency with the same three other methods.

Methods
Traditional member functions
The degree of membership of different values to a fuzzy
set can be computed using a membership function
whose range is between 0 and 1.
Take QTs as an example. Usually we can divide them

into three intervals or levels: high (H), average (A) and
low (L) associated with three fuzzy sets. Here as an ex-
ample, we use equal length intervals and associate them
with three fuzzy sets using linear member functions, as
shown in Fig. 1.
Let Qmin and Qmax denote the maximum and mini-

mum values that a QT takes on in all samples in a data-
set. B1 and B2 are upper borders of the low level and the
average level respectively. P1, P2 and P3 are the middle
positions of the low level, average level and high level re-
spectively can be derived as follows:

P1 ¼ Qmin þ B1

2
ð2Þ

P2 ¼ B1 þ B2

2
ð3Þ

P3 ¼ B2 þ Qmax

2
: ð4Þ

Then member functions for L, A and H levels in Fig. 1
can be expressed as:

μL1 xð Þ ¼
1; if x <¼ P1
P2−x
P2−P1

; if P1 < x <¼ P2

0; otherwise

8><
>:

ð5Þ

μA1 xð Þ ¼

x−P1

P2−P1
; if P1 <¼ x <¼ P2

P3−x
P3−P2

; if P2 < x <¼ P3

0; otherwise

8>>><
>>>:

ð6Þ

Fig. 1 The linear membership functions of high(H), average(A) and low(L) levels of a QT
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μH1 xð Þ ¼
0; if x <¼ P2
x−P2

P3−P2
; if P2 < x <¼ P3

1; otherwise

8><
>:

ð7Þ

Generalized fuzzy classification using extended member
functions
Membership functions of fuzzy sets can also be used as
an accuracy measure in fuzzy classification. For example,
when different values are classified to the high level, we
can get different accuracies between 0 and 1 from
μH1(x). However when selecting a best classifier com-
posed of a set of SNPs to classify a QT, such a range
could not fully show differences among different classi-
fiers. For example, if there are both 500 samples in geno-
types that are classified as the high level for two
classifiers, for classifier 1 there are 300 samples located
at P3, 200 samples located at P2 and 100 samples located
at P1 in genotypes that are classified as the high level,
for classifier 2 there are 300 sample located at P3, 100
samples located at P2 and 200 samples located at P1 in
genotypes that are classified as high levels, then the ac-
curacies of the high level for these two classifiers would
be the same: 0.6. However classifier 1 is obviously a bet-
ter classifier to classify the high level. To reflect such dif-
ference, we extend the range of member functions from
{0, 1} to {− 1, 1} when they are used in fuzzy classifica-
tion to select the best classifier.
Such a linear extended member function is illustrated

in Fig. 2 and can be expressed as:

μL2 xð Þ ¼
1; if x <¼ P1
P2−x
P2−P1

; if P1 < x <¼ P3

‐1; otherwise

8><
>:

ð8Þ

μA2 xð Þ ¼
x−P1

P2−P1
; if x <¼ P2

P3−x
P3−P2

; otherwise

8><
>:

ð9Þ

μH2 xð Þ ¼
‐1; if x <¼ P1
x−P2

P3−P2
; if P1 < x <¼ P3

1; otherwise

8><
>:

ð10Þ

It can also be regarded as a transformation of the
member function in Fig. 1 as follows:

μL2 xð Þ ¼
μL1 xð Þ; if x <¼ P2

P2−x
P2−P1

; if P2 < x <¼ P3

‐1; otherwise

8><
>:

ð11Þ

μA2 xð Þ ¼

x−P1

P2−P1
; if x <¼ P1

μA1 xð Þ; if P1 <¼ x <¼ P3

P3−x
P3−P2

; otherwise

8>>><
>>>:

ð12Þ

μH2 xð Þ ¼
‐1; if x <¼ P1
x−P2

P3−P2
; if P1 < x <¼ P2

μH1 xð Þ; otherwise

8><
>:

ð13Þ

MDR algorithm
In order to detect high- dimensional gene-gene inter-
action, MDR reduces genotype combinations at multiple
loci into a single class variable taking values of either
high risk or low risk categories, then tests association
between a binary trait or disease with this new one di-
mensional variable.

Fig. 2 The extended linear membership functions of high(H), average(A) and low(L) levels of a QT
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The MDR method proceeded as follows. The 10-fold
cross validation is used. A set of m genetic factors is se-
lected and their possible combinations or cells are repre-
sented in m dimensional space. For example, for two
diallelic loci, each has three genotypes and there are nine
two-locus-genotype combinations. Then the ratio of the
number of cases to the number of controls is estimated
within each cell, which is then labeled either as “high--
risk”, if the cases:controls ratio is equal or greater than
some threshold, or otherwise as “low-risk”. Thus all cells
are allocated to either high risk group or low risk group,
which reduces the n-dimensional model into a one di-
mensional model. The procedure is repeated for each
possible n-factor combination. The training balanced ac-
curacy of the two groups is used to select the best classi-
fier. Balanced accuracy is defined as the arithmetic mean
of sensitivity and specificity:

sensitivity þ specif icityð Þ=2
¼ TP= TPþ FNð Þ þ TN= TNþ FPð Þð Þ=2 ð14Þ

where TP represents true positives, TN represents true
negatives, FP represents false positives, and FN repre-
sents false negatives. The prediction error of the selected
best classifier can be estimated using the remaining one-
tenth of the data to get the testing balanced accuracy. The
process is repeated for all ten training sets and testing sets
and for each of the selected m-locus classifiers, the num-
ber of cross-validation replicates in which it is chosen as
the best classifier (cross-validation consistency) is re-
corded. The m-locus classifier that has the maximum test-
ing balanced accuracy and highest cross-validation
consistency is selected as the final best m-locus classifier,
where cross-validation consistency is used as a tie-break.
For an ordinal categorical trait with J levels, an m di-

mensional cell is labeled as one of J groups as follows.
Let 1, 2, ..., J be J levels or categories for an ordinal trait.
For any combination of m SNPs, let n+j be the number
of individuals in class j, nij be the number of individuals
with the ith multi-locus genotype in category j, where i
= {1, 2,...,3m} and j = 1, 2,..., J. Then the ith m-locus geno-
type will be labeled as category c(i) as follows:

c ið Þ ¼ arg max
j∈ 1;…; Jf g

nij
nþ j

� �

GFQMDR algorithm
GFQMDR extends MDR to analyze quantitative traits by
first converting them to ordinal traits. Then Instead of
evaluating each classifier using balanced accuracy or
common ordinal association measures, it uses general-
ized fuzzy classification based on extended member
functions to evaluate each classifier and select the best

one as having the strongest association with the trait.
The procedure of GFQMDR is as follows:

1. Divide the range of a quantitative trait into J
intervals and label them as categories 1, 2,…,J
respectively.

2. Partition the dataset into L subsets for L-fold cross-
validation (CV). Use one of the L subsets as a
testing set and the rest as a training set.

3. For each m-way interaction derived from m SNPs
or SSLPs, let nij be the number of individuals
belonging to category j with the ith multi-locus
genotype in the training set, n+j be the total number
of individuals belonging to category j in the training
set, where i = {1, 2,...,3m} and j = 1, 2,..., J. Then all
individuals with the ith multi-locus genotype will be
assigned into the category c(i) by the classifier
corresponding to the m given SNPs as follows:

c ið Þ ¼ arg max
j∈ 1;…; Jf g

nij
nþ j

� �
ð15Þ

where nij and n+j are real numbers, nij is computed using
the extended linear member function, n+j, the size of
class j, is computed using the traditional linear member
function.

4. Compute the training balanced accuracy for each
m-way interaction:

1
J

X3m

i¼1

ni;c ið Þ
nþc ið Þ

ð16Þ

where ni,c(i), the number of individuals with the ith
multi-locus genotype which really belong to the class
they are classified to, is computed using the extended
linear member function.

5. Select k classifiers that have best training balanced
accuracies and compute their testing balanced
accuracies.

6. Repeat steps 3–5 on all L CV dataset.
7. Since multiple gene-gene interactions associated

with a QT is common in complex traits, multiple
candidates of m-way gene-gene interactions are
selected as having the maximum testing balanced
accuracy and highest generalized cross-validation
consistency based on top-K selection (GCVCK or
simplified as GCVC) [34], where general cross-
validation consistency is used as a tie-break.. The
GCVCK is calculated as follows:
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GCVCK ¼
XL

l¼1
Il where Il

¼
1; if the MDR classifier is identified as one

of top‐K classifiers at 1thCV dataset
0; otherwise

8<
:

ð17Þ

8. To lower type I error, compute P values of selected
candidates of m-way gene-gene interactions based
on 1000 permutations and select candidates having
P values smaller than α (α is a prescribed threshold)
as final identified gene-gene interactions.

Results
Experiments on simulation data
Experimental setup
The simulation experiment is designed to study the suc-
cess rate of the proposed method and compare it with
that of MDR, OMDR and Fuzzy Quantitative MDR
(FQMDR) which uses fuzzy classification based on trad-
itional member functions.
Five different interaction models were used for the or-

dinal trait transferred from a quantitative trait (Fig. 3)
[32]. For each model, one pair of SNPs was simulated as
a causal factor among all possible combinations.
The program gs 2.0 [35, 36] can quickly generate a

large number of samples with genotype data based on
real data that share similar local linkage disequilibrium
(LD) patterns as those in human populations. It can be
used to implement various interaction models. So we
first use gs 2.0 to generate simulated genotype data.
Since the outcome is binary status (case or control), we

derive continuous outcome from the penetrance functions
(the penetrance function denotes the probability of being

a case for each genotype combination.) of the five models
as follows:
Let fij be the element from the ith row and jth column

of a penetrance function for two interacting SNPs, the
QT is generated from the following normal distribution:

y j SNP1 ¼ i; SNP2 ¼ j � N f ij; σ
�

� �
ð18Þ

where fij and σ* are the mean and variance of the normal
distribution respectively. Then the QT is transferred to
an ordinary trait with three categories. Since the QT
obeys a normal distribution, we use the following classi-
fication. Let μ, σ be the mean value and variance of the
quantitative trait, any quantitative trait value smaller
than μ-σ/2 is classified as low category; any value be-
tween μ-σ/2 and μ + σ/2 is classified as middle category;
any value larger than μ + σ/2 is classified as high
category.
We use two different minor allele frequencies (MAF =

0.2 and 0.4), five different variances (σ* = 0.1, 0.2, 0.3, 0.4
and 0.5) and three different sample size (n = 200, 400,
800) with fixed SNP number (100 SNPs) and penetrance
functions (0.01, 0.25, 0.5 for white, light grey, dark grey
in Fig. 3. respectively) to create simulated datasets. For
each interaction model, 100 replicated datasets were
generated. Varying variances with fixed penetrance func-
tions is equivalent to varying penetrance functions with
fixed variances.
Hit ratio which is defined as the proportion of repli-

cates with which the true causal SNPs are detected as
the best SNPs among all possible same number of SNPs
is used to measure the success rate. Here the best SNPs
are also selected by using step 8 of the GFQMDR algo-
rithm with α set as 0.01.

Fig. 3 Models of two way interactions for ordinal traits. White, light grey, dark grey represent normal, low risk, high risk of an ordinal trait respectively.
(Figure is from [25])
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To test the type I error rate, the null datasets with no
causal pair of SNPs were simulated for different sample
sizes (n = 200, 400 and 600) and different SNP numbers
(m = 10, 15, 20). Permutation P values of the identified
strongest interaction pair of SNPs were calculated by
permuting trait values of each dataset 1000 times. The
ratio of the permutation values smaller than the sig-
nificance level =0.01 in 1000 replicates is calculated as
the type I error rate. The number of the permutation en-
sured its accuracy to one decimal place when expressed
in percent.
To demonstrate the power of the proposed algorithm

to detect multiple gene-gene interactions associated with
a QT, we use a combination of two models to simulate
two set of two interacting SNPs associated with a QT.
We use two combinations. One is a combination of
model 1 and model 2, another is a combination of model
3 and model 4.
Let f1ij be the element from the ith row and jth col-

umn of the penetrance functions for the first set of two
interacting SNPs and f2kl be the element from the kth

row and lth column of the penetrance functions for the
first set of two interacting SNPs, the QT is generated
from the following normal distribution:

y j SNP1 ¼ i; SNP2 ¼ j; SNP1 ¼ k; SNP2 ¼ l

� N w1 f 1ij þ w2 f 2ij; σ
�

� �

where w1f1ij +w2f2ij and σ* are the mean and variance of
the normal distribution respectively, w1 and w2 are the
weights. Then the QT is transferred to an ordinary trait
with three categories as in the first experiment.
We use two different MAFs (0.2 and 0.4), three differ-

ent variances (σ* = 0.1, 0.2 and 0.3) and three ratio of
weights with fixed sample size (n = 200) and fixed SNP
number (100 SNPs) and penetrance functions (0.01,
0.25, 0.5 for white, light grey, dark grey in Fig. 3. respect-
ively) to create simulated datasets. For each interaction
model, 100 replicated datasets were generated. Hit ratio
is also used to measure the success rate with α set as
0.01 in step 8 of the GFQMDR algorithm here.

Table 1 Hit ratios (%) for model 1

Sample
size

MAF Method Variance

0.1 0.2 0.3 0.4 0.5

200 0.2 GFQMDR 82 57 25 11 6

FQMDR 81 51 23 9 5

OMDR 64 55 29 16 6

MDR 78 47 18 7 3

0.4 GFQMDR 99 79 56 36 25

FQMDR 99 66 45 26 17

OMDR 97 72 47 27 17

MDR 94 67 43 18 14

400 0.2 GFQMDR 98 76 48 31 11

FQMDR 98 76 53 28 16

OMDR 90 73 46 28 19

MDR 96 68 45 23 11

0.4 GFQMDR 100 89 74 54 43

FQMDR 99 83 65 44 31

OMDR 100 81 61 43 37

MDR 99 75 57 41 24

800 0.2 GFQMDR 100 90 71 53 33

FQMDR 100 92 67 49 36

OMDR 89 86 63 50 35

MDR 99 87 60 48 31

0.4 GFQMDR 100 99 96 89 80

FQMDR 100 95 91 73 62

OMDR 100 98 83 71 60

MDR 100 95 82 66 55

Table 2 Hit ratios (%) for model 2

Sample
size

MAF Method Variance

0.1 0.2 0.3 0.4 0.5

200 0.2 GFQMDR 90 66 44 22 10

FQMDR 89 58 38 24 13

OMDR 89 62 35 23 11

MDR 82 59 29 15 10

0.4 GFQMDR 97 82 61 42 28

FQMDR 96 77 54 41 30

OMDR 93 80 55 41 30

MDR 90 69 52 38 19

400 0.2 GFQMDR 98 84 71 52 34

FQMDR 97 82 66 52 36

OMDR 99 78 63 48 35

MDR 92 80 56 43 31

0.4 GFQMDR 99 95 81 66 49

FQMDR 98 92 78 63 51

OMDR 98 92 78 72 52

MDR 97 91 73 64 48

800 0.2 GFQMDR 100 96 89 74 49

FQMDR 100 96 88 70 56

OMDR 100 95 85 68 53

MDR 99 94 84 63 51

0.4 GFQMDR 100 100 94 82 68

FQMDR 100 100 93 83 74

OMDR 100 100 90 83 74

MDR 100 98 91 76 67
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Experiment results
Experiment results of five models are shown in Tables 1,
2, 3, 4 and 5.
The performance of GFQMDR is better than other

three methods in general. It is also observed that the
performances of FQMDR and OMDR are better than
that of MDR and the performance of FQMDR is slightly
better than that of OMDR.
For the type I error rate, results given in Table 6 show

that GFQMDR has type I error rate tightly gathering
around 1% with a range from 0.7 to 1.3%, better than
three other methods. Therefore GFQMDR controls type
I error rate better.
Tables 7 and 8 show results for the third experi-

ment. All methods identify both models with rela-
tively high ratios when two weights are similar and
identify the model having higher weight with high
ratios and the model having lower weight with low
ratios when two weights are different. On the whole,
GFQMDR identifies model 2, 3 and 4 with higher
hit ratios than three other methods, but identifies

model 1 with lower hit ratios than FQMDR and
OMDR.

Experiments on real data
Experimental setup
We use two real datasets to show applications and per-
formance of the proposed method.
One is high density lipoprotein and atherosclerosis

data of 294 female F2 mice.
Atherosclerosis is a complex disease related to both

environmental and genetic factors. Since the QTL for a
trait are located in homologous regions in mice and
humans, analysis of mouse atherosclerosis can facilitate
genetic analysis of human atherosclerosis.
Female B6 mice have low plasma high-density lipo-

protein (HDL) levels and are susceptible to athero-
sclerosis while female 129 mice have high plasma
HDL levels and are relatively resistant. F2 mice are
derived from intercross of (B6 × 129) F1 progeny pro-
duced by the mating of C57BL/6 J (B6) and 129S1/
SvImJ (129) mice. This dataset contains genotypes of

Table 3 Hit ratios (%) for model 3

Sample
size

MAF Method Variance

0.1 0.2 0.3 0.4 0.5

200 0.2 GFQMDR 93 65 44 21 9

FQMDR 90 52 28 13 7

OMDR 87 50 22 11 6

MDR 87 52 24 10 4

0.4 GFQMDR 83 73 55 37 27

FQMDR 83 70 53 37 24

OMDR 80 65 52 40 31

MDR 80 60 44 30 13

400 0.2 GFQMDR 99 79 61 41 27

FQMDR 95 66 45 26 11

OMDR 98 64 34 18 15

MDR 96 61 32 14 5

0.4 GFQMDR 100 92 83 70 56

FQMDR 99 91 75 58 48

OMDR 100 91 74 55 46

MDR 96 89 72 54 36

800 0.2 GFQMDR 100 99 85 64 44

FQMDR 100 95 76 53 40

OMDR 100 89 72 37 34

MDR 99 91 71 44 23

0.4 GFQMDR 1 1 97 93 81

FQMDR 1 1 93 86 73

OMDR 1 99 93 82 72

MDR 1 1 94 82 73

Table 4 Hit ratios (%) for model 4

Sample
size

MAF Method Variance

0.1 0.2 0.3 0.4 0.5

200 0.2 GFQMDR 76 36 17 6 3

FQMDR 76 41 21 8 3

OMDR 69 41 21 10 4

MDR 65 39 17 3 2

0.4 GFQMDR 86 65 49 30 17

FQMDR 83 60 35 17 12

OMDR 85 56 42 17 9

MDR 76 50 24 13 6

400 0.2 GFQMDR 88 50 18 7 3

FQMDR 85 61 33 15 7

OMDR 69 47 35 19 12

MDR 80 59 26 13 5

0.4 GFQMDR 95 78 56 35 24

FQMDR 95 66 46 28 22

OMDR 96 73 46 35 25

MDR 90 57 37 26 16

800 0.2 GFQMDR 98 74 45 22 10

FQMDR 98 77 46 27 19

OMDR 88 61 33 26 15

MDR 95 71 45 25 14

0.4 GFQMDR 1 90 74 59 48

FQMDR 1 87 65 45 37

OMDR 1 91 63 46 34

MDR 1 74 57 44 36
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111 SSLPs, HDL concentration and size of aortic fatty
streak measurements for 294 female F2 mice fed a
high-fat diet for 14 weeks [37]. The data were down-
loaded from the Center for Genome Dynamics at the
Jackson Laboratory https://phenome.jax.org/projects/
Ishimori1. Here HDL concentrations and size of aor-
tic fatty streak (AFS) measurements are two quantita-
tive traits of interest. The atherosclerotic aortic fatty
streak lesion size variable was logarithmically trans-
formed (base 10).
Another is Ultra-violet (UV) Light-Induced Im-

munosuppression Data. F1 backcross mice are derived
from a backcross between low susceptibility BALB/c
female mice and high susceptibility (BALB/c × C57BL/
6) F1 male mice. This dataset contains 64 markers,
sex and UV light-induced percent immunosuppression
(PI) of a contact hypersensitivity response of 134 F1
backcross mice. The data were acquired from the
Center for Genome Dynamics at the Jackson
Laboratory https://phenome.jax.org/projects/Clemens1.

Table 5 Hit ratios (%) for model 5

Sample
size

MAF Method Variance

0.1 0.2 0.3 0.4 0.5

200 0.2 GFQMDR 83 48 29 10 3

FQMDR 79 38 11 2 3

OMDR 85 39 15 5 2

MDR 71 31 12 2 0

0.4 GFQMDR 82 56 38 25 11

FQMDR 75 51 32 16 7

OMDR 76 50 34 17 8

MDR 72 42 22 8 6

400 0.2 GFQMDR 94 78 53 26 20

FQMDR 93 59 22 14 6

OMDR 97 62 33 18 6

MDR 90 52 25 8 5

0.4 GFQMDR 94 78 56 36 23

FQMDR 93 68 46 25 15

OMDR 96 64 45 34 22

MDR 90 64 35 16 8

800 0.2 GFQMDR 99 90 73 58 39

FQMDR 99 75 55 35 22

OMDR 100 86 50 36 28

MDR 98 60 47 25 18

0.4 GFQMDR 1 94 76 59 45

FQMDR 1 91 66 45 37

OMDR 1 86 63 50 36

MDR 1 82 51 47 35

Table 6 Type I Error Rate with the Significance Level of 0.01
from Datasets with 1000 Replicates

m Method n

200 400 600

10 GFQMDR 1.2% 1.2% 1.2%

FQMDR 1.2% 0.4% 1.1%

OMDR 1.8% 0.8% 1.7%

MDR 1% 0.3% 1.3%

15 GFQMDR 1.2% 0.8% 1.3%

FQMDR 0.8% 0.5% 0.7%

OMDR 0.8% 0.6% 0.6%

MDR 0.8% 0.6% 1.5%

20 GFQMDR 1.1% 1.1% 0.7%

FQMDR 0.8% 1.2% 1.7%

OMDR 0.6% 1.4% 1.3%

MDR 0.9% 1% 1.1%

Table 7 Hit ratios (%) for model 1 and model 2

Weight
(w1:w2)

MAF Method Variance

0.1 0.2 0.3

0.5:0.5 0.2 GFQMDR 33:40 3:21 1:5

FQMDR 59:9 15:5 3:2

OMDR 52:7 13:9 4:4

MDR 48:8 8:3 2:1

0.4 GFQMDR 20:85 21:47 18:18

FQMDR 19:80 25:37 15:19

OMDR 23:75 26:45 20:22

MDR 20:71 19:34 10:13

0.7:0.3 0.2 GFQMDR 90:0 46:0 8:0

FQMDR 87:0 56:0 18:0

OMDR 83:0 40:0 18:2

MDR 89:0 43:0 6:0

0.4 GFQMDR 100:4 96:4 82:0

FQMDR 100:4 97:3 79:1

OMDR 100:7 96:6 78:2

MDR 100:0 91:1 66:1

0.3:0.7 0.2 GFQMDR 0:85 0:50 0:22

FQMDR 3:53 1:24 0:5

OMDR 3:47 0:25 0:14

MDR 1:45 0:14 0:3

0.4 GFQMDR 0:98 0:80 0:47

FQMDR 0:97 0:79 0:46

OMDR 0:90 0:72 0:46

MDR 0:95 0:73 0:35
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UV light-induced percent immuno- suppression is the
quantitative trait of interest.
For missing values of SSLP, we set them to the major-

ity value of that SSLP; for missing values of QTs, we set
them to the mean value of that quantitative trait.
All three QTs are divided into three equal length inter-

vals since better performance can be achieved in this
way. For HDL concentrations, three intervals are defined
as high concentration, middle concentration and low

concentration states respectively; for size of AFS, three in-
tervals are defined as large size, middle size and small size
states respectively; for UV light-induced percent immuno-
suppression three intervals are defined as high percent im-
munosuppression, middle percent immunosuppression
and low percent immunosuppression states respectively.

Experiment results
The GFQMDR method is used to select multiple best
2-way, 3-way and 4-way interactions in the above real
datasets associated with HDL, AFS and PI respectively
and α is set as 0.01 in step 8 of the GFQMDR algorithm
here.
The performance of the GFQMDR method is evalu-

ated in maximum testing balanced classification accur-
acy (MTSBCA) on ten CVs and corresponding CVC,
where CVC is used as a tie break, and compared with
that of FQMDR, OMDR and MDR methods. Balanced
accuracy using the extended linear member function,
balanced accuracy using the traditional linear member
function, tau-b and balanced accuracy are used to select
multiple sets of best interaction SNPs in each CV in
GFQMDR, FQMDR, OMDR and MDR methods re-
spectively. We choose multiple best sets of SNPs for
each of 2-way, 3-way and 4-way interactions.
We set k to 3, i.e. for each CV of a specific QT, we

choose three best sets of SNPs of a fixed order.
MTSBCA1 through MTSBCA3 are used to represent
three sets of SNPs which have largest MTSBCAs in the
descending order and GCVC1 through GCVC3 are cor-
responding GCVCs which are used as a tie break.
From Tables 9, 10 and 11, we can see that the per-

formance of GFQMDR is better than that of FQMDR,
OMDR and MDR in most cases. Figure 4 shows that
AMTSBCA1 with GFQMDR is higher than that with
three other methods for each of the four QTs except for
PI with OMDR, AMTSBCA2 with EFQMDR is higher
than that of three other methods.
After computing P values of these classifiers, we found

that HDL has P values 0 for all three classifiers of two
way and three way classifiers for GFQMDR and
FQMDR, 0, 0.002, 0.002 for three classifiers of two way

Table 8 Hit ratios (%) for model 3 and model 4

Weight
(w1:w2)

MAF Method Variance

0.1 0.2 0.3

0.5:0.5 0.2 GFQMDR 84:0 35:0 8:0

FQMDR 70:1 14:0 3:0

OMDR 67:0 16:2 7:0

MDR 62:0 6:1 2:0

0.4 GFQMDR 96:28 75:12 44:4

FQMDR 94:30 73:11 46:3

OMDR 92:28 70:9 40:5

MDR 93:16 65:7 32:1

0.7:0.3 0.2 GFQMDR 94:0 65:0 41:0

FQMDR 91:0 47:0 12:0

OMDR 84:0 50:0 22:0

MDR 90:0 37:0 7:0

0.4 GFQMDR 100:0 100:1 96:1

FQMDR 100:0 100:0 96:1

OMDR 100:0 100:0 92:0

MDR 100:0 100:0 84:0

0.3:0.7 0.2 GFQMDR 7:51 3:11 1:7

FQMDR 3:30 1:4 0:2

OMDR 6:24 2:5 1:2

MDR 1:19 0:2 0:0

0.4 GFQMDR 0:85 1:53 2:21

FQMDR 0:81 1:50 1:17

OMDR 0:74 0:49 1:17

MDR 0:69 2:34 2:12

Table 9 Comparison of MTSBCA and GCVC of PI classifiers among EFQMDR, FQMDR, OMDR and MDR when k = 3

Classifier Two loci Three loci Four loci

Method EFQMDR FQMDR OMDR MDR EFQMDR FQMDR OMDR MDR EFQMDR FQMDR OMDR MDR

MTSBCA1 0.563 0.597 0.583 0.456 0.657 0.45 0.857 0.514 0.783 0.514 0.651 0.583

MTSBCA2 0.488 0.542 0.5 0.45 0.488 0.4 0.625 0.411 0.783 0.5 0.613 0.5

MTSBCA3 0.4 0.458 0.467 0.413 0.488 0.333 0.478 0.389 0.540 0.422 0.590 0.5

GCVC1 5 8 3 3 5 2 7 2 8 1 1 4

GCVC2 5 6 3 5 2 1 9 3 7 1 1 1

GCVC3 1 1 2 2 1 2 1 1 1 1 4 1
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classifiers for OMDR, 0, 0.001, 0.001 for three classifiers
of two way classifiers for MDR, 0.001, 0.003, 0.004 for
three classifiers of three way classifiers for OMDR. In
other cases, P values are all above 0.01. For P values
below 0.01, GFQMDR and FQMDR have lower P values
than OMDR and MDR, indicating stronger gene-gene
interactions.
For cases where P values are below 0.01, we set k to

bigger values and identify more classifiers with P values
below 0.01, but some of them are identified due to link-
age disequilibrium among causal snps and non-causal
snps.
In summary the performance of the proposed algo-

rithm is better than that of FQMDR, OMDR and MDR.

Discussion
In step 3 and step 4 of GFQMDR Algorithm, when com-
puting the size of each category in a particular cell, an
extended linear member function is used; when comput-
ing the total size of each category in all cells, a trad-
itional linear member function is used. The reason is
that when deciding the label or category of a particular
cell, the difference among different categories when be-
ing tried to assign to that cell can be reflected by the size
of different categories in that cell, rather than the total
size of different categories in all cells. Such a difference
can be better reflected by an extended linear member
function. Experiments also show much better perform-
ance when using the extended linear member function

and the traditional linear member function in different
cases.
In GFQMDR Algorithm, fuzzification is not only

applied to the computation of training and testing ac-
curacies, but also applied to the classification of each
cell or genotype combination, while in [34], fuzzifica-
tion is only applied to the computation of training
and testing accuracies.. Experiments show better per-
formance of such a double fuzzification than that of a
single fuzzification in either the computation of train-
ing and testing accuracies or the classification of each
cell or genotype combination.
It’s a complex problem to divide QTs into meaningful

intervals. Usually deviation is used to divide QTs as in
simulated data, but the condition is the data obey ap-
proximately some kind of normal distribution. If not,
dividing QTs into equal length intervals is a simple and
acceptable choice if it has a better performance.
To make our method more computationally efficient,

the GENIE software package which utilizes the power of
multiple GPU or CPU processor cores to parallelize the
interaction analysis [38] could be used.
Alternative methods could be to use fuzzy balanced

accuracy based on traditional member function of fuzzy
sets, or balanced signed accuracy where 1 is used to de-
note that the predicted category is the same as the true
category, 0 to denote that the predicted category is close
to the true category, − 1 to denote that the predicted cat-
egory is far from the true category. However our

Table 10 Comparison of MTSBCA and GCVC of HDL classifiers among EFQMDR, FQMDR, OMDR and MDR when k = 3

Classifier Two loci Three loci Four loci

Method EFQMDR FQMDR OMDR MDR EFQMDR FQMDR OMDR MDR EFQMDR FQMDR OMDR MDR

MTSBCA1 0.778 0.734 0.778 0.716 0.796 0.667 0.667 0.685 0.648 0.675 0.671 0.833

MTSBCA2 0.778 0.685 0.778 0.716 0.796 0.667 0.667 0.667 0.611 0.593 0.671 0.657

MTSBCA3 0.778 0.685 0.547 0.704 0.759 0.622 0.667 0.541 0.526 0.593 0.668 0.620

GCVC1 10 10 7 10 2 4 3 1 2 4 4 1

GCVC2 8 10 6 9 1 1 3 3 2 1 2 2

GCVC3 4 5 3 5 2 1 2 3 1 1 4 3

Table 11 Comparison of MTSBCA and GCVC of AFS classifiers among EFQMDR, FQMDR, OMDR and MDR when k = 3

Classifier Two loci Three loci Four loci

Method EFQMDR FQMDR OMDR MDR EFQMDR FQMDR OMDR MDR EFQMDR FQMDR OMDR MDR

MTSBCA1 1 0.862 0.828 0.857 1 0.982 0.931 0.939 1 0.970 1 1

MTSBCA2 1 0.839 0.793 0.759 1 0.982 0.911 0939 1 0.970 1 1

MTSBCA3 1 0.821 0.788 0.759 1 0.875 0.911 0.897 0.966 0.966 0.966 1

GCVC1 9 3 5 5 4 7 3 4 3 4 4 4

GCVC2 8 8 3 5 4 4 3 3 3 2 4 4

GCVC3 7 7 4 4 2 2 3 2 2 2 1 2
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experiments show that the performance of our algorithm
is better than that of the above two methods.
When multiple sets of causal snps exist, the perform-

ance of our proposed method depends on the sizes of in-
fluence of different sets of causal snps. When the sizes
are similar, they are easier to be identified, whereas the
sizes are quite different, the set with bigger size will be
easily identified.
Mathematical analysis is further needed to explain the

better performance of the generalized fuzzy classification
based on extended member functions. This will be our
future work.
To apply our method, the continuous trait should be

divided into J intervals first. To get the optimal J, we can
try different number of intervals. If for J intervals, its
performance is better than J-1 intervals and J + 1 inter-
vals, J intervals could be approximately considered as
optimal. If the performance is increasingly better when J
increases, we can set an upper bound. In this paper, we
only try three intervals for simplicity. We intend to try
more intervals in our future work.
We would also try testing the proposed method with

data in dbGAP or other human data that we can get a
hold on in our future work.

Conclusions
In this study, a new method to identify gene-gene inter-
actions for complex quantitative traits is proposed based
on generalized fuzzy classification. To better use the in-
formation contained in a quantitative trait, it is first di-
vided into several (greater than two) ordinal levels. Then
a new ordinal association measure, fuzzy balanced accur-
acy based on generalized fuzzy classification is employed
to select best sets of SNPs as having the strongest associ-
ation with the trait in our proposed GFQMDR algo-
rithm. Experimental results on simulated datasets and
real datasets show that our algorithm has better

performance in identifying gene-gene interactions asso-
ciated with a complex quantitative trait.
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